

Project no.: Project full title: Project Acronym: Deliverable no: Title of the deliverable:

FP7-ICT-217077 Heterogeneous 3-D Perception across Visual Fragments EYESHOTS D8.1 Literature Database

Date of Delivery:	31 May 2008	
Organization name of lead contractor for this deliverable:	UG	
Author(s):	All	
Participant(s):	All	
Workpackage contributing to the deliverable:	WP8	
Nature:	Demonstrator	
Version:	1.0	
Total number of pages:	28	
Responsible person:	Silvio P. Sabatini	
Revised by:		
Start date of project:	1 March 2008	Duration: 36 months

Project Co-funded by the European Commission within the Seventh Framework Programme				
Dissemination Level				
PU	Public	X		
РР	Restricted to other program participants (including the Commission Services)			
RE	Restricted to a group specified by the consortium (including the Commission Services)			
CO	Confidential, only for members of the consortium (including the Commission Services)			

Abstract:

This report contains a formal description of the EYESHOTS Literature Database and a printout of its status contents at 31Oct 2008.

Contents

1	Motivations and description	2
2	Subjects covered	2
3	Key features	3
4	Access	4
5	Restrictions	4
6	Single publication overview (details)	5
7	Database contents	6

1 Motivations and description

Due to the highly multi-disciplinary character of EYESHOTS, we considered worthwhile to compile a bibliography list and source/access information of the basic and relevant literature from computer science, biocybernetics, sensing and motor control as well as learning that will provide a common basis for teaching and education of students. Accordingly, we have set-up the a Literature Database powered by a GPL web-based bibliography management system (Aigaion, http://www.aigaion.nl/), which will help students to acquaint themselves with the terminology used in the different fields and thus ensure good communication across partners.

The EYESHOTS literature database features an ever-growing collection of references (currently 164) related to the research activities conducted in the EYESHOTS project. The archive is functionally subdivided into two major sections:

- 1. a section that covers a list of (*fixed*) topics directly associated to the project Workplan, and
- 2. a section that contains a list of general topics¹, specified on a *dynamic* basis. The articulation of this section is aimed to provide a unifying perspective of the references used in the different project's components, which can be considered as an general asset of the project.

The database is freely accessible.

2 Subjects covered

- General¹
 - Sensorimotor integration¹
- Cognitive robotics¹
 - Reaching and manipulation¹
 - Vision¹
- Experimental psychology¹
 - Arm movements¹
 - Attention¹
 - Eye movements¹
 - Shared attention¹
- Neurophysiology¹

¹Still preliminary

- Binocular vision¹
- Eye movements¹
- Visuomotor¹
- Specific EYESHOTS topics
 - Binocular eye coordination (vergence and version movements) [Task 1.1]
 - Eye-position gain fields and coordinate transformations [Task 1.2]
 - Visuomotor binocular control [Task 1.3]
 - Bioinspired stereovision robot systems [Task 1.4]
 - Learning paradigms for visual stereopsis [Task 2.1]
 - Vergence control strategies (based on disparity detectors) [Task 2.1]
 - Interactive depth perception [Task 2.2]
 - Stereoscopic object recognition [Task 3.1]
 - Visual attention and receptive field dynamics [Task 3.2]
 - Selection of behavioral alternatives and working memory [Task 3.3]
 - Integrated perception-related and action-related representation [Task 4.1]
 - Visuo-motor descriptors of reachable objects [Task 4.2]
 - Multisensory egocentric representation of the 3D space [Task 4.3]
 - Joint vision/eye-position features visual cortical areas [Task 5.1]
 - Joint vision/reaching features in visual cortical areas [Task 5.2]
 - Motor description of fragment location and saccade adaptation [Task 5.3]
 - Cooperative human-human/robot behavior in shared workspace [Task 5.4]

3 Key features

Aigaion (see, http://www.aigaion.nl/) provides a bibliography management environment that supports a user (both individual researchers and research groups or projects) in organizing and managing literature. Its key features are the following:

Bibliography management

- Organization of publications in a topic tree.
- Annotation of publications by using notes.
- Easy cross-referencing between publications and notes.
- Browse publication lists with different sorting.
- Clear single-publication overview.

- Add multiple in- or external attachments per publication.

Data formats:

- Import from BibTeX and RIS.
- Export to BibTeX and RIS.
- Formatted export to txt, html or rtf in common citation styles.

User management:

- Set individual user rights, from read-only to administrator.
- Assign users to user groups.
- Customizable anonymous access.

Platforms:

- Platform independent, written in PHP/MySQL.

License:

– GNU General Public License (GPL).

4 Access

Public: via the EYESHOTS website (URL: http://pspc3.dibe.unige.it/aigaion2root/).

5 Restrictions

Eyeshots' Consortium Members: uploading and sharing papers (refs and PDFs), editing topic and publication items.

Non Eyeshots' Members: read-only access to the bibliography database but not to the PDFs.

6 Single publication overview (details)

Eye move	ments in natural behavior r:8 e:8	[delete] [edit] [Bookmark] [BiBTeX] [RIS]			
Type of publications	Artide				
Citation	Hauboe8 all ard05				
Iournali	Trands in Cognitive Sciences				
Volume	a				
Number	4				
Year	2005				
Monthu	and .				
Pages	199 - 94				
Abstracti	The classic experiments of Yarbus over 50 years cognitive processes. But it is only recently that the understanding of the intricate role of eye movem the pervasive role of the task, in guiding where are the role of internal revard in guiding eye and boo studies. The third important advance has been the learning and graphic simulation. All of these adv- programs control the selection of visual information.	ago revealed that saccadic eye movements reflect ree separate advances have greatly expanded our ents in cognitive function. The first is the demonstration of id when to fixate. The second has been the recognition of by movements, revealed especially in neurophysiological is theoretical developments in the fields of reinforcement ances are proving crucial for understanding how behavioral on.			
Doi:	10.1016/j.tics.2005.02.009				
Userfieldsi	affiliation=(Department of Brain {\8} Cognitive S mary@cvs.rochester.edu}, language={eng}, date date-modified={2008-07-04 14:17:08 +0200}, p	<pre>dence, University of Rochester, Rochester, NY 14627, USA. -added={2008-07-04 14:16:53 +0200}, ii={\$1364-6613(05)00059-8}, pmid={15808501},</pre>			
Keywords:	Behavior, Cognition, Eye Movements, Humans, M	onitoring: Ambulatory, vision			
Authors	Hayhoe, Mary Ballard, Dana				
Added by:	0				
Total marki	0				
Your marki	Read/Add mark 1000005				
Attachments [add attachment]					
• 🔀 Hayhoe_2005.pdf [delete] [edit] [unset main] 🖬 🖬					
Notes		[add note]			
Topics		[categorize publication]			
 3 - Experimental Psychology Eye Movements Shared attention Spedific EYESHOTS topis: T3.3 - Selection of behavioral alternatives and wo T5.3 - Motor description of fragment location and 					

7 Database contents

GENERAL > Sensorimotor integration

- [1] N. Bhushan and R. Shadmehr. Computational nature of human adaptive control during learning of reaching movements in force fields. *Biological Cybernetics*, 81:39–60, 1999.
- [2] C. A. Buneo and R. A. Andersen. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. *Neuropsychologia*, 44(13):2594–2606, 2006.
- [3] E. Chinellato. Visual Neuroscience of Robotic Grasping. Phd thesis, Universitat Jaume I, 2008.
- [4] Y. Coello. Spatial context and visual perception for action. *Psicológica*, 26:39–59, 2005.
- [5] Raymond H Cuijpers, Hein T van Schie, Mathieu Koppen, Wolfram Erlhagen, and Harold Bekkering. Goals and means in action observation: a computational approach. *Neural Networks*, 19(3):311–22, April 2006.
- [6] S. Denève, J. R. Duhamel, and A. Pouget. Optimal sensorimotor integration in recurrent cortical networks: A neural implementation of kalman filters. *The Journal of Neuroscience*, 27(21):5744–5756, 2007. WP4.
- [7] M. A. Goodale and A. D. Milner. Separate visual pathways for perception and action. Trends in Neurosciences, 15:20–25, 1992.
- [8] M. A. Goodale, D. Pelisson, and C. Prablanc. Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. *Nature*, 320:748– 750, 1986.
- [9] T. Kulvicius, B. Porr, and F. Woergoetter. Development of receptive fields in a closed-loop behavioural system. *Neurocomputing*, 70, 2007.
- [10] A. Pouget, Deneve S, and J. R. Duhamel. A computational perspective on the neural basis of multisensory spatial representations. *Neuron*, 3(9):741–747, September 2002.
- [11] R. Rosenholtz, L. Yuanzhen, and L. Nakano. Measuring visual clutter. Journal of Vision, 7(2):1–22, 2007. WP3.
- [12] E. Salinas and P. Thier. Gain modulation: a major computational principle of the central nervous system. Neuron, 27(1):15–21, July 2000.
- [13] Emanuel Todorov. Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. *Neural Computation*, 17:1084–1108, May 2005.

