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Abstract

Neither of the classical visual servoing approaches, position-based
and image-based, are completely satisfactory. In position-based vi-
sual servoing the trajectory of the robot is well stated, but the ap-
proach suffers mainly from the image features going out of the visual
field of the cameras. On the other hand, image-based visual servoing
has been found generally satisfactory and robust in the presence of
camera and hand—eye calibration errors. However, in some cases,
singularities and local minima may arise, and the robot can go fur-
ther fromitsjoint limits. This paper isa step towards the synthesis of
both approacheswith their particular advantages, i.e., thetrajectory
of the camera motion is predictable and the image features remain
in the field of view of the camera. The basis is the introduction of
three-dimensional information in the feature vector. Point depth and
object pose produce useful behavior in the control of the camera.
Using the task-function approach, we demonstrate the relationship
between the velocity screw of the camera and the current and de-
sired poses of the object in the camera frame. Camera calibration
is assumed, at least coarsely. Experimental results on real robotic
platformsillustrate the presented approach.

KEY WORDS—nhybrid, depth, pose, object model,
trajectories
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1. Introduction

This work aims to improve the behavior ofimage-based visual
servoing. As pointed out in Chaumette (1998) and Hutchin-
son, Hager, and Corke (1996), in some cases, convergence
and stability problems may occur. Singularities in the Jaco-
bian or interaction matrix, or local minima, can spoil down
the servoing task. Position-based visual servoing is not free
of drawbacks either; image features are not controlled, thus
the target may go out from the field of view of the camera.
Generally, it is very important to study the behavior of the
control loop along the followed trajectory regarding all of
these drawbacks (singularities, local minima, keeping the tar-
getin the field of view of the camera). During the last decade,
many works have been done in this way, in order to solve such
problems.

In image-based control approach, the ideal case is to find
a particular visual feature where the interaction matrix has no
local minima nor singularities, and where the exponential de-
crease of the corresponding error function involves a straight
three-dimensional (3D) trajectory between the initial and final
camera poses. Most of time people use the interaction matrix
computed at the equilibrium; this may help to avoid singular-
ities and the need for 3D depth estimation, but it affects the
trajectory of the camera.

Previous works using image point features present an ex-
plicit trajectory generation expressed in image space (Berry,
Martinet, and Gallice 1997, 1999). In this case, the motion
is controlled only in such image space. Furthermore, they
all rely on metric knowledge. Other alternatives for improv-
ing image-based visual servoing have been proposed, such
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as combining the regulation of the vision task with the mintion, obtained from the current and desired images. In either
imization of a secondary cost function, to avoid joint limitscase, the rotatioR of the camera and a depth ratio need to be
and kinematic singularities (Marchand, Chaumette, and Rizeomputed. In Morel et al. (1999) the size of the shape in the
1996). In the case of complex objects, several works basediomage space is taken into account in order to keep the object
geometrical features (Berry, Martinet, and Gallice 2000) dn the field of view of the camera. An ellipsis is defined which
an automatic selection of visual features (Janabi-Sharifi amitludes all the features used in the reconstruction algorithm,
Wilson 1997) coupled to an SSD optical flow technique (Pand a control law is designed to keep such ellipsis within the
panikolopoulos 1995) have been developed. Another methodage bounds. Another natural way to mix 2D and 3D is to
for tracking complex objects based on the estimation of these a binocular system. Since pioneer works by Maru et al.
two-dimensional (2D) object image motion along with th€1993), binocular vision has often been used to provide bet-
computation of its 3D pose is presented in Marchand et dér robustness to calibration errors. Grosso et al. (1996) have
(1999). compared a continuous measure of the end-effector motion

More recent improvements have been presented in Corfield with the actual position of the target. Lamiroy, Puget,
and Hutchinson (2000) and Mezouar and Chaumette (200and Horaud (2000a) have described a number of geometric
The authors use potential fields in image space in order tools to obtain a very robust visual stereo servoing platform.
keep the object in the field of view of the camera. In addition, The approach proposed in this paper defines alternative
Mezouar (2001) has extended the local property of convefieature vectors combining 2D and 3D information. It should
gence in the whole operating space by proposing an imabe noted that 3D information (depth) has been required in the
trajectory generation and control under constraint (in order @assic image-based approach for computing the interaction
avoid singularities, keep the object in the field of view of thenatrix. Since this information is available, it makes sense to
camera, and obtain 3D straight line behavior of the cametse it not only in the interaction matrix but in other phases of
pose). Hashimoto and Noritsugu (2000) have used intermiite servoing scheme.
diate reference images obtained by interpolation. One of the Using thetask-function framework (Samson, Le Borgne,
main problems of such techniques is to assume that the mand Espiau 1991; Espiau, Chaumette, and Rives 1992), the
tion between each generated images is compatible and smoegtocity screw of the camera can be obtained from the task
enough for arobot. In particular, if the robot is a nonholomousrror and the pseudo-inverse of the interaction matrix. We
one, then the generated images have to take into account suclh demonstrate that, for small changes of orientation, the
a constraint. Another choice is to use a robust control techemputed screw depends only onthe currentand desired poses
nigue such as robust quadratic stabilization (Tarbouriech anfl the object in the camera frame, and consequently there
Soueres 2000) or dissipation theory (Maruyama, Fuijita, arate no singularities nor local minima in the trajectory of the
Kanitani 1999). Generally, these techniques are very compleamera.
and time-consuming, and the result is a conservative systemAs a further step, the use of 3D coordinates of points is
with very low performances. explored, which turns out to be a particular case of the previous

