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Abstract— This paper presents a model for a tendon driven
robot eye designed to emulate the actual saccadic and smooth
pursuit movements performed by human eyes. Physiological
saccadic motions obey the so called Listing’s Law which constrains
the admissible eye’s angular velocities. The paper discusses
conditions making possible to implement the Listing’s Law on
a purely mechanical basis, i.e. without active control.

I. INTRODUCTION

Eye movements have been studied since the mid of the 19**

century. However, only during the past 20 years quantitative
mathematical models have been proposed, and validated by
experiments and clinical tests.

Saccades are a very important class of eye motions, [1].
During saccades the eye orientation is determined by a basic
principle known as Listing’s Law, [2], which establishes the
amount of eye torsion for each direction of fixation. Listing’s
Law has been experimentally verified on humans and primates
[2]- [5], and also found to be valid during other types of
eye movements such as smooth pursuit, [6]. The geometric
properties of Listing’s Law, [2], [3], [7]- [9], have significant
implications on the eye control mechanisms. In fact, recent
anatomical advances, [10]- [14], suggest that the mechanics
of the eye plant could play a significant role to implement
Listing’s Law, [9], [15]- [17].

The major goal of this paper is to present a model of the eye
plant mechanics which ensures the possibility of implementing
Listing’s Law on a purely mechanical basis.

This result represents an important step to better understand
the mechanical and control mechanisms implemented at bio-
logical level, but also a fundamental step to design humanoid
robot eye devices. As a matter of fact, many eye-head robots
have been designed in the past few years, e.g. [18]— [20], but
little attention has been paid to emulate the actual mechanics
of the eye. On the other hand, methodological studies in the
area of modelling and control of human-like eye movements
have been presented, [21]- [24].

In the following a realistic model of the eye-plant is
presented and it is shown the possibility of implementing
Listing’s Law on a mechanical basis. The eye is modelled
as a sphere actuated by tendons emulating the action of extra-
ocular muscles routed through pulleys. Proper positioning of
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the pulleys and of the insertion points of the muscles on
the eye-ball, allow to transform the action of the muscle
forces into a torque constrained to generate Listing compatible
motions. The analysis shows also that starting from a reference
position, also known primary position, it is possible to reach
any admissible (i.e. in the reach space), eye orientation with
a Listing compatible trajectory. The analysis presented in this
paper has been the basis for the development of an embedded
robot eye presented in [25], [26].

The structure of the paper is the following. In section II
Listing’s Law is presented and some of its relevant geometric
and kinematic properties discussed. A model of the eye plant is
presented in section III. Then, in section IV the implications of
the eye model on the space of actuating moments is discussed.
In section V, the domain of Listing compatible eye orientations
is determined and the existence of Listing compatible trajec-
tories is eventually shown. Simulations experiments extending
the analytical results are presented in section VI, as well as a
short description of a prototype of robot eye built in agreement
with the theory discussed in this paper.

II. SACCADIC MOVEMENTS AND LISTING’S LAW

Eye movements have the goal of optimizing visual percep-
tion, [27]. The way the eyes change their orientation may affect
our perception of the world. In turn, it is widely accepted
that visual feedback, as well as other sensory feedback (e.g.
from vestibular system), play a major role in stimulating eye
movements. Therefore, it is not surprising that to different
vision strategies correspond significantly different types of
eye motions. During saccades, for instance, the goal is that
of reaching as fast as possible a target direction of fixation,
while during vestibulo-ocular reflex (VOR) the main goal is to
keep stable the image on the retina despite possible external
disturbances.

In the following we will focus on saccadic motions, and
introduce Listing’s Law which specifies the eye’s orientation
during saccades.

Listing’s Law. There exists a specific eye orientation with
respect to the head, called primary position. During saccades
any physiological eye orientation, with respect to the primary
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Fig. 1. Geometry of Listing compatible rotations: the finite rotation axis v
is always orthogonal to hg.

position, can be described by a unit quaternion ¢ whose (unit)
rotation axis, v, always belongs to a head fixed plane, £. The
normal to plane £ is the eye’s direction of fixation at the
primary position.

