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Abstract: 
 
This deliverable provides information and first obtained results of the developed software module 
called PVCStereo that allows for learning binocular receptive fields based on Hebbian learning. 
The software module is written in C++, using an artificial neural-network architecture 
(ANNarchy) library, developed in our lab. The learning algorithm has been demonstrated to learn 
from stereo images of natural scenes. The set of stereo images was taken from a two-camera 
system mounted in our lab. We tested if the model learns disparity-tuned and feature selective 
cells from this set of stereo images. As expected, the cells learn localized, oriented, disparity 
tuned and bandpass filtering receptive fields, comparable to those in area V1 of the primate brain. 
The detailed comparison with physiological data and the analysis of the determination of the 
disparity tuning curves is ongoing and will be reported in D 3.1b. 
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1 Introduction

The EU project ”Eyeshots” aims to establish a visuo-motor system grounded in the
concept of ”active fragmented vision”. According to this concept, perception gen-
erates dynamic cognitive interpretations of the scene, which does not imply a real
metrical 3-D reconstruction of the observed space, but instead a loose representation
of objects that are actively bound on time for the task at hand (in terms of affordance,
salience, and planning of actions). We here describe the research background of the
software developed for learning the receptive fields of neurons in the visual pathway.
Our algorithm is motivated by research to capture the basic principles of primate 3-D
perception. Inputs from left and right eyes are combined in primary visual cortex (V1),
where many cells are tuned for binocular disparity. Complex cells in V1 often show a
tuning for a preferred disparity. However, V1 is not the source of stereoscopic depth
perception. V1 rather provides local estimates of absolute disparity.

So far, models of primary visual cortex encoding disparity have primarily be con-
structed by hand based on data, but little work has been done on developing learning
algorithms that lead to general purpose receptive fields similar as observed in the
brain. The deliverable of work package 3.1 provides an alternative branch to work
package 2.1 where specialized filters for vergence control are developed. The output
of the model from work package 3.1 will therefore be used in WP2, where the pros
and cons of general purpose compared to specialized disparity detectors are inves-
tigated, and within WP3 to learn more complex feature detectors by combining V1
detectors.
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2 Approach and methodology

Since the early studies of receptive field properties in primary visual cortex (Hubel
& Wiesel, 1962; Valois et al., 1982; DeAngelis et al., 1993), a major issue in neu-
ral coding has emerged, dealing with the question of why neurons have a particular
receptive field structure. Since V1 neurons respond well to edges, edge detection
has been considered as a useful operation of early vision emphasizing the impor-
tant structural properties of a visual scene (Marr & Hildreth, 1980). However, this
does not answer the questions about optimal edge detectors and particularly why
edge detectors should emerge and not any other potentially useful detector. Impor-
tant progress has arisen from the efficient coding hypothesis (Attneave, 1954; Barlow,
1961; Laughlin, 1981; Atick & Redlich, 1990; Hateren, 1993; Field, 1994). Particularly,
recent contributions in this respect have shown that algorithms seeking for a statis-
tical independence of the neural responses converge to localized, oriented, band-
pass filters (Olshausen & Field, 1996; Bell & Sejnowski, 1997; van Hateren & van der
Schaaf, 1998). However, despite this great success, a more close comparison with
neural data revealed that the learned receptive fields do not capture the full frequency
distribution as observed in experimental data (van Hateren & van der Schaaf, 1998;
Ringach et al., 2002).

While many studies have demonstrated some relationship between neural receptive
field properties and aspects of efficient coding, we investigated the quantitative influ-
ence of particular aspects of efficient coding on the similarity between the modeled
receptive fields and the experimental data (Wiltschut & Hamker, in press). In this
recent, previous work, we systematically varied critical model parameters and mea-
sured information theoretic properties of efficient coding in these different instances
after learning. We then analyzed if these measurements of efficient coding correlate
with the similarity between model and biological data – the distribution of spatial fre-
quency tuning (Ringach et al., 2002). We observed in most but not all cases that
making the code more efficient enhances the similarity between model and experi-
mental data. However, with respect to the coding quality (e.g. reconstruction error)
we observe a saturation, enforcing a highly independent and sparse code does not
further improve or even diminish coding quality.

Our developed model (Figure 1) consists of two layers, of which neurons are bidirec-
tionally connected with each other by feedforward (W ) and feedback (A) weights. The
activity rOn/Off

i is obtained from images that have been whitened/lowpass filtered and
separated into on/off channels (depending on the sign of the pixel value after filtering).