In the position-based control approach (Wilson, William®ne. Nonetheless, stronger results for the velocity screw are
Hulls, and Bell 1996; Martinet, Gallice, and Khadraoui 1996)pbtained for some particular geometric configurations of the
most of representations avoid the problems of local minimiarget object. Although 3D visual features have been studied
or singularities of the corresponding interaction matrices, arimkfore (see, for example, Martinet, Gallice, and Khadraoui
very often a straight 3D line between the initial and final em1996), a new approach is proposed and analytical results are
bedded camera pose is obtained. Unfortunately, the problgmresented for the velocity screw based on a set of feature
of the features going out of the camera view is not directlpoints.
solved. Zanne, Morel, and Piestan (2000) have used sliding Finally, object pose is used in the feature vector, as a natural
model control theory to design a 3D vision-based controllexxtension of 3D points. This approach is shown to best com-
thatis robust to bounded parametric estimation errors. In Masine the advantages of both position-based and image-based
tinet and Gallice (1999) and Thuilot et al. (2002), new 3D orivisual servoing schemes, since the trajectory of the object in
entation features are used in the control loop with a nonlinettre camera view is obtained, and the trajectory of the camera
approach, in order to keep the target in the field of view. in space can be estimated.

A mixed 2D-3D approach can be used in order to take In Section 2 pixel information is used in combination with
advantage of both approaches. This is done in the so-calléepth, showing the resulting interaction matrix and the veloc-
22D visual servoing (Malis, Chaumette, and Boudet 1999ty screw of the camera. Theoretical results are presented for
Chaumette and Malis 2000). This approach consists of comstereo system where depth is estimated from pixel disparity.
bining visual features obtained from the image, and featurdhe same approach leads to the use of 3D point coordinates
expressed in the Euclidean space. The 3D information canthe feature vector. Next, in Section 3 we present a new
be retrieved either by a pose estimation algorithm (if a CARapproach using 3D pose information of the object (position
model of the target is known), or by a projective reconstru@nd orientation) as a control feature. Theoretical results for
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the interaction matrix, the velocity screw, and the trajectorigsixels and depth4-coordinate) of points, and we describe
are shown. Experimental results are described in Sectionthe properties of the interaction matrix, the velocity screw,
Finally, in Section 5 we draw some conclusions and open iand the resulting motion of the object in the camera frame.
sues. Atthe end of the paper, an Appendix is provided with tHa Section 2.2 we present an alternative formulation of the
complete mathematical derivations of the results presentedf@ature vector using stereo disparity, and show how the same
the paper. interesting properties are obtained.

2. Image Points and Depth 2.1. Pixelsand Depth

. . . I A requirement in image-based visual servoing with points is
The main advantage of image-based visual servoing is the m d 9 g P

R . ) e value ofZ; for each feature point, in order to compute
rect utilization of image features, without the need to compu e interaction matrix. Although some approaches only use
the 3D pose of the target. However, in the original approac

deoth inf i ding t hi int e value of the depth at the equilibrium, a better behavior is
epth information corresponding to each image point MUghy e it it is estimated at each iteration. In this case, depth
be introduced in the interaction matrix, as well as the camey;

librati { In fact. if this inf tion is k An be included in the feature vector (Cervera and Martinet
calibration parameters. n fact, 1t this information 1S known, 99a), as presented below, where the interaction matrix and
the 3D coordinates of the points can be readily obtained, a

: e velocity screw are derived.
3D image features can be used. y

In image-based visual servoing, a feature vestbas to
reach a desired valig. Usually,sis composed of the image 2-1-1- Feature Vector
coordinates of several points of the object. The key issue in Vikssuming a camera model without distortion, the relationship
sual servoing is to find the relationship between the derivatifgstween the pixel coordinates;, v;)! and the image coordi-
of the feature vector and the velocity screw of the camera pates(x;, y,)! is linear.

Since the image coordinates are obtained from the per-

V= ( v ) : spective projection of the coordinates of each ppjnt the

@ camera frame, the following relationship is readily obtained:
- u;Z;
§=1L,v. 1) s=[ vz — Ap. @)
HerelL, is theinteraction matrix or Jacobian matrix. Z;

If the feature vectos, is composed of the image coordi-
nates(u;, v;)! of a single 3D poinp; (X;, Y;, Z;)!, then the
interaction matrix is

The advantage over pure 2D visual servoing is that the
feature vectorislinearly dependent onthe 3D coordinates. The
nonlinearity due to perspective projection has been removed.