Let () = {hi,hp,hs}, and {(¢) = {eq,e2,e3} be
respectively a head fixed and a eye fixed reference frames.
Without loss of generality we can assume that es is the
fixation axis of the eye, and that (h) = (e) at the primary
position; then, £ = span{hy, ha}. Fig. 1 shows the geometry
of Listing compatible rotations.

During saccades, at any time t, the finite rotation of the eye
can be conveniently described by a unit quaternion:

0(t) 0
q(t) = (cos T7v(t)sm T) , (D

where v(t) € L,|v(t)| = 1, and 0(¢) is the rotation angle
with respect to the primary position. The derivative of (1) is
(omitting the time dependencies):

1
i=3 00 @)

where quaternion @ = (0, w) and w is the angular velocity of
the eye. By expanding (2) we obtain:

.1 .0 0 .0
q5(—(w~v)sm§7wcos§+(wxv)sm§>. 3)

In order to guarantee that v € £, the condition v € £, must
be satisfied. Then, accordingly to (3) the following equality
must hold:

0 0
hs - {wcosiJr(wxv)sinﬂ =0. @
Expression (4) leads to the formula:
0
(w~h3):w~(h3><v)tan§7 (5

which states that two components of angular velocity vector
of the eye must be constrained each other in order to ensure
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Fig. 2. Half angle rule geometry. The eye’s angular velocity must belong to
the plane P, passing through axis v.

implementation of Listing’s Law, while the third one (directed
along the axis v) can assume any value. In particular, w must
belong to a plane P, passing through v, and whose normal
forms an angle of g with axis hg, see Fig. 2. This property is
directly implied by Listing’s Law, and is usually called Half
Angle Rule, [8].

The Half Angle Rule has important implications. First of
all, although Listing’s Law implies zero torsion of the eye
during saccades, the eye’s angular velocities in turn may have
a torsional component (i.e. a component directed along axis
hs). The second, and most important remark, is that w is
constrained to lay on a moving plane, P,, which is not fixed
to the head, neither to the eye for its dependency from v and
g. This fact poses important questions related to the control
mechanisms required to implement the Listing’s Law, also
since there is no evidence of sensors in the eye plant capable
to detect how P, is oriented.

In the following a model explaining the feasibility of the
implementation of the listing law on a purely mechanical
basis is discussed. This basic result provides a formal proof
to the claim that the mechanics of the eye plant could have
a significant role in the implementation of half angle rule
and Listing’s Law, [15] — [17]. Furthermore, from a robotic
perspective the proposed model provided important guidelines
for the design of a human-like tendon driven robotic eye.

III. EYE MODEL

The eye-ball is assumed to be modelled as a homogeneous
sphere of radius R, having 3 rotational degrees of freedom
(DOFs) about its center, and actuated by the action of six extra-
ocular muscles (EOMs), [30]. Accordingly with the rationale
proposed in [9], and [15] only the four rectii EOMs are taken
into account here, assuming negligible the role of the upper
and lower obligui muscles during saccades. Finally, the EOMs
are modelled as non-elastic thin wires, [15], connected to
pulling force generators, [22].

Starting from the insertion points (IPs) on the eye-ball, the
EOMs are routed through head fixed point-wise pulleys (PPs),
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emulating the soft-pulley tissue discussed in [10] — [14]. The
PPs are located on the rear of the eye-ball. In the following
sections it will be shown that appropriate placement of the
PPs and of the IPs has a fundamental role to implement the
Listing’s Law on a purely mechanical basis.

Let O be the eye’s center, then the position of the PPs can
be described by the vectors p;. At the primary position 1Ps
can be described by the vectors ¢; such that |c;| = R.