COGNITIVE ROBOTICS > Reaching and manipulation, Vision

- [1] Models for the design of a tendon driven robot eye, April 2007.
- [2] N. Bhushan and R. Shadmehr. Computational nature of human adaptive control during learning of reaching movements in force fields. *Biological Cybernetics*, 81:39–60, 1999.

- [3] G. Cannata and M. Maggiali. Models for the design of bioinspired robot eyes. *IEEE Transactions on Robotics*, 24:27–44, February 2008. WP1.
- [4] C. Cavina-Pratesi, M. A. Goodale, and J.C. Culham. Fmri reveals a dissociation between grasping and perceiving the size of real 3d objects. *PLoS ONE.*, 2(5):e424, 2007.
- [5] E. Cervera, A.P. del Pobil, F. Berry, and P. Martinet. Improving image-based visual servoing with three-dimensional features. *The International Journal of Robotics Research*, 22:821–840, 2003.
- [6] E. Chinellato. Visual Neuroscience of Robotic Grasping. Phd thesis, Universitat Jaume I, 2008.
- [7] E. Chinellato and A.P. del Pobil. Integration of stereoscopic and perspective cues for slant estimation in natural and artificial systems. In Jose Mira and Jose R. Alvarez, editors, *Nature Inspired Problem-Solving Methods in Knowledge Engineering, LNCS 4528*, pages 399–408. springer, 2007.
- [8] E. Chinellato, Y. Demiris, and A.P. del Pobil. Studying the human visual cortex for achieving action-perception coordination with robots. In *IASTED International Conference on Artificial Intelligence and Soft Computing*, 2006.
- [9] E. Chinellato, A. Morales, R.B. Fisher, and A.P. del Pobil. Visual quality measures for characterizing planar robot grasps. *IEEE Transactions on Systems, Man and Cybernetics*, 35(1):30–41, 2005.
- [10] J.C. Culham, C. Cavina-Pratesi, and A. Singhal. The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? *Neuropsychologia.*, 44(13):2668–2684, 2006.
- [11] R S Johansson, G Westling, A Bäckström, and J R Flanagan. Eye-hand coordination in object manipulation. J Neurosci, 21(17):6917–32, September 2001.
- [12] J. W. McCandless, C. M. Schor, and J. S. Maxwell. A cross-coupling model of vertical vereence adaptation. *IEEE Transactions on Biomedical Engineering*, 43(1):24–34, 1996. WP1.
- [13] K. Pauwels, M. Lappe, and M. M. Van Hulle. Fixation as a mechanism for stabilization of short image sequences. *International Journal of Computer Vision*, 72(1):67–78, 2007.
- [14] K. Pauwels and M. M. Van Hulle. Optic flow from unstable sequences through local velocity constancy maximization. *Image and Vision Computing*, 2008.
- [15] K. Pauwels and M. M. Van Hulle. Realtime phase-based optical flow on the gpu. In Proceedings of the Workshop on Visual Computer Vision on GPUs, 2008.
- [16] D. J. Quinlan and J.C. Culham. fmri reveals a preference for near viewing in the human parieto-occipital cortex. *Neuroimage.*, 36(1):167–187, 2007.
- [17] G. Recatalà, E. Chinellato, A.P. del Pobil, Y. Mezouar, and P. Martinet. Biologicallyinspired 3D grasp synthesis based on visual exploration. *Autonomous Robots*, 25(1):59–70, 2008.

- [18] M. Rucci and F. Santini. Active estimation of distance in a robotic system that replicates human eye movement. *Robotics and Autonomous Systems*, 55:107–121, 2007.
- [19] S.P. Sabatini and F. Solari. Emergence of motion-in-depth selectivity in the visual cortex through linear combination of binocular energy complex cells with different ocular dominance. *Neurocomputing*, 58-60:865–872, 2004.
- [20] S.P. Sabatini, F. Solari, G. Andreani, C. Bartolozzi, and G.M. Bisio. A hierarchical model of complex cells in visual cortex for the binocular perception of motion-in-depth. In Proceedings of Advances in Neural Information Processing Systems, pages 1271–1278, 2002.
- [21] E. Samson, D. Laurendeau, M. Parizeau, S. Comtois, J.F. Allan, and C. Gosselin. The agile stereo pair for active vision. *Machine Vision and Applications*, 17(11):32–50, April 2006. WP1.
- [22] R. Shadmehr and S. P. Wise. The Computational Neurobiology Of Reaching And Pointing: A Foundation for Motor Learning. Bradford Books, 2005.
- [23] W.M. Theimer and H.P. Mallot. Phase-based vergence control and depth reconstruction using active vision. CVIGP, 60(3):343–358, 1994.

EXPERIMENTAL PSYCHOLOGY > Arm movements, Attention, Eye movements, Shared attention

- [1] S M Anstis, J W Mayhew, and T Morley. The perception of where a face or television "portrait" is looking. *The American journal of psychology*, 82(4):474–89, December 1969.
- [2] K. Arai, E. L. Keller, and J. A. Edelman. Two-dimensional neural network model of the primate saccadic system. *Neural Networks*, 7:1115–1135, 1994.
- [3] G. Ariff, O. Donchin, T. Nanayakkara, and R. Shadmehr. A real-time state predictor in motor control: Study of saccadic eye movements during unseen reaching movements. *Journal of Neuroscience*, 22:7721, 2002.
- [4] H. Awater, D. Burr, M. Lappe, M.C. Morrone, and M.E. Goldberg. The effect of saccadic adaptation on the localization of visual targets. *Journal of Neurophysiology*, pages 3605– 3614, 2005.
- [5] H. Awater and M. Lappe. Mislocalization of perceived saccade target position induced by perisaccadic visual stimulation. *Journal of Neuroscience*, 26(1):12–20, January 2006.
- [6] D. O. Bahcall and E. Kowler. Illusory shifts in visual direction accompany adaptation of saccadic eye movements. *Nature*, 400:864–6, 1999.
- [7] P. M. Bays and M. Husain. Spatial remapping of the visual world across saccades. *NeuroReport*, 18:1207, 2007.
- [8] N. Bhushan and R. Shadmehr. Computational nature of human adaptive control during learning of reaching movements in force fields. *Biological Cybernetics*, 81:39–60, 1999.

- Simon W Bock, Peter Dicke, and Peter Thier. How precise is gaze following in humans? Vision Research, 48(7):946–57, March 2008.
- [10] Haiyin Chen-Harris, Wilsaan M Joiner, Vincent Ethier, David S Zee, and Reza Shadmehr. Adaptive control of saccades via internal feedback. *The Journal of Neuroscience*, 28:2804–13, March 2008. PMID: 18337410.
- [11] E. Chinellato. Visual Neuroscience of Robotic Grasping. Phd thesis, Universitat Jaume I, 2008.
- [12] E. Chinellato, Y. Demiris, and A.P. del Pobil. Studying the human visual cortex for achieving action-perception coordination with robots. In *IASTED International Conference on Artificial Intelligence and Soft Computing*, 2006.
- [13] P. Cisek. A computational model of reach decisions in the primate cerebral cortex. In Modeling Natural Action Selection, 2005.
- [14] M G Cline. The perception of where a person is looking. The American journal of psychology, 80(1):41–50, March 1967.
- [15] T Collins, D Vergilino-Perez, C. Beauvillain, and K. Doré-Mazars. Saccadic adaptation depends on object selection: Evidence from between- and within-object saccadic eye movements. *Brain Research*, (1152):95–105, 2007. WP3.
- [16] Raymond H Cuijpers, Hein T van Schie, Mathieu Koppen, Wolfram Erlhagen, and Harold Bekkering. Goals and means in action observation: a computational approach. *Neural Networks*, 19(3):311–22, April 2006.
- [17] P. Dean, J. E. W. Mayhew, and P. Langdon. Learning and maintaining saccadic accuracy: A model of brainstem-cerebellar interactions. *Journal of Cognitive Neuroscience*, 6:117–138, 1994.
- [18] H. Deubel, W. X. Schneider, and B. Bridgeman. Transsaccadic memory of position and form. In *The Brain's Eye: Neurobiological and Clinical Aspects of Oculomotor Research*, volume 140 of *Progress in Brain Research*, pages 165–180. Amsterdam: Elsevier Science, 2002.
- [19] W. Einhauser, F. Schumann, S. Bardins, K Bartl, G Boning, E. Schneider, and P. Koenig. Human eye-head co-ordination in natural exploration. *Network: Computation in Neural Systems*, 18(3):267–297, 2007.
- [20] N J Emery. The eyes have it: the neuroethology, function and evolution of social gaze. Neuroscience and biobehavioral reviews, 24(6):581–604, August 2000.
- [21] N J Emery, E N Lorincz, D I Perrett, M W Oram, and C I Baker. Gaze following and joint attention in rhesus monkeys (macaca mulatta). *Journal of comparative psychology* (Washington, DC: 1983), 111(3):286–93, September 1997.
- [22] J R Flanagan and R S Johansson. Action plans used in action observation. Nature, 424(6950):769–71, August 2003.