A, This fact will lead to interesting dynamic properties of the
Ls,'(SinivA): . .

0 a, system, as shown in the following. Of course, we assume
thatZ; can be estimated, but this assumption is present in 2D

—— 0 = xy —A+x?) visual servoing, since such values are needed in the interaction
Z; 1 Z ’ . matrix.
Vi
0 —— = (14 —X; Yi —Xi
Z Z 1+y) y

2.1.2. Interaction Matrix

(2)
Here,Z; is thez-coordinate op;, A is the matrix of the camera
intrinsic parameters (see, for example, Faugeras (1993)
more details)

Using the well-known relationships between the velocity of
ointi of the object and the velocity screw of the camera, the
fAteraction matrix, is

a, Ay Ug
A= 0 o v 3) L,
0O 0 1

A Alp]. (5)

and(x;, y;)" are obtained by perspective projection. When sev- :

eral image points are used, the interaction matrix is obtained A1

by simply stacking the matrices for each elementary point. = —A A [A S]X (6)
In the following, 2D information (pixels) is combined with :

3D data (depth) in order to improve the behavior of the servo-

ing task. In Section 2.1 we present a feature vector combinimghereA~! always exists, since neithey nor«, are null.
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Usually, the pseudo-inverse of the interaction matrix isould say that this approachiiwariant to the 3D character-
computed numerically at each iteration of the control algdstics of the object.
rithm. However, it may be derived symbolically, as we show In addition, the trajectory of the camera is not a straight
in the next section. For that purpose, the expression of thine. This could be surprising, since this approach uses 3D
matrix in eq. (5) is utilized. information, andtraditional position-based visual servoing
We do not intend to use the symbolic result in the contraé meant to produce such a straight trajectory. The reason is
loop, but it will be useful to calculate the velocity screw ofthat the feature vector consists of the pose of the object (as
the camera. obtained indirectly from the 3D coordinates of its points), not
We will demonstrate that, for small rotations of the camthe pose of the camera.
era, such a velocity screw can be approximated by a compact
expression whictonly depends on the current and desired 2.1 5. Motion of the Object in the Camera Frame

poses of the object in the camera frame. ) . ) )
Since the motion of the camera cannot be easily described, let

us calculate the velocity of the center of gravity of the object
p, with respect to the camera frame. Given the velocity screw
In general, matriX_, is not square, thus it is not invertible. of the camera in the general case (45):

However, a pseudo-inverse mattix can be calculated as

2.1.3. Pseudo-Inverse of the Interaction Matrix

1 p = —»(-" —p) —[p] ,RW +[p] RW)
+ t -1t
Lf=(L'L,) L @) — A —p). (11)
sothatl L, =1. _ _ _ Thus, the center of gravity of the object moves along a
As derived in the Appendix, the resulting pseudo-inversgrajght-line trajectory from its initial to its final position in
matrix is the camera frame. Consequently, the object is most likely to
_IAIA) AL T, remain in the camera f|e!d of view dynryg the Wholg task.
Lf = ( n(AA) T +[pl, ) (8) Let us remark that this expression is an equality, not an
' approximation. Thus, the center of gravity of the object de-
where scribes a straight-line trajectory fany rotation between the
current and desired poses, small or large. Consequently, our
T, =RM*[’p,] R'A" (9) approach does not suffer as much as traditional position-based

ones from the problem of getting the object out of the field of
Such an expression involves the camera paramAtgte  view of the camera.
pose of the object in the camera frame, expressep ayd Of course, the method relies on the estimation of the depth
R, and the 3D model of the object, given by the relative coonf points, and the camera focal parameters, which are needed
dinates of each point with respect to the origin of the objedbr the interaction matrix. The better the estimation, the more
[bp,-]x. likely the object will remainin the field of view. Unfortunately,
There are no obvious conclusions from this expression; inis not possible to derive a quantitative measure of such
fact, the usual choice is to compute numerically the pseudprobability, as in other position-based approaches.
inverse inthe control loop. However, it allows the computation
of the velocity screw, with some interesting results. 2.2. Using Disparity for Depth

2.1.4. Vel ocity Screw The presented approach canbe directl_y applied tp astereo sys-
tem, where depth is estimated from pixel disparity (Cervera,

The velocity screw is calculated by means of the classicBlerry, and Martinet 2002). For simplicity, a parallel stereo

task function approach (Samson, Le Borgne, and Espiau 19@bnfiguration, with equal focal lengths is assumed. Thus, dis-

Espiau, Chaumette, and Rives 1992). The complete derivatiparity values can be used in the feature vector, defined as

is shown in the Appendix. Although no simple expression is

obtainedinthe general case, if the rotation between the current Ui + Uiy
and desired pose of the objettis small, then the velocity Uit J_r”
. V; Vir
screw is s=| —~ (12)
Uiy — Uiy
va s ® =P +[p] Rue (10) 1
Ruf Uy — Uiy

i.e., it only depends on the pose of the object, no longer dehere subscripté and r refer to the left and right camera
pending on the particular 3D model of such an object. Wpixels, respectively.
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It can be shown that this feature vector results from a lineavhere
combination of the coordinates of the corresponding 3D point:

Ti = RM -1 [bpi] Rt (18)
s = Ap;. (13) . )
2
The matrixA depends on the camera parameters as before, M = Z ["Di]x . (19)
and also the camera baseling.e., the distance between left i=1
and right cameras: Let us note that these expressions do not depend on the
2 20, 2ug camera intrinsic parameters (although they are used in the
b ba, ba, estimation of 3D points from pixel data). In addition, matrix
2u, 2u, M is computed from the 3D model of the object, notdepending
A=1 0 ba.  ba (14)  onits absolute spatial position nor orientation.
1
0 0 ha. 2.3.2. Velocity Screw

The resulting interaction matrix is defined as previously ~ Besides obtaining the same approximation of the velocity
screw of the cameragn exact computation of the velocity

: screw for any rotation can be obtained i1 is a diagonal ma-
L.=| -A A[As] (15) (rix(some objects foM as a diagonal matrix are, for example,
the tetrahedron, the square and the cube).
As derived in the Appendix, the velocity screw of the cam-

which certainly exists since matrixhas an inverse too, since erais then

none of its elements is null. (P* —p) + [p] Rusin®
In this way, 3D coordinates need not be estimated, and the v=-—-Ai < RUSinG >
interaction matrix is kept linear with respectso
Previous theoretical results still hold. Although the velocitywhich is valid for allug.
screw (10) is valid for small angles only, the trajectory of the The motion of the camera is always the same regardless of
center of gravity of the set of points (11) still translates alonghe 3D model of the object. An intuitive explanation is that the

(20)

a straight path during the task. property ofM being symmetric produces some compensation
among the motion of the points, leading to a camera motion
2.3. Using 3D Point Coordinates which only depends on the pose of the object, not its particular

.. . ) points.
In addition to the previous results, theoretical developments 5¢ shown in eq. (11), the object will follow a straight-line

can be further obtained if the feature vector is composed Bgth in the camera frame. However. care must be taken if

the 3D coordinates of the points of the object, is.= p: I <0 <, since sirg decreases. Consequently, the camera
(Martinet, Gallice, and Khadraoui 1996). accelerates during the first phase of the motion until= Z

We should note that no additional information is needefi]en decelerates until convergence. This may cause2 unex-

for the computation of such coordinates, which are easily 0B teq hehavior if the initial velocity of the camera is near
tained from pixels and depth estimates, assuming the camegane maximum limit in order to improve convergence times.
intrinsic calibration parameters also. Finally, if & = 7 (180°) then the camera does not rotate at
all, which will produce inconsistent results if the translational
2.3.1. Interaction Matrix motion does not change the orientation of the object with
ect to the camera, e.g., if the object is positioned along
straight line which joins the current and desired camera
positions. Since the object is somehow symmetric, & 180
rotation may leave the object unchanged, thus not producing
any rotational motion of the camera.

Instead of repeating the development, all of the previous th[?:—ﬂ)
oretical results can be used by means of simply repIaAingt e
by the identity matrix. Thus, the new interaction matrix is

) 3. Object Pose
and its pseudo-inverse is In the previgus_section, it has beeq theo_retically shown. how
1 3D information improves the behavior of image-based visual
Lf = ( oot ) (17) servoing. Effectively, it allows us to compute the velocity
Ti screw and predict the motion of the objectin the camera frame.
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tion and translation components. Then let us define the feature

Fe é: vector as
K ,’, P
5= ( P ) (24)

uo

:ﬁ be the decomposition of the transformation matrix in its rota-
Fq ,

o

whereu andd are the axis and angle of rotation corresponding
to matrix”’R,. The error vector is

—
©
—
o

’
’
’
I
1
1
1

Fo e=s—¢ (25)

wheres* is the desired feature vector.

The interesting thing about this new frame is that, when
Flg 1. Frames defined in the visual Servoing task. the camera achieves the desired pose, fraﬁl]’md?” are
coincident, thus* = 0. In the next sections, we will demon-
strate how this property allows the computation of the exact
trajectory of the object in the camera frame, and the trajectory

T
o

In this section, the feature vector consists of the pose 8f (€ camera in the world frame.
the object (Cervera and Martinet 1999b). This is genuine 3D _ o
information, but the approach differs from classic position3.2. Trajectory of the Object in the Camera Frame
based visual servoing in that the error is not measured in tlcme importance of such a trajectaty, (¢) relies on the fact
camera frame, but in a new frame defined in Fhe following. that it determines whether the object remains within the vision
As aresult, further advantages can be obtained, as the CAI4 of the camera or not
plete knowledge of the trajectories of the object in the camera As shown in the Appeﬁdix
frame, and the camera in the space. '
Po(t) = (°p,(0) —“p,) & +p, (26)