Let rot(v, 8) be the operator rotating a generic vector about
a unit vector v by an angle 6. Then, by Rodrigues Formula
for a generic vector x, we have:

rot(v,0)x = (v-x)v+(vxx)sind —v x (vxx)cos@ (6)

When the eye is rotated about an axis v by an angle 6 the
position of the IPs can be expressed as:

ri = rot(v,0) ¢ Vi=1...4. (7

Each EOM is assumed to follow the shortest path from each
IP to the corresponding pulley, [12]; the path of the each EOM,
for any eye orientation, belongs to a plane defined by vectors
r; and p;. Therefore, the torque applied to the eye by the
action of each EOM is given by:

my

Ty = Ti—

Vie1.. .4 @)
|mj

where 7; > 0 is the magnitude of the pulling force generated
by the : — th EOM, while m; is the normal to the EOM’s
plane defined as:

m;i —7ri X pj Vi=1...4. (9)

From expressions (8) and (9), it is clear that |p;| does not
affect the direction of m; and the applied moment. Therefore,
in the following, without loss of generality it is assumed that:

Ipi| = |cil Vi=1...4. (10)
We assume also that p; and c; are symmetric with respect

to the plane £ which implies:

(v-ci)= (v pi) Vi=1...4¥Vvel (11)
By (11) and (7) the following equalities also hold:
(v-r;) = (v -pi) Vi=1...4¥vel (12)
Finally we assume that:
(hs - ¢;) = (hs - ¢;) Vi, g=1...4, (13)
and
(ca —c1) (cqg —ca)=0. (14)

The last two conditions state that IPs are symmetric with
respect to the fixation axis.

Fig. 3 shows the relative position of IPs and PPs
when the eye is in its primary position, assuming without
loss of generality: (cs —c1)xhy =0, and (cg —c2)xha = 0.

ha

Fig. 3. Relative position of pulleys and insertion points when the eye is in
the primary position.

IV. GEOMETRIC PROPERTIES OF VECTORS mj;

In this section we prove that, under the assumptions made
in the previous section, the vectors m; belong to plane P,
defined in section II.

Lemma 1. Given two non-parallel vectors a and b then:
rot(v,0)(a x b) = rot(v,8)a x rot(v,0)b

Proof: Obvious [ |

Given the vectors pj, c¢; and r; as defined in the previous
section the following lemmas hold true.

Lemma 2:
(ry xr3)-p1+(p1 xXps) 11 0
(rg xrg) -p2+ (P2 Xpg)-r2 = O
Proof: See [26]. ]
Lemma 3:
(ry xr2) -p1 +(p1 X p2) 11 0
(ra xrg) -ps+ (P3xpg)-r3 = O
Proof: See [26]. ]

The following lemmas show how vectors m; are related to
any finite rotation vector v € £

Lemma 4: Letv € L be the finite rotation axis for a generic
eye orientation. Then:
v € span{my, ms}
v € span{ma, my}

Proof:  (The first equality only is shown being the
proof for the second identical.) Let us observe that v €
span{my,mg} is equivalent to condition v-(my x mg) = 0;
then we have:

v (my X mg) =
= v-[(ry Xxp1) X (ra x ps)] =

v -{[(r1 x p1) - pa] r3 — [(r1 X p1) - r3] P3}

3942



From the formula above and using equality (12) we obtain:

v (my x mg) =
(v-p3) [(r1 X p1) - p3 — (r1 X p1) 13| =
= (v-p3) [(p1 xps) r1+(r1 xr3) -p1| =0
where the last equality is due to lemma (2). |
Lemma 5: Letv € L be the finite rotation axis for a generic
eye orientation. Then:
v € span{my, my}
v € span{my,my}
v € span{mgy, ms}
v € span{ms,my}

Proof: (The first relation only is shown being the
proof for the others identical.) Let us observe that v €
span{my,ma} is equivalent to condition v - (my X ms) = 0;
then we have:

v (my x mg) =
v [(r1 x p1) x (r2 x p2)] =
= v-{[(ra x p1) - p2] r2 — [(r1 x p1) - r2] P2}
Using equality (12) in the above formula we obtain:

v (my x mg) =
(v-p2) [(r1 xp1) - p2 — (r1 x p1) ‘12| =
= (v-p2) [(p1 xP2) r1+ (r1 xr2) -p1] =0
where the last equality is due to lemma (3). |

It is now possible to show that for any eye orientation
compatible with Listing’s Law all the torque axes m; belong
to a common plane passing through the finite rotation axis
veL

Theorem 1: 1et v € L be the finite rotation axis for a
generic eye orientation, then there exists a plane M passing
through v such that

m; € M Vi=1...4

Proof: The proof follows from lemmas 4 and 5. |

A second important result is that the relative position of the
IPs and PPs, at any Listing compatible eye’s orientation, form
a set of parallel vectors, a stated by the following theorem.