- [23] Alexandra Frischen, Andrew P Bayliss, and Steven P Tipper. Gaze cueing of attention: visual attention, social cognition, and individual differences. *Psychological Bulletin*, 133(4):694–724, July 2007.
- [24] C Gale and A F Monk. Where am i looking? the accuracy of video-mediated gaze awareness. Perception & Psychophysics, 62(3):586–95, April 2000.
- [25] H L Galiana and D Guitton. Central organization and modeling of eye-head coordination during orienting gaze shifts. Annals of the New York Academy of Sciences, 656:452–71, May 1992. PMID: 1599162.
- [26] Matthias Gamer and Heiko Hecht. Are you looking at me? measuring the cone of gaze. Journal of experimental psychology Human perception and performance, 33(3):705–15, June 2007.
- [27] Gregory Gancarz and Stephen Grossberg. A neural model of saccadic eye movement control explains task-specific adaptation. *Vision Research*, 39:3123–3143, September 1999.
- [28] A. Genovesio and S. Ferraina. Integration of retinal disparity and fixation-distance related signals toward an egocentric coding of distance in the posterior parietal cortex of primates. J. Neurophysiol., 91(6):2670–2684, June 2004.
- [29] N George and L Conty. Facing the gaze of others. Neurophysiologie clinique = Clinical neurophysiology, 38(3):197–207, June 2008.
- [30] J. J. Gibson and A. D. Pick. Perception of another person's looking behavior. *The American journal of psychology*, 76:386–94, September 1963.
- [31] B. Girard and A. Berthoz. From brainstem to cortex: Computational models of saccade generation circuitry. *Progress in Neurobiology*, 77:215–251, 2005.
- [32] M. A. Goodale and A. D. Milner. Separate visual pathways for perception and action. *Trends in Neurosciences*, 15:20–25, 1992.
- [33] M. A. Goodale, D. Pelisson, and C. Prablanc. Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. *Nature*, 320:748–750, 1986.
- [34] F.H. Hamker and M. Zirnsak. V4 receptive field dynamics as predicted by a systemslevel model of visual attention using feedback from the frontal eye field. *Neural Networks*, 19:1371–1382, 2006.
- [35] F.H. Hamker, M. Zirnsak, D. Calow, and M. Lappe. The peri-saccadic perception of objects and space. *PLoS Comput Biol*, 4(2):0001–0015, 2008. WP3.
- [36] Mary Hayhoe and Dana Ballard. Eye movements in natural behavior. Trends in Cognitive Sciences, 9(4):188–94, April 2005.
- [37] Matthew W Hoffman, David B Grimes, Aaron P Shon, and Rajesh P N Rao. A probabilistic model of gaze imitation and shared attention. *Neural Networks*, 19(3):299–310, April 2006.

- [38] L. Holm, J. Eriksson, and L. Andersson. Looking as if you know: Systematic object inspection precedes object recognition. *Journal of Vision*, 8(4):1–7, April 2008.
- [39] R S Johansson, G Westling, A Bäckström, and J R Flanagan. Eye-hand coordination in object manipulation. J Neurosci, 21(17):6917–32, September 2001.
- [40] M F Land and M Hayhoe. In what ways do eye movements contribute to everyday activities? *Vision Research*, 41(25-26):3559–65, January 2001.
- [41] Michael F Land. Eye movements and the control of actions in everyday life. Progress in retinal and eye research, 25(3):296–324, May 2006.
- [42] S Langton, R Watt, and I Bruce. Do the eyes have it? cues to the direction of social attention. *Trends in Cognitive Sciences*, 4(2):50–59, February 2000.
- [43] Stephen R H Langton, Helen Honeyman, and Emma Tessler. The influence of head contour and nose angle on the perception of eye-gaze direction. *Perception & Psychophysics*, 66(5):752–71, July 2004.
- [44] M. Lappe, H. Awater, and B. Krekelbrg. Postsaccadic visual references generate presaccadic compression of space. *Nature*, (403):892–895, 2000.
- [45] Janek S Lobmaier, Martin H Fischer, and Adrian Schwaninger. Objects capture perceived gaze direction. Experimental Psychology (formerly "Zeitschrift für Experimentelle Psychologie"), 53(2):117–22, January 2006.
- [46] Sally A. McFadden, Afsheen Khan, and Josh Wallman. Gain adaptation of exogenous shifts of visual attention. *Vision Research*, 42:2709–2726, November 2002.
- [47] D. R. Melmoth, M. Storoni, G. Todd, A. L. Finlay, and S. Grant. Dissociation between vergence and binocular disparity cues in the control of prehension. *Exp Brain Res*, 183:283– 298, 2007. WP4.
- [48] Neil Mennie, Mary Hayhoe, and Brian Sullivan. Look-ahead fixations: anticipatory eye movements in natural tasks. Experimental brain research Experimentelle Hirnforschung Expérimentation cérébrale, 179(3):427–42, May 2007.
- [49] Lance M. Optican. A field theory of saccade generation: Temporal-to-spatial transform in the superior colliculus. *Vision Research*, 35:3313–3320, December 1995.
- [50] S. S. Patel, B. C. Jiang, and H. Ogmen. Vergence dynamics predict fixation disparity. *Neural Computation*, 13(7):1495–1525, 2001.
- [51] J Pelz and R Canosa. Oculomotor behavior and perceptual strategies in complex tasks. Vision Research, 41(25-26):3587–96, January 2001.
- [52] J Pelz, M Hayhoe, and R Loeber. The coordination of eye, head, and hand movements in a natural task. Experimental brain research Experimentelle Hirnforschung Expérimentation cérébrale, 139(3):266–77, August 2001.
- [53] A. Pouget and T. J. Sejnowski. Spatial transformations in the parietal cortex using basis functions. *Journal of Cognitive Neuroscience*, 9:222–237, March 1997.

- [54] D J Povinelli and T J Eddy. Joint visual attention. Psychological Science, 7(3):129–135, 1996.
- [55] J. C. A. Read and B. G. Cumming. Understanding the cortical specialization for horizontal disparity. *Neural Computation*, 16(10):1983–2020, 2004.
- [56] Paola Ricciardelli, Emanuela Bricolo, Salvatore M Aglioti, and Leonardo Chelazzi. My eyes want to look where your eyes are looking: exploring the tendency to imitate another individual's gaze. *Neuroreport*, 13(17):2259–64, December 2002.
- [57] D. A. Robinson. Models of the saccadic eye movements control system. *Kybernetik*, 14(2):71–83, 1973.
- [58] D. A. Robinson. The systems approach to the oculomotor system. Vision Research, 26:91– 99, 1986.
- [59] Gerben Rotman, Nikolaus F Troje, R S Johansson, and J Randall Flanagan. Eye movements when observing predictable and unpredictable actions. *Journal of Neurophysiology*, 96(3):1358–69, September 2006.
- [60] Natalie Sebanz, Harold Bekkering, and Günther Knoblich. Joint action: bodies and minds moving together. Trends in Cognitive Sciences, 10(2):70–6, February 2006.
- [61] Lawrence A Symons, Kang Lee, Caroline C Cedrone, and Mayu Nishimura. What are you looking at? acuity for triadic eye gaze. *The Journal of general psychology*, 131(4):451–69, October 2004.
- [62] N. Takeichi, C. R. S. Kaneko, and A. F. Fuchs. Activity changes in monkey superior colliculus during saccade adaptation. *Journal of Neurophysiology*, 97:4096, 2007.
- [63] Emanuel Todorov. Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. *Neural Computation*, 17:1084–1108, May 2005.
- [64] Jochen Triesch, Hector Jasso, and Gedeon O Deak. Emergence of mirror neurons in a model of gaze following. Adaptive Behavior, 15(2):149–165, January 2007.
- [65] J. Wallman and A. F. Fuchs. Saccadic gain modification: Visual error drives motor adaptation. Journal of Neurophysiology, 80:2405–2416, 1998.