Layer II (model V1) gets activated from Layer I neurons, but is dependent on the
activity of other Layer II cells through lateral inhibition developed by anti-Hebbian
learning. The Layer II cells feed back to Layer I cells and increase their gain. Due to
the learning of the feedback weights, this feedback is predictive. Unlike generative
models where the difference between feedforward and feedback is computed, the
feedback signal enhances the sensitivity of specific neurons in the previous layer and

2



thus leads to an attentional tuning.

Figure 1: The network consists of two layers. The first layer (Layer I) represents
the simulated input modulated by the ’attentional’ feedback signal (a). The cells of
Layer II represent the simulated V1 cells. Each cell of Layer I gains feedback from all
cells of Layer II (according to the feedback weight connection) and each Layer II cell
obtains its excitation from all Layer I cells (dependent on the feedforward weights
(w) respectively their receptive field). This excitatory input is linear but this signal
is further processed non-linearly. Each cell uses its current activation state to self-
enhance its firing rate but is also inhibited by all other cells, dependent on the current
lateral inhibition connection weights (c).

The learning of the connections between neurons is implemented via a Hebbian prin-
ciple. Long term potentiation (LTP) requires an above-mean activation of both, pre-
and post-synaptic activities, which is well known as the covariance learning rule (Se-
jnowski, 1977; Willshaw & Dayan, 1990). Long term depression (LTD) occurs by
the constraint to limit the overall weight resource and, only for the feedforward con-
nections, if the pre-synaptic activity is below the population mean. For details see
(Wiltschut & Hamker, in press).

We have shown that this model with non-linear lateral competition, learned by an
anti-Hebbian principle, and Hebbian learning of feedforward and feedback connec-
tions, develops receptive fields which are not only similar to V1 macaque data, but
which match the distribution of the spatial frequency tuning, particularly if the neural
code is efficient (Wiltschut & Hamker, in press). We also compared our results
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to Independent Component Analysis (ICA), a standard linear method for learning
receptive fields from natural scenes. We used the fast fix-point algorithm (Hyvärinen
et al., 2001). Hoyer & Hyvarinen (2000) have shown that this algorithm can produce
orientated bandpass filters and disparity tuned neurons similar to those in V1. This
particular ICA algorithm shows similar deficits than the results from Lewicki et al.
(1999) and more mild deficits compared to those Ringach et al. (2002) has reported
for Bell & Sejnowski (1997) ICA and the Olshausen & Field (1996) sparse coding
algorithm with respect to the variety of receptive field properties. In all of these
studies ICA only captures in part the whole distribution of receptive field properties.

The software we have developed extends the network describe above to learn binoc-
ular receptive fields from a set of stereo images. The set of stereo images was taken
from a two-camera system mounted in our lab. For the initial testing of the algorithm
we used a small set of images from indoor scenes.

3 Brief description of results

From each image we randomly selected patches of 12 × 12 pixels. As the on/off
channels consist of 12 × 12, 288 cells were required in the first layer for each eye,
i.e., 144 neurons receive input from the on-, the others from the off-cells. We used
288 cells in Layer II to represent the input combinations. The feedforward weights
wij were initialized randomly with a mean w̄ = 0.1. The feedback and the lateral
inhibition weights were initialized to zero. An image patch is presented for 50ms to let
the dynamics of the system converge to a stable state. After each trial the feedback
and feedforward synapses as well as the lateral inhibition connections are updated
according to the final firing rates of the cells.

Figure 2 shows typical examples of tuning curves of binocular cells in the new model
using indoor scenes for learning. We observe a large number of cells with disparity
tuning. The first cell is tuned to near objects, the other ones are tuned to far objects.
However, the second cell shows quite broad tuning characteristics.

4 Concluding remarks

Our model has been demonstrated to develop typical V1 receptive fields using the
statistics of natural scenes for unsupervised receptive field organization based on
Hebbian learning as shown in detail in Wiltschut & Hamker (in press).

The software developed for this deliverable further expands the model to also show
disparity tuning similar as it has been observed in area V1. An in depth comparison to
V1 data with respect to disparity tuning will be reported in deliverable 3.1b using nat-

4



Figure 2: Each row shows the tuning properties of a binocular cell after learning. The
two images on the left show the receptive field of the left and right view. The third
image shows the horizontal and vertical disparity tuning (in pixels) of the cell and the
last image depicts the horizontal disparity tuning properties at zero vertical disparity.

ural outdoor scenes. The feedback connections learned will be particularly important
for WP 3.2 where they will be used to attentively bind visual fragments on demand.

5



References

Atick, J. J. & Redlich, A. N. (1990). Towards a theory of early visual processing.
Neural Computation, 2, 308–320.

