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Abstract

An architectural hypothesis for the origin of motion-in-depth selectivity in the visual cortex is
proposed. On the basis of a time extension of the phase-based techniques for disparity estimation,
we consider the computation of the total temporal derivative of the time-varying disparity through
the combination of the responses of disparity energy units. The emergence of motion-in-depth
tuning is pointed out in relation to the unbalanced ocular dominance of a&erent binocular complex
cells. The resulting cortical units of the model exhibit properties that can be directly compared
with those reported in the literature for real cortical cells.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Visual cortex; Binocular motion; Disparity; Energy models; Phase-based stereopsis

1. Introduction

There are at least two binocular cues that can be used to discriminate the 3-D
component of the object’s motion (i.e., its motion-in-depth (MID)) [7]: (1) the rate of
change of binocular disparity, and (2) the inter-ocular velocity di&erences. The ques-
tion of which mechanism is predominant on the other implies di&erent hypotheses on
the architectural solutions adopted by visual cortical cells to encode dynamic 3-D vi-
sual information. In particular, it has a speci<c bearing on the degree to which the
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brain mechanism for detecting motion-in-depth is independent of the mechanism for
detecting static disparities. Recently, numerous experimental and computational studies
(see e.g., [2,3,6,8,9]) addressed this issue, by analyzing the binocular spatio-temporal
properties of simple and complex cells. The fact that the resulting disparity tuning does
not vary with time, and that most of the cells in the primary visual cortex have the
same motion preference for the two eyes, led to the conclusion that these cells are
not tuned to motion-in-depth. In this paper, we demonstrate that, within a phase-based
disparity encoding scheme, such cells relay phase temporal derivative components that
can be combined, at a higher level, to yield a speci<c motion-in-depth selectivity. The
rationale of this statement relies upon analytical considerations on phase-based dynamic
stereopsis, as a time extension of the well-known phase-based techniques for disparity
estimation [5]. The resulting model is based on the computation of the total temporal
derivative of the disparity through the combination of the outputs of binocular dispar-
ity energy units [6,8] characterized by di&erent ocular dominance indices. Since each
energy unit is just a binocular Adelson and Bergen’s motion detector, this establishes
a link between the information contained in the total rate of change of the binocular
disparity and that held by the interocular velocity di&erences.

2. Phase-based dynamic stereopsis

Binocular depth perception derives from the di&erences in the positions of corre-
sponding points in the stereo image pair projected on the retinas. In a <rst approx-
imation, the positions of corresponding points are related by a 1-D horizontal shift,
the disparity, along the direction of the epipolar lines. Formally, the left and right
observed intensities from the two eyes, respectively IL(x) and IR(x), result related as
IL(x)=IR[x+�(x)], where �(x) is the horizontal binocular disparity. In the last decades,
a computational approach for stereopsis, that relies on the phase information contained
in the spectral components of the stereo image pair, has been proposed [5]. Spatially
localized phase measures on the left and right images can be obtained by <ltering op-
erations with a complex-valued quadrature pair of Gabor <lters h(x; k0) = e−x2=�2

eik0x,
where k0 is the peak frequency of the <lter and � relates to its spatial extension. The re-
sulting convolutions with the left and right binocular signals can be expressed as Q(x)=

(x)ei�(x) =C(x) + iS(x) where 
(x) =

√
C2(x) + S2(x) and �(x) = arctan(S(x)=C(x))

denote their amplitude and phase components, respectively, and C(x) and S(x) are the
responses of the quadrature pair of <lters. Hence, binocular disparity can be predicted
by �(x)=[�L(x)−�R(x)]=k(x), where k(x)=[�L

x (x)+�R
x (x)]=2, with �x spatial deriva-

tive of phase �, is the average instantaneous frequency of the bandpass signal, that,
under a linear phase model, can be approximated by the peak frequency of the Gabor
<lter k0. Extending to time domain, the disparity of a point moving with the motion
<eld can be estimated by

�[x(t); t] =
�L[x(t); t] − �R[x(t); t]

k0
; (1)
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where phase components are computed from the spatio-temporal convolutions of the
stereo image pair Q(x; t) =C(x; t) + iS(x; t) with directionally tuned Gabor <lters with
a central frequency p = (k0; !0). For spatio-temporal locations where linear phase ap-
proximation still holds (� � k0x +!0t), the phase di&erences in Eq. (1) provide only
spatial information, useful for reliable disparity estimates.