NEUROPHYSIOLOGY > Binocular vision, Eye movements, Visuomotor

- [1] Richard A. Andersen, Lawrence H. Snyder, , David C. Bradley, and Jing Xing. Multimodal representation of space in the posterior parietal cortex and its use in planning movements, November 2003.
- [2] R. Breveglieri, C. Galletti, S. Monaco, and P. Fattori. Visual, somatosensory, and bimodal activities in the macaque parietal area pec. *Cereb Cortex.*, 18(4):806–816, 2008.
- [3] R. Breveglieri, D.F. Kutz, P. Fattori, M. Gamberini, and C. Galletti. Somatosensory cells in the parieto-occipital area v6a of the macaque. *Neuroreport*, 13(16):2113–2116, 2002.

- [4] C. A. Buneo and R. A. Andersen. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. *Neuropsychologia*, 44(13):2594–2606, 2006.
- [5] C. Cavina-Pratesi, M. A. Goodale, and J.C. Culham. Fmri reveals a dissociation between grasping and perceiving the size of real 3d objects. *PLoS ONE.*, 2(5):e424, 2007.
- [6] E. Chinellato. Visual Neuroscience of Robotic Grasping. Phd thesis, Universitat Jaume I, 2008.
- [7] E. Chinellato and A.P. del Pobil. Integration of stereoscopic and perspective cues for slant estimation in natural and artificial systems. In Jose Mira and Jose R. Alvarez, editors, *Nature Inspired Problem-Solving Methods in Knowledge Engineering, LNCS 4528*, pages 399–408. springer, 2007.
- [8] E. Chinellato, Y. Demiris, and A.P. del Pobil. Studying the human visual cortex for achieving action-perception coordination with robots. In *IASTED International Conference on Artificial Intelligence and Soft Computing*, 2006.
- [9] Y. M. Chino, E. L. III Smith, S. Hatta, and H. Cheng. Postnatal development of binocular disparity sensitivity in neurons of the primate visual cortex. *The Journal of Neuroscience*, 17(1):296–307, January 1997. WP2.
- [10] J.C. Culham, C. Cavina-Pratesi, and A. Singhal. The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? *Neuropsychologia.*, 44(13):2668–2684, 2006.
- [11] B. G. Cumming and A. J. Parker. Responses of primary visual cortical neurons to binocular disparity without depth perception. *Nature*, 389:280–283, September 1997. WP2.
- [12] G.C. DeAngelis. Seeing in three dimensions: the neurophysiology of stereopsis. Trends in Cognitive Sciences, 4:80–90, 2000.
- [13] P. Fattori, M. Gamberini, D.F. Kutz, and C. Galletti. 'arm-reaching' neurons in the parietal area v6a of the macaque monkey. *European Journal of Neuroscience*, 13:2309– 2313, 2001.
- [14] P. Fattori, D.F. Kutz, R. Breveglieri, N. Marzocchi, and C. Galletti. Spatial tuning of reaching activity in the medial parieto-occipital cortex (area v6a) of macaque monkey. *European Journal of Neuroscience*, 22:956–972, 2005.
- [15] R. D. Freeman and I. Ohzawa. Development of binocular vision in the kittens striate cortex. *The Journal of Neuroscience*, 12(12):4721–4736, 1992. WP2.
- [16] C. Galletti, P. Fattori, P.P. Battaglini, S. Shipp, and S. Zeki. Functional demarcation of a border between areas v6 and v6a in the superior parietal gyrus of the macaque monkey. *European Journal of Neuroscience*, 8(1):30–52, 1996.
- [17] C. Galletti, P. Fattori, D.F. Kutz, and P.P. Battaglini. Arm movement-related neurons in the visual area v6a of the macaque superior parietal lobule. *European Journal of Neuro*science, 9:410–413, 1997.

- [18] C. Galletti, P. Fattori, D.F. Kutz, and M. Gamberini. Brain location and visual topography of cortical area v6a in the macaque monkey. *European Journal of Neuroscience*, 11:575– 582, 1999.
- [19] Zoubin Ghahramani, Daniel M. Wolpert, and Michael I. Jordan. Generalization to local remappings of the visuomotor coordinate transformation. J. Neurosci., 16:7085–7096, November 1996.
- [20] H. Gomi, N. Abekawa, and S. Nishida. Spatiotemporal tuning of rapid interactions between visual-motion analysis and reaching movement. *The Journal of Neuroscience*, 26(20):5301– 5308, 2006. WP5.
- [21] Michael SA Graziano and Charles G Gross. Spatial maps for the control of movement. *Current Opinion in Neurobiology*, 8:195–201, April 1998.
- [22] R. M. Haefner and B. G. Cumming. Adaption to natural binocular disparities in primate v1 explained by a generalized energy model. *Neuron*, 57:147–158, January 2008.
- [23] D.F. Kutz, P. Fattori, M. Gamberini, R. Breveglieri, and C. Galletti. Early- and lateresponding cells to saccadic eye movements in the cortical area v6a of macaque monkey. *Experimental Brain Research*, 149:83–95, 2003.
- [24] R. F. Lewis, M. G. Bertrand, and R. J. Tamargo. Efference copy provides the eye position information required for visually guided reaching. J Neurophysiol, 80:1605–1608, 1998.
- [25] N. Marzocchi, R. Breveglieri, C. Galletti, and P. Fattori. Reaching activity in parietal area v6a of macaque: eye influence on arm activity or retinocentric coding of reaching movements? *European Journal of Neuroscience*, 27:775–789, 2008. WP5.
- [26] A. J. Parker. Binocular depth perception and the cerebral cortex. Nature Reviews Neuroscience, 8:379–391, May 2007.
- [27] J Pelz, M Hayhoe, and R Loeber. The coordination of eye, head, and hand movements in a natural task. Experimental brain research Experimentelle Hirnforschung Expérimentation cérébrale, 139(3):266–77, August 2001.
- [28] D. J. Quinlan and J.C. Culham. fmri reveals a preference for near viewing in the human parieto-occipital cortex. *Neuroimage.*, 36(1):167–187, 2007.
- [29] J. C. A. Read. Early computational processing in binocular vision and depth perception. Progress in Biophysics and Molecular Biology, 87:77–108, 2005.
- [30] J. C. A. Read and B. G. Cumming. Understanding the cortical specialization for horizontal disparity. *Neural Computation*, 16(10):1983–2020, 2004.
- [31] J. C. A. Read and B. G. Cumming. Sensors for impossible stimuli may solve the stereo correspondence problem. *Nature Neuroscience*, 10(10):1322–1328, October 2007.
- [32] D. A. Robinson. Models of the saccadic eye movements control system. *Kybernetik*, 14(2):71–83, 1973.