3.1 Task Frames which is simply a straight-line trajectory from the initial posi-

Let %, be the coordinate frame attached to the observed objeton °p, (0) to the desired ongp,, the exponential factor only
and let¥. and %, be the coordinate frames associated to thaffecting the velocity along such a line.

current and desired camera poses, respectively, as depicted i he orientation of the object with respect to the camera
Figure 1. LetT, and‘T, be the transformations between thérame is also derived, giving

camera and object frames, for the current and desired camera

c __d —AlL
poses, respectively. Let us define a new fraffg rigidly R,(t) = ‘R,R (u6(0)e™) 27)
attached to the current camera frame, as which is a composition of the constant rotatiéR, and
the variable rotation around the constant axig®s given in

c . d .
Tp="Ts (21) eqg. (60).

As when using 3D point features, the center of the object

that is, the transformation between the current camera frame’ . X T o :
r& gcrlbes a straight path from its initial position to the desired

and the defined one is the same as that of the desired cam . . " Ly
frame and the object frame. one, in the camera frame. Since both positions are within

The key is to define the error vector in the new frameth? camera field of view, all the intermediate ones are within

instead of defining it in the camera frame as usual. The po s field too. However, there is no guarantee that the rest of
of the object is then the points of the object will remain within the field of view,

although a partial result about this is presented in the next

PT, = ("T,,)_l T, section. . . 3

Theoretical demonstrations of robustness and stability are

(“T,) T, (22) alsohardto obtain due to the iterative nature of pose estimation
algorithms.

which can be calculated siné&, is given, andT, is recon-
structed from the current image and the model of the objec\tg3 Image Point Trajectories

Let
In the proposed framework, image features (points) are not

’T, = < 'R, P, ) (23) directly controlled. However, since the trajectory of the ob-
0 1 ject in the camera frame is known, it is possible to calculate
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the trajectory of each point in the camera frame and even its This is clearly a disadvantage of the camera frame, which
trajectory in the image plane. motivates the introduction of fram&,. A constant rotation

If the angle of rotatior® between the current and desiredaxis not only produces simpler trajectories, but it also allows
poses of the object with respect to the camera is small, then We determination of the trajectories of object points, as de-
will demonstrate that each object point follows a straight-linecribed before, and an easier calculation of the velocity screw,
trajectory in 3D space from its initial to its final position (seeas shown in the next section.
the Appendix). Thus, the projection of each point describes a
straight line from its initial to its final position in the image 3.5, Velocity Screw
plane too.

The trajectory of a point, which is rigidly attached to the The velocity screw in the camera frame, using the task func-
object, is then tion approach (Samson, Le Borgne, and Espiau 1991)—see

the Appendix—is

‘pi(t) ~p; + (ypi 0) - dpi) e (28) ¢ dn _ [e d
V=1 ( P + P, — ['P.], “R.uf ) (31)

d

which is effectively a straight line from its initial to its final —‘R,uf
position in the camera frame. Consequently, its projection iSghereu ande are the axis and angle which correspond to the
straight line joining its initial and final positions in the image,gtation matrix
plane.

From the point of view of the image, such behavior is the R(u) = (‘R,)R,; (32)
same as that produced by classic image-based visual servoing, . . — . .
where the task error is defined in terms of image points. Inth Q%‘t is, the pure rotation between the initial and desired ori-

last approach, image points are constrained to follow straigﬁ??ﬁ'ggzr%f th;t(_)g:]eg; t\ﬁ'ghc;istfj?;toggﬁ qatmi;atlhree te
lines even in the presence of high orientation variations, thus putat W eonsists Steps,

frequently causing inadequate camera motions (Chaumeﬁ%fonows'

1998). 1. Obtain‘p, and ‘R, from the current image and the
model of the observed object with areconstruction algo-

3.4. Advantages of the Proposed Coordinate Frame rithm; e.qg., a fast algorithm is proposed in Dementhon

and Davis (1995).
The key advantage of the proposed framework is that the tra-

jectory of the object in the camera frame is known, and the 2. Calculataut as shown in eq. (32).
object is likely to remain within the camera field (in the ab- 3
sence of high calibration and/or model errors).

However, we might wonder about the need to introduce a
new coordinate fram&, instead of using directly the current
camera framef,. Effectively, if the error vector is defined in
#., then the trajectory of the object is exactly the same as As explained inthe literature (Samson, Le Borgne, and Es-
given in eq. (26). piau 1991; Chaumette 1998), the system is globally asymptot-

The difference between choosing either of the two framesally stable iff;le >0 wherel:1 is an estimation based on
concerns only the orientation of the object. If the error vectdhe current measurements. This condition is surely met since,
is defined in the camera frame, theris no longer null, and in the absence of calibration errors, ’L\leS = l,.

. Compute the velocity screw in the camera framas
given by eq. (31). This screw can be readily transformed
to the end-effector or base frame and, via the Jacobian
robot, to joint velocities.