If disparity is de<ned with respect to the spatial coordinate xL, by di&erentiating
with respect to time, its total rate of variation can be written as

d�
dt

=
@�
@t

+
vL
k0

(�L
x − �R

x ); (2)

where vL is the horizontal component of the velocity signal on the left retina. Consid-
ering the conservation property of local phase measurements [4], image velocities can
be computed from the temporal evolution of constant phase contours, and thus:

�L
x = −�

L
t

vL
and �R

x = −�
R
t

vR
(3)

with �t = @�=@t. Combining Eq. (3) with Eq. (2) we obtain d�=dt = (vR − vL)�R
x =k0,

where (vR − vL) is the phase-based interocular velocity di&erence along the epipolar
lines. When the spatial tuning frequency of the Gabor <lter k0 approaches the instan-
taneous spatial frequency of the left and right convolution signals one can derive the
following approximated expressions:

d�
dt

� @�
@t

=
�L
t − �R

t

k0
� vR − vL: (4)

The partial derivative of the disparity can be directly computed by convolutions (S; C)
of stereo image pairs and by their temporal derivatives (St ; Ct):

@�
@t

=
[
SL

t C
L − SLCL

t

(SL)2 + (CL)2 − SR
t C

R − SRCR
t

(SR)2 + (CR)2

]
1
k0

(5)

thus avoiding explicit calculation and di&erentiation of phase, and the attendant prob-
lem of phase unwrapping. Considering that, at <rst approximation (SL)2 + (CL)2 �
(SR)2 + (CR)2 and that these terms are scantly discriminant for motion-in-depth, we
can formulate the cortical model taking into account the numerator terms only.

3. The cortical model

If one pre<lters the image signal to extract some temporal frequency sub-band,
S(x; t) � g∗S(x; t) and C(x; t) � g∗C(x; t), and evaluates the temporal changes in that
sub-band, di&erentiation can be attained by convolutions on the data with appropriate
bandpass temporal <lters: S ′(x; t) � g′ ∗S(x; t) and C′(x; t) � g′ ∗C(x; t). S ′ and C′ ap-
proximate St and Ct , respectively, if g and g′ are a quadrature pair of temporal <lters,
e.g.: g(t)=(kt)5 exp(−kt)(1=5!−(kt)2=(7)!) and g′(t)=(kt)3 exp(−kt)(1=3!−(kt)2=(5)!).
By algebraic manipulation of the terms of the numerators in (5), one can express the
computation of @�=@t in terms of convolutions with a set of oriented spatio-temporal
<lters, whose shapes resemble simple cell receptive <elds (RFs) of the primary visual
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cortex. Though, it is worthy to note that a direct interpretation of the computational
model is not biologically plausible. Indeed, in the computational scheme (see Eq. (5)),
the temporal variations of phases are obtained by processing monocular images sepa-
rately and then the resulting signals are binocularly combined to give at an estimate
of motion-in-depth in each spatial location.

To employ binocular RFs from the beginning, as they exist for most of the cells
in the visual cortex, we manipulated the numerators of Eq. (5) by rewriting them as
the combination of terms characterized by a dominant contributions from one eye with
respect to the other. These contributions are referable to binocular disparity energy units
[8] built from two pairs of binocular direction selective simple cells with left and right
RFs weighted by an ocular dominance index �∈ [0; 1]. The “tilted” spatio-temporal
RFs of simple cells of the model are obtained by combining separable RFs according
to an Adelson and Bergen’s scheme [1]. It can be demonstrated that the information
about motion-in-depth can be obtained with a minimum number of eight binocular
simple cells, four with a left and four with a right ocular dominance, respectively (see
Fig. 1):

s1 = (1 − �)(CL
t + SL) − �(CR − SR

t ); s2 = (1 − �)(CL − SL
t ) + �(CR

t + SR);

s3 = (1 − �)(CL
t − SL) − �(CR + SR

t ); s4 = (1 − �)(CL + SL
t ) + �(CR

t − SR);

s5 = �(CL
t + SL) − (1 − �)(CR − SR

t ); s6 = �(CL − SL
t ) + (1 − �)(CR

t + SR);

s7 = �(CL
t − SL) − (1 − �)(CR + SR

t ); s8 = �(CL + SL
t ) + (1 − �)(CR

t − SR);

c11 = s21 + s22; c12 = s23 + s24; c13 = s25 + s26; c14 = s27 + s28;

c21 = c12 − c11; c22 = c13 − c14;

c3 = (1 − 2�)(SL
t C

L − SLCL
t − SR

t C
R + SRCR

t ):

The output of the higher cell in the hierarchy (c3) truly encodes motion-in-depth in-
formation.