Theorem 2: 1et v € L be the finite rotation axis for a
generic eye orientation, then:

(ri—pi)x(rj—pj):o VZ7j:14

Proof: From theorem 1 vectors v and m; belong to the
same plane M. Then vectors v x my, V¢ = 1...4 are all
parallel and orthogonal to M. In particular:

vV XM =
v X (r; Xp;) =
= vX[rix(pi—ri)]=
[V (pi —ri)ri — (v -ri)(pi — 1)

" e,+ h3

N/GD

h,

Fig. 4. Sketch of vectors (ro — po), ro, and hg. The vector v is normal
to the plane of the figure.

Using equality (12) the above equality can be rewritten as

vxm; = (v-r;)(p; — i)

Consider now the following vector:

4
(ro —Po) = Z (ri — pi),

i=1

(15)

from the above formula and by theorem 2, vector (ro —po) is
orthogonal to plane M. Furthermore, by the assumptions on
the symmetry of the vectors p;, and c; we have:

4

Po— Y Pi— —Ahg, (16)
=1
and
4
rg = r; = rot(v,0) ¢; =
i=1 i=1
4
= rot(v,0) Z c¢i = Arot(v,0) hs, (17)

i=1

hence rg is directed as es.

Remark 1: The scalar A depends on the placement of the
IPs. O

It is finally possible to show that planes M and P, are
coincident.

Theorem 3: Let v € L be the finite rotation axis for a
generic eye orientation, then:

m; € M Vi=1...4

Proof: By expressions (15), (16), and (17), vector (ro —
po) forms an angle of g with respect to axis hg, as sketched
in Fig. 4. Then planes M and P,, pass through a common
axis v and have the same normal. [ |
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Fig. 5. When vector n,, belongs to the convex hull of vectors r; then rectii
EOMs can generate any admissible torque on 7,,.

Remark 2: Theorem (3) has in practice the following signif-
icant interpretation. For any Listing compatible eye orientation
any possible moment applied to the eye, and generated using
only the four rectii EOMs, must lay on plane P,. O

V. REACHABILITY ISSUES

The main goal of this section is to show the Listing com-
patible eye orientations reachable from the primary position,
using only four EOMs.

In the previous section it has been proved that for any
Listing compatible orientation the vectors m; span a unique
plane. The problem now is to show, accordingly to formula
(8), when arbitrary torques m; € P,, can be generated using
only pulling forces.

Theorem 2 states that mj; are all parallel to a vector n,
normal to P,. Therefore, formula (8) can be rewritten as:

4
T——n, X (Z Yi I‘i)
i=1

where v; = \n:—T\ > 0 take into account the actual EOMs
pulling forces. In formula (18) is evident a convex linear
combination of vectors rj. Then, it is possible to generate
any torque vector laying on plane P,,, as long as n,, belong

to the convex hull of vectors rj, as shown in Fig. (5).

(18)

Remark 3: The discussion above shows that placement of
the IPs affects the range of admissible motions of the eye. [

Accordingly with the previous discussion when the eye is
in its primary position can be assigned any torque belonging
to plane £. Assume now that, under the assumptions made in
section III, a simplified dynamic model of the eye could be
expressed as:

lo=T (19)

where I is the inertia matrix the eye, assumed to be diagonal.
Assume the eye to be in the primary position, with zero angu-

ang. vel

Fig. 6. Components of angular velocity during a saccade from a secondary
to a tertiary position.

lar velocity (zero state). The EOMs can generate a resulting
moment of the form:

T =vi(t) (20)

where v € £ is a constant vector and 6(¢) a scalar control
signal. Therefore, w and w are parallel to v. Then, it is
possible to reach any Listing compatible orientation, and also,
during the rotation, the Half Angle Rule is satisfied.

Similar reasoning can be applied to control the eye ori-
entation to the primary position starting from any Listing
compatible orientation and zero angular velocity.

VI. SIMULATIONS AND EXPERIMENTAL TESTS

Further analysis beyond the analytical results presented
in this paper has been carried on using simulation tools.
Tests have been done assuming viscoelastic actuation forces
generated by the EOMs. In particular, Fig. 6 shows the
components of the angular velocity for a generic saccade
from a secondary to a tertiary position. Fig. 7 shows the
component of the vector v off the Listing’s plane, which is
clearly negligible also for a generic saccade.