— Cpo - dpg .
€= ( u.b. — uy6, ) (29) 3.6. Trajectory of the Camera

Since the object is supposed static, then
whereu.6, andu,6, are, respectively, the axes and angles

which correspond to the rotation matric&s, (0) and’R,. p.(t) = R,°p.(1) + P, (33)

Solving the differential equation leads to wherep, andR, are, respectively, the position and orientation

of the object with respect to an absolute frame.

It follows immediately that
The p_roblem nowis that, in the_ gen_er_al case, the orle.ntat.|on P.(t) = —R,’R.(1)°P, () + P, (34)
of the axis of rotation changes, since itis a linear combination
of the two not-necessarily-parallel vectots,andu,. Only  which allows us to calculate the trajectory of the camera in
if these vectors are parallel or either of them is null, then therms of the trajectory of the object in the camera frame and
axis of rotation is constant. the pose of the object on the absolute frame.

ub(t) = ub.e™* + (1 —e*)yu,b,. (30)
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Since the trajectory of the object in the camera frame is closer to a straight path than when using the classic image-
described by egs. (26) and (27), the trajectory of the camepased scheme. As a consequence, the manipulator is better
can be completely expressed in terms of the task parametkept from reaching its joint limits.

(‘T,(0),“T,. T,)

4.2. Pixelsand Stereo Disparity

P.()
R.(1)

—R.(0) ((‘P.(0) = “p,) €7 +p,) + P,
R,R(u6e™)(“R,)* (35) The stereo visual servoing platform consists of a Mitsubishi
PA-10 arm, controlled in the Cartesian space. Attached to
whereu andé are the axis and the angle which correspond tthe end-effector of the arm is a stereo rig with two minia-
the rotation matrix‘R,(0)) ¥R, ture CMOS color cameras, linked to two video boards which
deliver the visual features at video rate (30 Hz).
] We give the estimation of the parameters (intrinsic and
4. Experimental Results extrinsic) of both cameras, as used in the experimantis
300; F, is 450; andh is 118 mm.
The presented approaches have been tested on real robotigne target object consists of four co-planar points located
platforms. Eye-in-hand configurations have been used, bothjfihe vertices of an 11 cm square and the fifth point is located
mono and stereo cases. The monocular platformis a Cartesigfihe center of the square.
manipulator, and the stereo one is a Mitsubishi PA-10 arm, The velocity screw is computed from the pseudo-inverse
although controlled in the Cartesian space. of the interaction matrix (Espiau, Chaumette, and Rives 1992)

4.1. Pixels and Depth V=—AL"(s=¥) (36)

This scheme has been implemented on a robotic platform wigtith A set to 0.5 in all the experiments.
six degrees of freedom and an eye-in-hand configuration. 2D Image measurements are noisy, since the experiments are
visual features are extracted at video rate (25 Hz) and 3farried out in a standard office environment, without any spe-
features at 12.5 Hz. The target object is composed of fodral illumination. As a result, there is an almost-uniform noise
points which define atetrahedron. 3D coordinates are obtaing@tiose magnitude is-1 for u! andu!, and+2 for v/ andv;.
from the pose of the object, which is extracted from the image&dditionally, pixel coordinates are quantified to a resolution
and an internal model with the algorithm of Dementhon andf 200 x 200.
Davis (1995). Experimental results are depicted in Figures 4, 5, and 6.
Initial and desired poses of the camera are shown in TableHach figure consists of a set of plots (from top to bottom):
As explained in Malis, Chaumette, and Boudet (1999), this the image trajectories of the points, the errors of the visual
a difficult task since the displacement is important and thieatures, and the velocity screw. Convergence is better when
object moves towards the border of the image. 3D information is used, either stereo disparity, or estimated
Figure 2 depicts the trajectories of the object in the imageoordinates.
plane, when three different features are used in the control Figure 7 depicts better this advantage, by showing the 3D
loop: pure 2D points, 2D points combined with depth, anttajectory of the end-effector. Both approaches using 3D in-
pure 3D points. Since the involved rotation is high, the point®rmation in the feature vector accomplish a better trajectory
of the object do not follow straight lines from the initial to thethan the pure 2D image-based approach, although using stereo
final positions. Although trajectories are more curved in thfeatures too.
proposed approaches than inimage-based visual servoing, the&Convergence to the desired images is always achieved, but
object remains in the field of view of the camera during thquality is worse with the stereo 2D features. As pointed out by
complete servoing task. Lamiroy et al. (2000b), the stereo interaction matrix is largely
Camera trajectories in 3D space are depicted in Figure @verconstrained, and the control datands* are redundant.
The trajectory of the camera when using depth or 3D point3owever, this is not sufficient to explain the curvy trajectory
of the end-effector (bottom of Figure 7), which almost leads
out of the range of robot joints.
Such a trajectory is neither caused by too high a gain; with
Table 1. I nitial and Desired Poses of the Camera A = 0.1 a smoother but similar trajectory is obtained, as de-
picted in Figure 8. This problem has not been addressed before

Translation Rotation h X s ]
Pose (mm) ué (deg) since very few experiments with image-based stereo visual
— servoing have been carried amth cameras mounted on the
Initial 00 -500 000 end-effector. To our knowledge, only Maru et al. (1993) have
Desired —225 249-408 7 37-70

worked with this setup, but their tasks involved rather small

Downloaded from http://ijr.sagepub.com at Univ Genova on March 26, 2008
© 2003 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://ijr.sagepub.com

Cervera et al. / Improving Image-Based Visual Servoing 829
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Fig. 2. Object trajectory in the image: (a) 2D points, (b) 2D/depth, and (c) 3D points.