4. Results

To assess model performances, for each layer, the tuning characteristics of the cells
are analyzed as sensitivity maps in the (xL; xR) and (vL; vR) spaces for the static and
dynamic properties, respectively. The (xL; xR) response represents the binocular RF [8]
of a cell, evidencing its disparity tuning. The (vL,vR) response represents the binocular
tuning curve of the velocities along the epipolar lines. Fig. 2 shows, as contour plots, the
binocular responses in the (xL; xR) space of three complex cells at increasing position
in the hierarchy, for two di&erent values of the ocular dominance index (�= 0:8; 0:5).

The cells of the cortical model exhibit properties and typical pro<les similar to those
observed in the visual cortex [8]. Speci<cally, for �=0:5 we fall exactly in the Ohzawa
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Fig. 1. Functional representation of the proposed cortical architecture. Each branch groups cells belonging
to an ocular dominance column (black and white slabs in the <gure). The a&erent signals from left and
right ocular dominance columns are combined in layer 3. The basic units are binocular simple cells tuned
to motion directions (s1; : : : ; s8). The responses of the complex cells in layers 1, 2 and 3 are obtained by
linear combinations of the outputs of those basic units.

et al. [8] energy model. It is worthy to note the lack of disparity tuning in the cell of
the last layer.

To investigate motion-in-depth sensitivity, we derived cells’ responses to drifting si-
nusoidal gratings with di&erent speeds in the left and right eye. The spatial frequency
of the gratings has been chosen as central to the RFs bandwidth. The responses of
the model cells with respect to the interocular velocities ratio for twelve di&erent mo-
tion trajectories in depth (labeled 1 to 12) are represented in Fig. 3 as polar plots
(cf. [10]). The 3 and 9 paths represent the rightward and leftward motions, respec-
tively, in a frontoparallel plane; the 12 and 6 represent motions straight away from
and toward the observer, respectively. The remaining eight trajectories represent inter-
mediate oblique paths in depth. As one ascends in the hierarchy of the cortical network,
model cells combine their outputs in such a way to gain a still more distinct tuning to
motion-in-depth. A tuning that is clearly revealed in layer 3 cell, which is speci<cally
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Fig. 2. Binocular receptive <elds of three complex cells of the cortical network, for two di&erent values
of ocular dominance index. The lighter the shading the stronger the response. The solid curves below each
(xL ; xR) plot, represent the corresponding disparity tuning curves, obtained by integrating the 2-D (xL ; xR)
pro<le along constant disparity lines parallel to the 45◦ diagonal (cf. [8]). Responses are normalized with
respect to each other, in order to have a common reference.

Fig. 3. Motion-in-depth tuning curves of three model complex cells for two di&erent values of ocular
dominance index. The responses are normalized to the largest amplitude value.
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tuned to motion toward the observer. By combining subunits with opposite ocular dom-
inance indices, opposite direction tuning can be straightforwardly obtained. It is worthy
to note that the ocular dominance plays a key role for the origin of motion-in-depth
tuning: if � = 0:5 (i.e., balanced contributions from the two eyes) there is, indeed, no
direction-in-depth selectivity (see Fig. 3).

Summarizing, the complex cells belonging to the middle two layers exhibit a strong
selectivity to static disparity, but no speci<c tuning to motion-in-depth. On the contrary,
the output cell c3 shows a narrow tuning to the Z direction of the object’s motion,
while lacking disparity tuning.

5. Conclusions

Considering the dynamic stereo correspondence problem, the Z component of the
object’s motion (i.e., its motion-in-depth) can be approximated by binocular combi-
nation of monocular velocity signals or by the rate of change of retinal disparity [7].
Assuming a phase-based disparity encoding scheme [5], we demonstrated that infor-
mation held in the interocular velocity di&erence is the same of that derived by the
evaluation of the total derivative of the binocular disparity. The resulting computation
relies upon spatio-temporal di&erentials of the left and right retinal phases that can
be approximated by linear <ltering operations with spatio-temporal RFs. Accordingly,
we proposed a cortical model for the generation of binocular motion-in-depth selective
cells as a hierarchical combination of binocular energy complex cells. It is worth noting
that the phase response and the associated characteristic disparity of simple and com-
plex cells in layers from 0 to 2 do not change with time, but the amplitudes of their
responses carry information on temporal phase derivatives, that can be related to both
retinal velocities and temporal changes in disparity. Moreover, the model evidences
the di&erent roles of simple and complex cells. Simple cells provide a Gabor-like
spatio-temporal transformation of the visual space, on which to base a variety of visual
functions (perception of form, depth, motion). Complex cells, by proper combinations
of the same signals provided by simple cells, actively eliminate sensitivity to a se-
lected set of parameters, thus becoming speci<cally tuned to di&erent features, such
as disparity but not motion-in-depth (layer 1 and 2), motion-in-depth but not disparity
(layer 3).
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