Attneave, F. (1954). Some informational aspects of visual perception. Psychol Rev,
61, 183–193.

Barlow, H. B. (1961). Possible principles underlying he transformation of sensory
messages. In Rosenblith, W. A., Ed., Sensory Communication, pages 217–234,
Cambridge, MA. MIT Press.

Bell, A. J. & Sejnowski, T. J. (1997). The ”independent components” of natural scenes
are edge filters. Vis. Res., 37(23), 3327–3338.

DeAngelis, G. C.; Ohzawa, I., & Freeman, R. D. (1993). Spatiotemporal organization
of simple-cell receptive fields in the cat’s striate cortex. i. general characteristics
and postnatal development. J Neurophysiol, 69(4), 1091–1117.

Field, D. J. (1994). What is the goal of sensory coding? Neural Comput, 6, 559–601.

Hateren, J. H. V. (1993). Spatiotemporal contrast sensitivity of early vision. Vision
Res, 33(2), 257–267.

Hoyer, P. O. & Hyvarinen, A. (2000). Independent component analysis applied to
feature extraction from colour and stereo images. Network, 11(3), 191–210.

Hubel, D. H. & Wiesel, T. N. (1962). Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex. J Physiol, 160, 106–154.

Hyvärinen, A.; Karhunen, J., & Oja, E. (2001). Independent Component Analysis.
Wiley, New York.

Laughlin, S. B. (1981). Simple coding procedure enhances a neuron’s information
capacity. Z. Naturforsch., 36C, 910–912.

Lewicki, M. S.; Hughes, H., & Olshausen, B. A. (1999). Probabilistic framework for
the adaptation and comparison of image codes. Comparison of Image Codes,Ó J.
Opt. Soc. Am. A, 16, 1587–1601.

Marr, D. & Hildreth, E. (1980). Theory of edge detection. Proc R Soc Lond B Biol Sci,
207(1167), 187–217.

Olshausen, B. A. & Field, D. J. (1996). Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images. Nature, 381, 607–609.

Ringach, D. L.; Bredfeldt, C. E.; Shapley, R. M., & Hawken, M. J. (2002). Suppres-
sion of neural responses to nonoptimal stimuli correlates with tuning selectivity in
macaque V1. J. Neurophysiol., 87(2), 1018–1027. (doi:10.1152/jn.00614.2001.).

6



Sejnowski, T. J. (1977). Storing covariance with nonlinearly interacting neurons. J.
Math. Biol., 4(4), 303–321. (doi:10.1007/BF00275079).

Valois, R. L. D.; Yund, E. W., & Hepler, N. (1982). The orientation and direction
selectivity of cells in macaque visual cortex. Vision Res, 22(5), 531–544.

van Hateren, J. H. & van der Schaaf, A. (1998). Independent component filters of
natural images compared with simple cells in primary visual cortex. Proc. Biol. Sci.,
265(1394), 359–366. (doi:10.1098/rspb.1998.0303).

Willshaw, D. & Dayan, P. (1990). Optimal plasticity from matrix memories: what goes
up must come down. Neural Comp., 2, 85–93.

Wiltschut, J. & Hamker, F. (in press). Efficient coding correlates with spatial frequency
tuning in a model of v1 receptive field organization. Vis Neurosci.

5 Appendix: PVCStereo Documentation

5.1 Requirements

PVCStereo is build using the Artificial Neural Network architecture ANNarchy writ-
ten by Julien Vitay,jvita_01@uni-muenster.de in the Lab of Fred H.
Hamker at the Westf. Wilhelms-University Münster. The ANNarchy
library must be installed prior to the compilation of the PVCStereo sources. For the
installation of the ANNarchy library please consult the documentation of ANNarchy.
In the following, a brief overview about the classes is provided. A full description of
all classes as well as a description for compilation and running will be provided to the
project partners upon request.

5.2 Classes

Here are the classes, structs, unions and interfaces that have been developed

• class LgnNeuron
Class representing a LGN neuron.

• class LgnLayer
Class representing a LGN Layer.

• class LgnMap
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Class representing a LGN map.

• class V1NeuronIn
Class representing a V1-In neuron.

• class V1LayerIn
Class representing a V1 In Layer.

• class V1Map
Class representing a V1 map.

5.3 File List

Here is the list of files developed.

• ConnectionManager.cpp

• ConnectionManager.h

• Controls.h

• Main.cpp

• MainGUI.h

• Network.cpp

• Network.h

• PVCStereo.cpp

• PVCStereo.h

• World.cpp

• World.h
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