N
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Pixél and.depth /

0.65
0.4

Fig. 3. Trajectories of the camera.

rotations(¢, 6, ¥) = (10, 10, 10) (degrees). In our manipula- Table2. Initial and Desired Poses of the Camera

tion task, the rotation between the initial and destinationposes ~ Pose Translation Rotation

is (¢,0,y) = (72,57, 50) (degrees). Translational distance Pose (mm) ué (deg)

is 250 mm, as opposed to 173 mm in Maru et al. (1993). Initial 00 =500 000
Approaches based on 3D features work better due to the  Desired —304 251—366 —626-50

linearity of the interaction matrix. As shown theoretically, not
only the image points but the center of gravity of 3D points
translates along a straight line. As aresult, the trajectory of the

large rotations between frames. going out of the camera field of view (see Figure 9). On the
) other hand, in both image-based visual servoing and our ap-
4.3. Object Pose proach, the object remained always in the camera field of view.

This scheme has been implemented on an eye-in-hand monbowever, image-based visual servoing failed due to the im-
ular configuration. The target object is composed of foysosed camera trajectory, which pushed the robot farther from
points which define a tetrahedron. The pose of the objectits physical joint limits.
extracted from the images and an internal model with the al- Figure 10 depicts the trajectory of the camera in 3D space.
gorithm of Dementhon and Davis (1995). Initial and desireth position-based visual servoing, the trajectory is ideally a
poses of the camera are shown in Table 2. straight line, but convergence is not achieved, as explained
The proposed control law has been experimented togeth®fore; thus only the result from simulation is shown. In
with position-based and image-based ones. However, the cl#se image-based approach, the trajectory goes farther from
sic approaches do not converge and simulated results are giee joint limits, thus it fails too. In the figure, the complete
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Fig. 4. Stereo 2D points: (from top to bottom) image trajectories, pixel eriong (and velocity screw.
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Endeffector trajector y

Endeffector trajector y

(a) (b) (©)
Fig. 7. End-effector trajectory in 3D space: (a) Stereo 2D points, (b) 3D points, and (c) 2D points/disparity.
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Fig. 8. Trajectory of the end-effector, with stereo 2D features,Japd0.1.
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Fig. 9. Object trajectory in the image: (a) Position-based (simulation), (b) image-based (simulation), and (c) object pose (real).
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Fig. 10. Trajectories of the camera with 2D image-based (simulation and real—failure), 3D position-based (simulation only)
and the proposed visual servoing approaches (simulation and real—successful).

trajectory is obtained from simulation, and the real one stopse camera field of view. In addition, convergence is achieved

with the joint range error. Finally, with the proposed modelor any configuration of the camera and object provided that

the trajectory is near to the straight path, and convergentiee pose can be correctly reconstructed from the object image

to the desired pose is achieved (both in simulation and reshd model.

experiment). The proposed approaches exhibit a better behavior than the
The differences between real and simulated trajectories arlassic image-based one, since the trajectories of the camera

due to the calibration errors of the real platform which cannab the absolute frame are less elongated when the change of

be completely captured in the simulations. orientation is high. Thus, the risk of the robot going out of its
joint limits is lowered.
5. Summary and Conclusions Besides proper camera calibration, the main requirement

o _ ) of the proposed approach is the acquisition of 3D informa-
The use of 3D features in image-based visual servoing hgsn, either by a pose estimation algorithm (assuming a CAD

been proposed. This extension does not require additional idndel of the target), or by a stereo visual system. A projective
formation, i.e., only the pixel coordinates and the estimatg@onstruction is used in%]!) visual servoing, which does not
depth of each pointare used, as in classical 2D visual servoingye these requirements, at the expense of being less robust
Such new features resultin alinear control law, from whicky;ip respect to image measurement errors, and more compu-
the computed screw can be obtained, resulting in a motion @ftionally expensive.
the object along a straight path in the camera frame; thus, Experimental results on a robotic platform show the fea-
the object is most likely to remain in the field of view of thesibility of the proposed scheme in a real-world environment.
camera during the visual servoing task. Future work includes the study of the efficiency and robust-
The proposed scheme is applied to a stereo visual servoiggss of the proposed schemes when compared to the classic
system, where disparity replaces the point depth in the featyfgage-based and position-based visual servoing approaches,
vector. Theoretical results show the similarities between thigyticularly in face of camera calibration errors. The influence

and the previous approach. of object geometry needs to be studied, since some control