The analytical and simulative results previously discussed
provided the support for the development of a tendon driven
robot eye (MAC-EYE), [25]. Fig. (8) shows the complete
system including the embedded control electronics.

Each eye is actuated by four independent DC motors driving
tendons routed to the eye-ball. Internal custom optical sensors
provide feedback to control the mechanical tension of the
tendons. The eye- ball is made of PTFE and is supported by a
custom PTFE bearing. Sliding pulleys emulating the geometry
of the PPs discussed in the paper have been implemented as
discussed in [25], [26].

VII. CONCLUSIONS

In this paper we have investigated the possibility of emulat-
ing the actual saccadic motions implementing the Listing’s
Law on a mechanical basis. To this aim, a model of the
eye plant has been proposed. The model is characterized by
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projection

Fig. 7. Component of the rotation vector off the Listing’s Plane.

Fig. 8.

Complete stereoscopic robot system

the relative position of the IPs on the eye-ball and of the
PPs required to properly route the EOMs. Simple geometric
conditions on these quantities allow to constrain the space of
the moments generated by the action of the EOMs to a single
plane coincident with plane P,,. This property allows to show
that any (reachable) Listing compatible eye orientation can be
reached from the primary position with a trajectory composed
by Listing compatible eye orientations.

Numerical simulations suggest that similar results should be
valid also for generic saccades.

Experimental tests are currently ongoing to validate the
model on a prototype tendo driven robot.

ACKNOWLEDGMENT

This work is partially supported by Project Metodi e Algo-
ritmi Innovativi per 'ldentificazione e il Controllo Adattativo
di Sistemi Tecnologici granted by the Italian Ministry for
University and Research.

REFERENCES

[1] W. Becker, "Eye Movements,” in Carpenter, R.H.S. ed., Macmillan 1991,
pp. 95-137.

[2] D. Tweed, T. Vilis, "Implications of Rotational Kinematics for the Ocu-
lomotor System in Three dimensions,” The Journal of Neurophysiology,
vol. 58, no.4, pp. 832-849, Oct. 1987.

[3] D. Tweed, T. Vilis, "Rotation Axes of Saccades,” Ann. N. Y. Acad. Sci.,
vol. 545, pp. 128-139, 1988.

[4] D. Tweed, T. Vilis, "Geometric relations of eye position and velocity
vectors during saccades,” Vision. Res., vol. 30, n. 1, pp. 111-127, 1990.

[5]1 J. M. Furman adn R. H. Schor, "Orientation of Listing’s plane during
static tilt in young and older human subjects,” Vision Res., vol. 43, pp.
67-76, 2003.

[6] D. Straumann, D. S. Zee., D. Solomon and P. D. Kramer, ”Validity of
Listing’s law during fixations, saccades, smooth pursuit eye movements,
and blinks,” Exp. Brain Res., vol. 112, pp. 135-146, 1996.

[7]1 D. Tweed, T.Haslwanter and M. Fetter, "Optimizing Gaze Control in
Three Dimensions,” Science, vol. 281, Aug. 1998.

[8] T. Haslwanter, "Mathematics of Three-dimensional Eye Rotations,” Vi-
sion Res., vol. 35, pp. 1727-1739, 1995.

[9] T. Haslwanter, "Mechanics of Eye Movements: Implications of the
”Orbital Revolution,” Ann. N. Y. Acad. Sci., vol. 956, pp. 33-41, 2002.

[10] L. Koornneef, "The first results of a new anatomical method of approach
to the human orbit following a clinical enquiry,” Acta Morphol Neerl
Scand, vol. 12, n. 4, pp. 259-282, 1974.

[11] J. M. Miller, "Functional anatomy of normal human rectus muscles,”
Vision Res., vol. 29, pp. 223-240, 1989.

[12] J. L. Demer, J. M. Miller,V. Poukens,H. V. Vinters and B.J. Glasgow,
“Evidence for fibromuscular pulleys of the recti extraocular muscles,”
Investigative Ophthalmology and Visual Science, vol. 36, pp. 1125-1136,
1995.