- [33] A. W. Roe, A. J. Parker, R. T. Born, and G.C. DeAngelis. Disparity channels in early vision. *The Journal of Neuroscience*, 27(44):11820–11831, 2007.
- [34] S.P. Sabatini and F. Solari. Emergence of motion-in-depth selectivity in the visual cortex through linear combination of binocular energy complex cells with different ocular dominance. *Neurocomputing*, 58-60:865–872, 2004.
- [35] S.P. Sabatini, F. Solari, G. Andreani, C. Bartolozzi, and G.M. Bisio. A hierarchical model of complex cells in visual cortex for the binocular perception of motion-in-depth. In Proceedings of Advances in Neural Information Processing Systems, pages 1271–1278, 2002.
- [36] A. Singhal, J.C. Culham, E. Chinellato, and M. A. Goodale. Dual-task interference is greater in delayed grasping than in visually-guided grasping. *Journal of Vision*, 7(5)(5):1– 12, 2007.
- [37] D. Whitney, A. Ellison, N. J. Rice, D. Arnold, M. A. Goodale, V. Walsh, and A. D. Milner. Visually guided reaching depends on motion area MT1. *Cerebral Cortex*, 17:2644–2649, 2007.
- [38] B. Wu, L Klatzky, D. Shelton, and George Stetten. Mental concatenation of perceptually and cognitively specified depth to represent locations in near space. *Exp Brain Res*, 184:295–305, 2008. WP3.
- [39] R. H. Wurtz. Visual receptive fields of striate cortex neurons in awake monkeys. J. Neurophysiol, 32:727–742, 1969. WP5.
- [40] R. H. Wurtz. Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. J Neurophysiol, 98(5):2495–2496, 2007. WP5.
- [41] B. Zhang, H. Bi, I. Maruko, J. Zheng, E. L. III Smith, and Y. M. Chino. Rapid plasticity of binocular connections in developing monkey visual cortex (v1). *PNAS*, 102(25):9026–9031, 2005.
- T1.1 BINOCULAR EYE COORDINATION (VERGENCE AND VERSION MOVEMENTS)
- C. J. Erkelens and R. Van Ee. A computational model of depth perception based on headcentric disparity. *Vision Research*, 38:2999–3018, 1998.
- [2] G.K. Hung. Dynamic model of the vergence eye movement system simulation using matlab/simulink. *Comput Methods Programs Biomed*, 55(1):59–68, 1997.
- [3] V.V. Krishnan and L. Stark. A heuristic model for the human vergence eye movement system. *IEEE Trans. Biomed. Eng.*, 24:44–49, 1977.
- [4] C. Rashbass. Reflexions on the control of vergence. Models of Oculomotor Behavior and Control, pages 139–148, 1981.
- [5] C. Rashbass and G. Westheimer. Disjunctive eye movements. *Journal of Phisyology*, 159:339–360, 1961.

- [6] D. A. Robinson. Models of the saccadic eye movements control system. *Kybernetik*, 14(2):71–83, 1973.
- [7] J.L. Semmlow, J.L. Horng, G.K. Hung, and K.J. Ciuffreda. Initial component control in disparity vergence: A model-based study. *IEEE Transactions on Biomedical Engineering*, 45(2):249–257, 1998.
- T1.2 Eye-position gain fields and coordinate transformations
- [1] Michael SA Graziano and Charles G Gross. Spatial maps for the control of movement. *Current Opinion in Neurobiology*, 8:195–201, April 1998.
- [2] A. Pouget and T. J. Sejnowski. A neural model of the cortical representation of egocentric distance. *Cerebral Cortex*, 4:314–329, 1994.
- [3] A. Pouget and T. J. Sejnowski. Spatial transformations in the parietal cortex using basis functions. *Journal of Cognitive Neuroscience*, 9:222–237, March 1997.
- T1.3 VISUOMOTOR BINOCULAR CONTROL
- [1] K. Arai, E. L. Keller, and J. A. Edelman. Two-dimensional neural network model of the primate saccadic system. *Neural Networks*, 7:1115–1135, 1994.
- [2] Gregory Gancarz and Stephen Grossberg. A neural model of saccadic eye movement control explains task-specific adaptation. *Vision Research*, 39:3123–3143, September 1999.
- [3] Lance M. Optican. A field theory of saccade generation: Temporal-to-spatial transform in the superior colliculus. *Vision Research*, 35:3313–3320, December 1995.
- [4] S. S. Patel, B. C. Jiang, and H. Ogmen. Vergence dynamics predict fixation disparity. *Neural Computation*, 13(7):1495–1525, 2001.
- [5] V. Radisavljevic-Gajic. Slow-fast decoupling of the disparity convergence eye movements dynamics. Annals of Biomedical Engineering, 34:310–314(5), 2006. WP1.
- T1.4 BIOINSPIRED STEREOVISION ROBOT SYSTEMS
- [1] Models for the design of a tendon driven robot eye, April 2007.
- [2] G. Cannata and M. Maggiali. Models for the design of bioinspired robot eyes. *IEEE Transactions on Robotics*, 24:27–44, February 2008. WP1.
- [3] M. Rucci and F. Santini. Active estimation of distance in a robotic system that replicates human eye movement. *Robotics and Autonomous Systems*, 55:107–121, 2007.

T2.1 LEARNING PARADIGMS FOR VISUAL STEREOPSIS

- P. Dean, J. E. W. Mayhew, and P. Langdon. Learning and maintaining saccadic accuracy: A model of brainstem-cerebellar interactions. *Journal of Cognitive Neuroscience*, 6:117–138, 1994.
- [2] R. M. Haefner and B. G. Cumming. Adaption to natural binocular disparities in primate v1 explained by a generalized energy model. *Neuron*, 57:147–158, January 2008.
- [3] T. Kulvicius, B. Porr, and F. Woergoetter. Development of receptive fields in a closed-loop behavioural system. *Neurocomputing*, 70, 2007.
- [4] J. C. A. Read and B. G. Cumming. Understanding the cortical specialization for horizontal disparity. Neural Computation, 16(10):1983–2020, 2004.
- [5] B. Zhang, H. Bi, I. Maruko, J. Zheng, E. L. III Smith, and Y. M. Chino. Rapid plasticity of binocular connections in developing monkey visual cortex (v1). *PNAS*, 102(25):9026–9031, 2005.
- T2.1 VERGENCE CONTROL STRATEGIES (BASED ON DISPARITY DETECTORS)
- R.S. Allison, X. Fang, and I.P. Howard. Depth selectivity of vertical fusional mechanism. Vision Research, 40(21), 2000.
- [2] R.S. Allison, I.P. Howard, and X. Fang. The stimulus integration area for horizontal vergence. *Experimental Brain Research*, 156(3):305–313, 2004.
- [3] T.L. Alvarez, J.L. Semmlow, W. Yuan, and P. Munoz. Disparity vergence double responses processed by internal error. *Vision Research*, 40:341–347, 2000.
- [4] C. J. Erkelens and R. Van Ee. A computational model of depth perception based on headcentric disparity. *Vision Research*, 38:2999–3018, 1998.
- G.K. Hung. Dynamic model of the vergence eye movement system simulation using matlab/simulink. Comput Methods Programs Biomed, 55(1):59–68, 1997.
- [6] W. Jaschinski, A. Svede, and S. Jainta. Relation between fixation disparity and the asymmetry between convergent and divergent disparity step responses. *Vision Research*, 48:253–263, 2008. WP2.
- [7] V.V. Krishnan and L. Stark. A heuristic model for the human vergence eye movement system. *IEEE Trans. Biomed. Eng.*, 24:44–49, 1977.
- [8] H.P. Mallot, P.A. Arndt, and A. Roll. Disparity-evoked vergence is driven by interocular correlation. Vision Research, 26(18):2925–2937, 1995.
- [9] G.S. Masson, C. Busettini, and F. A. Miles. Vergence eye movements in response to binocular disparity without depth perception. *Nature*, pages 283–286, 1997.
- [10] S. S. Patel, B. C. Jiang, and H. Ogmen. Vergence dynamics predict fixation disparity. *Neural Computation*, 13(7):1495–1525, 2001.

- [11] S. S. Patel, H. Ogmen, B. C. Jiang, and J.M. White. Neural network model of short-term horizontal disparity vergence dynamics. *Vision Research*, 37(10):1383–1399, 1996.
- [12] M. Pobuda and C. J. Erkelens. The relationship between absolute disparity and ocular vergence. *Biological Cybernetics*, 68(3), 1993.
- [13] A.V. Popple, H.S. Smallman, and J.M. Findlay. The area of spatial integration for initial horizontal disparity vergence. *Vision Research*, 38(2):319–326, 1998.
- [14] C. Rashbass. Reflexions on the control of vergence. Models of Oculomotor Behavior and Control, pages 139–148, 1981.
- [15] C. Rashbass and G. Westheimer. Disjunctive eye movements. Journal of Phisyology, 159:339–360, 1961.
- [16] D. A. Robinson. Models of the saccadic eye movements control system. *Kybernetik*, 14(2):71–83, 1973.
- [17] C. M. Schor. The relationship between fusional vergence eye movements and fixation disparity. Vision Research, 19(12):1359–1367, 1979.
- [18] J.L. Semmlow, J.L. Horng, G.K. Hung, and K.J. Ciuffreda. Initial component control in disparity vergence: A model-based study. *IEEE Transactions on Biomedical Engineering*, 45(2):249–257, 1998.
- [19] J.L. Semmlow, G.K. Hung, and K.J. Ciuffreda. Quantitative assestment of disparity vergence components. *Vision Sciencie*, 27:558–564, 1986.
- [20] B. M. Sheliga, E. J. FitzGibbon, and F. A. Miles. Short-latency disparity vergence eye movements: a response to disparity energy. *Vision Research*, 46, 2006. WP2.
- [21] A. Takemura, Y. Inoue, K. Kawano, and F. A. Miles. Single-unit activity in cortical area mst associated with disparity-vergence eye movements: Evidence for population coding. *Journal of Physiology*, 85(5):2245–2266, 2001.
- [22] W.M. Theimer and H.P. Mallot. Phase-based vergence control and depth reconstruction using active vision. CVIGP, 60(3):343–358, 1994.
- [23] D. A. Wismeijer, R. Van Ee, and C. J. Erkelens. Depth cues, rather than perceived depth, govern vergence. *Exp Brain Res*, 184:61–70, 2008.

T2.2 INTERACTIVE DEPTH PERCEPTION

- B. G. Cumming and A. J. Parker. Responses of primary visual cortical neurons to binocular disparity without depth perception. *Nature*, 389:280–283, September 1997. WP2.
- [2] W. Einhauser, F. Schumann, S. Bardins, K Bartl, G Boning, E. Schneider, and P. Koenig. Human eye-head co-ordination in natural exploration. *Network: Computation in Neural Systems*, 18(3):267–297, 2007.

- [3] A. Genovesio and S. Ferraina. Integration of retinal disparity and fixation-distance related signals toward an egocentric coding of distance in the posterior parietal cortex of primates. J. Neurophysiol., 91(6):2670–2684, June 2004.
- [4] K. Pauwels, M. Lappe, and M. M. Van Hulle. Fixation as a mechanism for stabilization of short image sequences. *International Journal of Computer Vision*, 72(1):67–78, 2007.
- [5] K. Pauwels and M. M. Van Hulle. Optic flow from unstable sequences through local velocity constancy maximization. *Image and Vision Computing*, 2008.
- [6] K. Pauwels and M. M. Van Hulle. Realtime phase-based optical flow on the gpu. In Proceedings of the Workshop on Visual Computer Vision on GPUs, 2008.
- [7] J. C. A. Read and B. G. Cumming. Understanding the cortical specialization for horizontal disparity. *Neural Computation*, 16(10):1983–2020, 2004.
- [8] S.P. Sabatini and F. Solari. Emergence of motion-in-depth selectivity in the visual cortex through linear combination of binocular energy complex cells with different ocular dominance. *Neurocomputing*, 58-60:865–872, 2004.
- [9] S.P. Sabatini, F. Solari, G. Andreani, C. Bartolozzi, and G.M. Bisio. A hierarchical model of complex cells in visual cortex for the binocular perception of motion-in-depth. In Proceedings of Advances in Neural Information Processing Systems, pages 1271–1278, 2002.
- [10] B. M. Sheliga, E. J. FitzGibbon, and F. A. Miles. Short-latency disparity vergence eye movements: a response to disparity energy. *Vision Research*, 46, 2006. WP2.

T3.1 Stereoscopic object recognition

- [1] G.C. DeAngelis. Seeing in three dimensions: the neurophysiology of stereopsis. *Trends in Cognitive Sciences*, 4:80–90, 2000.
- [2] R. M. Haefner and B. G. Cumming. Adaption to natural binocular disparities in primate v1 explained by a generalized energy model. *Neuron*, 57:147–158, January 2008.
- [3] F.H. Hamker and J. Wiltschut. Hebbian learning in a model with dynamic rate-coded neurons: An alternative to the generative model approach for learning receptive fields from natural scenes. *Network: Computation in Neural Systems*, 18(3):249–266, 2007. WP3.
- [4] F.H. Hamker, M. Zirnsak, D. Calow, and M. Lappe. The peri-saccadic perception of objects and space. *PLoS Comput Biol*, 4(2):0001–0015, 2008. WP3.
- [5] L. Holm, J. Eriksson, and L. Andersson. Looking as if you know: Systematic object inspection precedes object recognition. *Journal of Vision*, 8(4):1–7, April 2008.
- [6] D. R. Melmoth, M. Storoni, G. Todd, A. L. Finlay, and S. Grant. Dissociation between vergence and binocular disparity cues in the control of prehension. *Exp Brain Res*, 183:283– 298, 2007. WP4.

- [7] A. Nieder and H. Wagner. Encoding of both vertical and horizontal disparity in randomdot stereograms by wulst neurons of awake barn owls. *Visual Neuroscience*, 18:541–547, 2001.
- [8] A. Nieder and H. Wagner. Hierarchical processing of horizontal disparity information in the visual forebrain of behaving owls. *Journal of Neuroscience*, 21(12):4514–4522, 2001.
- [9] A. J. Parker. Binocular depth perception and the cerebral cortex. *Nature Reviews Neuro-science*, 8:379–391, May 2007.
- [10] J. C. A. Read. Early computational processing in binocular vision and depth perception. Progress in Biophysics and Molecular Biology, 87:77–108, 2005.
- [11] J. C. A. Read and B. G. Cumming. Sensors for impossible stimuli may solve the stereo correspondence problem. *Nature Neuroscience*, 10(10):1322–1328, October 2007.
- [12] A. W. Roe, A. J. Parker, R. T. Born, and G.C. DeAngelis. Disparity channels in early vision. *The Journal of Neuroscience*, 27(44):11820–11831, 2007.
- T3.2 Visual attention and receptive field dynamics
- H. Deubel, W. X. Schneider, and B. Bridgeman. Transsaccadic memory of position and form. In *The Brain's Eye: Neurobiological and Clinical Aspects of Oculomotor Research*, volume 140 of *Progress in Brain Research*, pages 165–180. Amsterdam: Elsevier Science, 2002.
- [2] F.H. Hamker. The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision. journal for computer vision and image understanding. Special Issue on Attention and Performance in Computer Vision, 100:64– 106, 2005.
- [3] F.H. Hamker. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas v4, it for attention and eye movement. *Cerebral Cortex*, 15(4):431–447, 2005.
- [4] F.H. Hamker and M. Zirnsak. V4 receptive field dynamics as predicted by a systemslevel model of visual attention using feedback from the frontal eye field. *Neural Networks*, 19:1371–1382, 2006.
- [5] Sally A. McFadden, Afsheen Khan, and Josh Wallman. Gain adaptation of exogenous shifts of visual attention. *Vision Research*, 42:2709–2726, November 2002.
- [6] B. Wu, L Klatzky, D. Shelton, and George Stetten. Mental concatenation of perceptually and cognitively specified depth to represent locations in near space. *Exp Brain Res*, 184:295– 305, 2008. WP3.

T3.3 Selection of behavioral alternatives and working memory

- [1] Mary Hayhoe and Dana Ballard. Eye movements in natural behavior. *Trends in Cognitive Sciences*, 9(4):188–94, April 2005.
- [2] M F Land and M Hayhoe. In what ways do eye movements contribute to everyday activities? Vision Research, 41(25-26):3559–65, January 2001.
- [3] Michael F Land. Eye movements and the control of actions in everyday life. *Progress in retinal and eye research*, 25(3):296–324, May 2006.
- [4] M. A. Lebedev, A. Messinger, J. D. Kralik, and S. P. Wise. Representation of attended versus remembered locations in prefrontal cortex. *PLoS Biology*, 2(11):e365, November 2004.
- [5] R. Rosenholtz, L. Yuanzhen, and L. Nakano. Measuring visual clutter. *Journal of Vision*, 7(2):1–22, 2007. WP3.