[13] R. A. Clark, .M. Miller, J. L. Demer,” Three-dimensional Location of
Human Rectus Pulleys by Path Inflection in Secondary Gaze Positions,”
Investigative Ophthalmology and Visual Science, vol. 41, pp. 3787-3797,
2000.

[14] J. L. Demer, S. Y. Ho, V. Pokens, “Evidence for Active Control of
Rectus Extraocular Muscle Pulleys,” Invest. Ophtalmol. Visual Sci., vol.
41, pp. 1280-1290, 2000

[15] A.R. Koene, C.J. Erkelens, "Properties of 3D rotations and their relation
to eye movement control,” Biol. Cybern., vol. 90, pp. 410-417, Jul. 2004.

[16] C. Quaia, L. M. Optican, "Commutative Saccadic Generator Is Sufficient
to Control a 3D Ocular Plant With Pulleys,” The Journal of Neurophys-
iology, vol. 79, pp. 3197-3215, 1998.

[17] T. Raphan, "Modeling Control of Eye Orientation in Three Dimensions.
I. Role of Muscle Pulleys in Determining Saccadic Trajectory,” The
Journal of Neurophysiology, vol. 79, pp. 2653-2667, 1998.

[18] J. Gu, M. Meng, A. Cook and M. G. Faulkner, ”A study of natural
movement of artificial eye plant ,” Robotics and Autonomous System,
vol. 32, pp. 153-161, 2000.

[19] A. Albers, S. Brudniok, W. Burger, "The Mechanics of a Humanoid,”
Proceedings of Humanoids 2003, Karlsruhe, Germany, 2003.

[20] Pongas, D., Guenter, F., Guignard, A. and Billard, A. ”Development of
a Miniature Pair of Eyes With Camera for the Humanoid Robot Robota.
IEEE-RAS/RS]J International Conference on Humanoid Robots, 2004.

[21] P. Lockwood-Cooke, C. F. Martin and L. Schovanec, ”A Dynamic 3-
d Model of Ocular Motion,” Proceedings of the 38th Conference of
Decision and Control, Phoenix, Dec.1999.

[22] A. D. Polpitiya and B. K. Ghosh, "Modelling and control of eye-
movement with muscolotendon dynamics,” Proceedings of the American
Control Conference, pp. 2313-2318, Anchorage, May, 2002.

[23] A. D. Polpitiya and B. K. Ghosh, "Modeling the Dynamics of Oculo-
motor System in Three Dimensions,” Proceedings of the Conference on
Decision and Control, pp. 6418-6422, Maui,Dec. 2003

[24] A. D. Polpitiya, B. K. Ghosh, C. F. Martin and W. P. Dayawansa,
”"Mechanics of the Eye Movement: Geometry of the Listing Space,”
Proceedings of the American Control Conference, 2004.

[25] D. Biamino, G. Cannata, M. Maggiali, A. Piazza, "MAC-EYE: a Tendon
Driven Fully Embedded Robot Eye”, Proc. 2005 IEEE-RAS Int. Conf.
on Humanoid Robots, Tsukuba, Dec. 5-7, 2005.

[26] D. Biamino, A. Piazza, “Studio Progetto ¢ Realizzazione di una Coppia
di Occhi Robotici con Sistema di Controllo Embedded,” Master Degree
Thesis, Faculty of Engineering, University of Genova, 2005.

[27] G. Cannata, E. Grosso, "On Perceptual Advantages of Active Robot
Vision,” Journal of Robotic Systems, vol 16, n.3, 1999, pp. 163-183.
[28] K. Hepp, "Oculomotor control: Listing’s law and all that,” Current

Opinion in Neurobiology, vol. 4, pp. 862-868, 1994.

[29] A. M. F. Wong, D. Tweed and J. A. Sharpe, "Adaptive Neural Mech-
anism for Listing’s Law Revealed in Patients with Sixth Nerve Palsy,”
Investigative Ophtalmology and Visual Science, vol. 43, n. 1, pp. 112-118,
Jan. 2002

[30] G. K. Hung, "Models of Oculomotor Control,” World Scientific Pub.
Co. Inc., 2001

3945