T4.1 Integrated perception-related and action-related representation

- [1] C. Cavina-Pratesi, M. A. Goodale, and J.C. Culham. Fmri reveals a dissociation between grasping and perceiving the size of real 3d objects. *PLoS ONE.*, 2(5):e424, 2007.
- [2] E. Chinellato. Visual Neuroscience of Robotic Grasping. Phd thesis, Universitat Jaume I, 2008.
- [3] E. Chinellato and A.P. del Pobil. Integration of stereoscopic and perspective cues for slant estimation in natural and artificial systems. In Jose Mira and Jose R. Alvarez, editors, *Nature Inspired Problem-Solving Methods in Knowledge Engineering, LNCS 4528*, pages 399–408. springer, 2007.
- [4] E. Chinellato, Y. Demiris, and A.P. del Pobil. Studying the human visual cortex for achieving action-perception coordination with robots. In *IASTED International Conference on Artificial Intelligence and Soft Computing*, 2006.
- [5] P. Cisek. A computational model of reach decisions in the primate cerebral cortex. In Modeling Natural Action Selection, 2005.
- [6] J.C. Culham, C. Cavina-Pratesi, and A. Singhal. The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? *Neuropsychologia.*, 44(13):2668–2684, 2006.
- [7] M. A. Goodale and A. D. Milner. Separate visual pathways for perception and action. *Trends in Neurosciences*, 15:20–25, 1992.
- [8] D. J. Quinlan and J.C. Culham. fmri reveals a preference for near viewing in the human parieto-occipital cortex. *Neuroimage.*, 36(1):167–187, 2007.
- [9] G. Recatalà, E. Chinellato, A.P. del Pobil, Y. Mezouar, and P. Martinet. Biologicallyinspired 3D grasp synthesis based on visual exploration. *Autonomous Robots*, 25(1):59–70, 2008.

- [10] R. Shadmehr and S. P. Wise. The Computational Neurobiology Of Reaching And Pointing: A Foundation for Motor Learning. Bradford Books, 2005.
- [11] A. Singhal, J.C. Culham, E. Chinellato, and M. A. Goodale. Dual-task interference is greater in delayed grasping than in visually-guided grasping. *Journal of Vision*, 7(5)(5):1– 12, 2007.
- T4.2 VISUO-MOTOR DESCRIPTORS OF REACHABLE OBJECTS
- [1] E. Cervera, A.P. del Pobil, F. Berry, and P. Martinet. Improving image-based visual servoing with three-dimensional features. *The International Journal of Robotics Research*, 22:821–840, 2003.
- [2] E. Chinellato. Visual Neuroscience of Robotic Grasping. Phd thesis, Universitat Jaume I, 2008.
- [3] P. Cisek. A computational model of reach decisions in the primate cerebral cortex. In *Modeling Natural Action Selection*, 2005.
- [4] S. Denève, J. R. Duhamel, and A. Pouget. Optimal sensorimotor integration in recurrent cortical networks: A neural implementation of kalman filters. *The Journal of Neuroscience*, 27(21):5744–5756, 2007. WP4.
- [5] Zoubin Ghahramani, Daniel M. Wolpert, and Michael I. Jordan. Generalization to local remappings of the visuomotor coordinate transformation. J. Neurosci., 16:7085–7096, November 1996.
- [6] M. A. Goodale, D. Pelisson, and C. Prablanc. Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. *Nature*, 320:748–750, 1986.
- [7] R S Johansson, G Westling, A Bäckström, and J R Flanagan. Eye-hand coordination in object manipulation. *J Neurosci*, 21(17):6917–32, September 2001.
- [8] R. F. Lewis, M. G. Bertrand, and R. J. Tamargo. Efference copy provides the eye position information required for visually guided reaching. J Neurophysiol, 80:1605–1608, 1998.
- [9] D. R. Melmoth, M. Storoni, G. Todd, A. L. Finlay, and S. Grant. Dissociation between vergence and binocular disparity cues in the control of prehension. *Exp Brain Res*, 183:283– 298, 2007. WP4.
- [10] A. Pouget, Deneve S, and J. R. Duhamel. A computational perspective on the neural basis of multisensory spatial representations. *Neuron*, 3(9):741–747, September 2002.
- [11] A. Pouget and T. J. Sejnowski. Spatial transformations in the parietal cortex using basis functions. *Journal of Cognitive Neuroscience*, 9:222–237, March 1997.
- [12] E. Salinas and P. Thier. Gain modulation: a major computational principle of the central nervous system. Neuron, 27(1):15–21, July 2000.

[13] H. Scherberger, M. A. Goodale, and R. A. Andersen. Target selection for reaching and saccades share a similar behavioral reference frame in the macaque. *Journal of Neurophysiology*, 89(3):1456–1466, March 2003.

T4.3 Multisensory egocentric representation of the 3D space

- C. A. Buneo and R. A. Andersen. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. *Neuropsychologia*, 44(13):2594–2606, 2006.
- [2] H. Deubel, W. X. Schneider, and B. Bridgeman. Transsaccadic memory of position and form. In *The Brain's Eye: Neurobiological and Clinical Aspects of Oculomotor Research*, volume 140 of *Progress in Brain Research*, pages 165–180. Amsterdam: Elsevier Science, 2002.
- [3] A. Genovesio and S. Ferraina. Integration of retinal disparity and fixation-distance related signals toward an egocentric coding of distance in the posterior parietal cortex of primates. J. Neurophysiol., 91(6):2670–2684, June 2004.
- [4] R S Johansson, G Westling, A Bäckström, and J R Flanagan. Eye-hand coordination in object manipulation. J Neurosci, 21(17):6917–32, September 2001.
- [5] M. A. Lebedev, A. Messinger, J. D. Kralik, and S. P. Wise. Representation of attended versus remembered locations in prefrontal cortex. *PLoS Biology*, 2(11):e365, November 2004.
- [6] A. Pouget, Deneve S, and J. R. Duhamel. A computational perspective on the neural basis of multisensory spatial representations. *Neuron*, 3(9):741–747, September 2002.
- [7] T. Schenk, I. Schindler, R. D. McIntosh, and A. D. Milner. The use of visual feedback is independent of visual awareness: evidence from visual extinction. *Experimental Brain Research*, 167(1):95–102, November 2005.
- [8] H. Scherberger, M. A. Goodale, and R. A. Andersen. Target selection for reaching and saccades share a similar behavioral reference frame in the macaque. *Journal of Neurophysiology*, 89(3):1456–1466, March 2003.
- T5.1 JOINT VISION/EYE-POSITION FEATURES VISUAL CORTICAL AREAS
- [1] C. Galletti, P.P. Battaglini, and P. Fattori. Eye position influence on the parieto-occipital area po (v6) of the macaque monkey. *European Journal of Neuroscience*, 7:2486–2501, 1995.
- [2] D.F. Kutz, P. Fattori, M. Gamberini, R. Breveglieri, and C. Galletti. Early- and lateresponding cells to saccadic eye movements in the cortical area v6a of macaque monkey. *Experimental Brain Research*, 149:83–95, 2003.
- [3] A. Pouget, Deneve S, and J. R. Duhamel. A computational perspective on the neural basis of multisensory spatial representations. *Neuron*, 3(9):741–747, September 2002.

[4] E. Salinas and P. Thier. Gain modulation: a major computational principle of the central nervous system. *Neuron*, 27(1):15–21, July 2000.

T5.2 Joint Vision/Reaching features in Visual Cortical Areas

- [1] Richard A. Andersen, Lawrence H. Snyder, , David C. Bradley, and Jing Xing. Multimodal representation of space in the posterior parietal cortex and its use in planning movements, November 2003.
- [2] C. A. Buneo and R. A. Andersen. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. *Neuropsychologia*, 44(13):2594–2606, 2006.
- [3] S. Denève, J. R. Duhamel, and A. Pouget. Optimal sensorimotor integration in recurrent cortical networks: A neural implementation of kalman filters. *The Journal of Neuroscience*, 27(21):5744–5756, 2007. WP4.
- [4] P. Fattori, M. Gamberini, D.F. Kutz, and C. Galletti. 'arm-reaching' neurons in the parietal area v6a of the macaque monkey. *European Journal of Neuroscience*, 13:2309– 2313, 2001.
- [5] P. Fattori, D.F. Kutz, R. Breveglieri, N. Marzocchi, and C. Galletti. Spatial tuning of reaching activity in the medial parieto-occipital cortex (area v6a) of macaque monkey. *European Journal of Neuroscience*, 22:956–972, 2005.
- [6] C. Galletti, P. Fattori, D.F. Kutz, and P.P. Battaglini. Arm movement-related neurons in the visual area v6a of the macaque superior parietal lobule. *European Journal of Neuro*science, 9:410–413, 1997.
- [7] A. Genovesio and S. Ferraina. Integration of retinal disparity and fixation-distance related signals toward an egocentric coding of distance in the posterior parietal cortex of primates. J. Neurophysiol., 91(6):2670–2684, June 2004.
- [8] R S Johansson, G Westling, A Bäckström, and J R Flanagan. Eye-hand coordination in object manipulation. *J Neurosci*, 21(17):6917–32, September 2001.
- [9] N. Marzocchi, R. Breveglieri, C. Galletti, and P. Fattori. Reaching activity in parietal area v6a of macaque: eye influence on arm activity or retinocentric coding of reaching movements? *European Journal of Neuroscience*, 27:775–789, 2008. WP5.
- [10] D. R. Melmoth, M. Storoni, G. Todd, A. L. Finlay, and S. Grant. Dissociation between vergence and binocular disparity cues in the control of prehension. *Exp Brain Res*, 183:283– 298, 2007. WP4.
- [11] J Pelz, M Hayhoe, and R Loeber. The coordination of eye, head, and hand movements in a natural task. Experimental brain research Experimentelle Hirnforschung Expérimentation cérébrale, 139(3):266–77, August 2001.
- [12] A. Pouget, Deneve S, and J. R. Duhamel. A computational perspective on the neural basis of multisensory spatial representations. *Neuron*, 3(9):741–747, September 2002.

[13] H. Scherberger, M. A. Goodale, and R. A. Andersen. Target selection for reaching and saccades share a similar behavioral reference frame in the macaque. *Journal of Neurophysiology*, 89(3):1456–1466, March 2003.

T5.3 Motor description of fragment location and saccade adaptation

- H. Awater, D. Burr, M. Lappe, M.C. Morrone, and M.E. Goldberg. The effect of saccadic adaptation on the localization of visual targets. *Journal of Neurophysiology*, pages 3605– 3614, 2005.
- [2] H. Awater and M. Lappe. Mislocalization of perceived saccade target position induced by perisaccadic visual stimulation. *Journal of Neuroscience*, 26(1):12–20, January 2006.
- [3] D. O. Bahcall and E. Kowler. Illusory shifts in visual direction accompany adaptation of saccadic eye movements. *Nature*, 400:864–6, 1999.
- [4] P. M. Bays and M. Husain. Spatial remapping of the visual world across saccades. NeuroReport, 18:1207, 2007.
- Haiyin Chen-Harris, Wilsaan M Joiner, Vincent Ethier, David S Zee, and Reza Shadmehr. Adaptive control of saccades via internal feedback. *The Journal of Neuroscience*, 28:2804–13, March 2008. PMID: 18337410.
- [6] T Collins, D Vergilino-Perez, C. Beauvillain, and K. Doré-Mazars. Saccadic adaptation depends on object selection: Evidence from between- and within-object saccadic eye movements. *Brain Research*, (1152):95–105, 2007. WP3.
- [7] P. Dean, J. E. W. Mayhew, and P. Langdon. Learning and maintaining saccadic accuracy: A model of brainstem-cerebellar interactions. *Journal of Cognitive Neuroscience*, 6:117–138, 1994.
- [8] H. Deubel, W. X. Schneider, and B. Bridgeman. Transsaccadic memory of position and form. In *The Brain's Eye: Neurobiological and Clinical Aspects of Oculomotor Research*, volume 140 of *Progress in Brain Research*, pages 165–180. Amsterdam: Elsevier Science, 2002.
- H L Galiana and D Guitton. Central organization and modeling of eye-head coordination during orienting gaze shifts. Annals of the New York Academy of Sciences, 656:452–71, May 1992. PMID: 1599162.
- [10] F.H. Hamker, M. Zirnsak, D. Calow, and M. Lappe. The peri-saccadic perception of objects and space. *PLoS Comput Biol*, 4(2):0001–0015, 2008. WP3.
- [11] Mary Hayhoe and Dana Ballard. Eye movements in natural behavior. Trends in Cognitive Sciences, 9(4):188–94, April 2005.

T5.4 Cooperative human-human/robot behavior in shared workspace

- [1] Simon W Bock, Peter Dicke, and Peter Thier. How precise is gaze following in humans? *Vision Research*, 48(7):946–57, March 2008.
- [2] M G Cline. The perception of where a person is looking. The American journal of psychology, 80(1):41-50, March 1967.
- [3] Raymond H Cuijpers, Hein T van Schie, Mathieu Koppen, Wolfram Erlhagen, and Harold Bekkering. Goals and means in action observation: a computational approach. *Neural Networks*, 19(3):311–22, April 2006.
- [4] N J Emery. The eyes have it: the neuroethology, function and evolution of social gaze. Neuroscience and biobehavioral reviews, 24(6):581–604, August 2000.
- [5] N J Emery, E N Lorincz, D I Perrett, M W Oram, and C I Baker. Gaze following and joint attention in rhesus monkeys (macaca mulatta). Journal of comparative psychology (Washington, DC: 1983), 111(3):286–93, September 1997.
- [6] J R Flanagan and R S Johansson. Action plans used in action observation. Nature, 424(6950):769–71, August 2003.
- [7] Alexandra Frischen, Andrew P Bayliss, and Steven P Tipper. Gaze cueing of attention: visual attention, social cognition, and individual differences. *Psychological Bulletin*, 133(4):694–724, July 2007.
- [8] C Gale and A F Monk. Where am i looking? the accuracy of video-mediated gaze awareness. Perception & Psychophysics, 62(3):586–95, April 2000.
- [9] Matthias Gamer and Heiko Hecht. Are you looking at me? measuring the cone of gaze. Journal of experimental psychology Human perception and performance, 33(3):705–15, June 2007.
- [10] Gregory Gancarz and Stephen Grossberg. A neural model of saccadic eye movement control explains task-specific adaptation. *Vision Research*, 39:3123–3143, September 1999.
- [11] N George and L Conty. Facing the gaze of others. Neurophysiologie clinique = Clinical neurophysiology, 38(3):197–207, June 2008.
- [12] J. J. Gibson and A. D. Pick. Perception of another person's looking behavior. The American journal of psychology, 76:386–94, September 1963.
- [13] Matthew W Hoffman, David B Grimes, Aaron P Shon, and Rajesh P N Rao. A probabilistic model of gaze imitation and shared attention. *Neural Networks*, 19(3):299–310, April 2006.
- [14] S Langton, R Watt, and I Bruce. Do the eyes have it? cues to the direction of social attention. Trends in Cognitive Sciences, 4(2):50–59, February 2000.
- [15] M. A. Lebedev, A. Messinger, J. D. Kralik, and S. P. Wise. Representation of attended versus remembered locations in prefrontal cortex. *PLoS Biology*, 2(11):e365, November 2004.

- [16] Janek S Lobmaier, Martin H Fischer, and Adrian Schwaninger. Objects capture perceived gaze direction. Experimental Psychology (formerly "Zeitschrift für Experimentelle Psychologie"), 53(2):117–22, January 2006.
- [17] D J Povinelli and T J Eddy. Joint visual attention. Psychological Science, 7(3):129–135, 1996.
- [18] Paola Ricciardelli, Emanuela Bricolo, Salvatore M Aglioti, and Leonardo Chelazzi. My eyes want to look where your eyes are looking: exploring the tendency to imitate another individual's gaze. *Neuroreport*, 13(17):2259–64, December 2002.
- [19] Gerben Rotman, Nikolaus F Troje, R S Johansson, and J Randall Flanagan. Eye movements when observing predictable and unpredictable actions. *Journal of Neurophysiology*, 96(3):1358–69, September 2006.
- [20] Natalie Sebanz, Harold Bekkering, and Günther Knoblich. Joint action: bodies and minds moving together. Trends in Cognitive Sciences, 10(2):70–6, February 2006.
- [21] Lawrence A Symons, Kang Lee, Caroline C Cedrone, and Mayu Nishimura. What are you looking at? acuity for triadic eye gaze. *The Journal of general psychology*, 131(4):451–69, October 2004.
- [22] Jochen Triesch, Hector Jasso, and Gedeon O Deak. Emergence of mirror neurons in a model of gaze following. Adaptive Behavior, 15(2):149–165, January 2007.