We also propose the use of 3D coordinates of the poin§operties depend on its symmetry, although the final target
of the object, obtained from the image features, the estimatgdy find features to work without object models.

depth and the camera parameters. We demonstrate that it is a
particular case of the first proposed scheme. Nevertheless, an
exact value of the velocity screw is obtained, provided that ahppendix
additional geometric property of the target object is met. . . .
As a further step, a visual servoing model using c)bjegseudo-lnverse of the Interaction Matrix for | mage Points
pose has been presented, which inherits the advantages fidi Depth
position-based and image-based approaches, namely the c&irst, let us calculate the product of the interaction matrix by
era trajectory is predictable and the image features remainiia transpose

Downloaded from http://ijr.sagepub.com at Univ Genova on March 26, 2008
© 2003 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://ijr.sagepub.com

Cervera et al. / Improving Image-Based Visual Servoing 835

From the above definitions,

vV = —)»( —%276@—[3*))

= (e )| e (s
: > TimAR — RY’p;
= (aplnn apl mal-s) @0 = (TR e
where where
S = RMR' (38) W = Z M~ [’p:] RA'A(R—R"’p;.  (46)
M = Z [’p:], RA'AR["p;], . (39) -

The inverse matrix of the above product is

) =(

According to the properties of rotation matrices, the above

i=1 . .
l difference is

R —R* = —R[u]? (1 — cosf) — R[u], sing 47

AN+ [p], St[p], —I[p]. ST ) whereu and# are the axis and the angle which correspond to
s*[p], —-St the rotation matrix produd®'R*.
(40) If 6 is small, we can take the approximations &ir: 6
and co® ~ 1. Then,

which exists as long a8l has an inverse, sinc8* =

RM-'R".

Finally, the pseudo-inverse matrix is

W~ > M'[’p] RAA(-R[u],0)"p
i=1

1 _ n
L = ( L R lTAt +pl T ) (41) ~ MY ['p], RA'AR[’p;] ue (48)
1 i=1
where which, according to the definition & in eq. (39), leads to
T, =RM~[’p,] RAL (42) W . (49)
Thus, the velocity screw is
Velocity Screw for Image Points and Depth
y 9 P N (p* —p) + [p], Ruo
: . : i VA —A . (50)
Prior to the calculation of the velocity screw, we must define Ru@

the error vectoe between the current feature vectand the

desired ones':

e =

Velocity Screw for 3D Points

s_g The velocity screw of the camera can be approximated in the
same way as when using image points and depth. Nonetheless,
: an exact computation of the velocity screw for any rotation
A (pi - pj‘) can be obtained iM is a diagonal matrix (some objects for
: M as a diagonal matrix are, for example, the tetrahedron, the
square and the cube).
From the properties of skew-symmetric matrices,

A(P-p)+R-RYp) |. @3 : :
. M= thibpit - prilhpil‘ (51)
i—1 i—1

The velocity screw is then calculated by means of the task- Since bothM and the second sum are diagonal, then the
function approach (Samson, Le Borgne, and Espiau 199rst sum is diagonal too, i.e.,

Espiau, Chaumette, and Rives 1992):

b I'h ,~t=Ol| 52
v=-iL'e (44) ; PP =
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wherea is a positive scalar. and wheras and6(0) are the axis and the angle which corre-
Then, from eqgs. (46), (47) and (52) spond to the rotation matrix
- ’R,(0) = (‘R,)™R,(0)
W = —M™1? bn.] [u]? *p; (1 — cosy !
2 [P 1 e : ('R)R,(0). (60)
+M? Z [bpi]i using Now, let us proceed to compute the pose of the object in

— the camera framep, (1)

— _M—l Z [bpi]>< uutbpi(l _ COS@) + using Cpo(t) = CRp[)po(I) + Cpl’
i=1

‘R,"p, (0™ +p, (61)
— M [u] Xn:bp_bp_tu(l — cosd) + using where it should be noted that botR, and“p, are constant
) = " since the framef, is rigidly attached to the camera frame.
= oaM™'[u], u(l —cosp) + using Whenr = 0,
= usiné. (53) p,(0) = "R, (°p,(0) —“p,) . (62)
The velocity screw of the camera is Then,
V=2 ( (p* —p) +[p], Rusing ) (54) Po) = RSR (PO = P,) €7 +°P,
Rusing (‘P,(0) — “p,) e +p, (63)
which is valid for allu6. which is simply a straight-line trajectory from the initial posi-
tion ‘p, (0) to the desired on§p,, the exponential factor only
Trajectory of the Object for Object Pose affecting the velocity along such a line.

The orientation of the object with respect to the camera

Let us compute the trajectory of the objectin the camerafranfl%me can also be obtained. From eq. (58)

“p,(),°R,(#)). To begin with, we need to know the temporal
evolution of the feature vector, defined by the pose of the ’R,(t) = R (ug(0)e™) (64)
object in the new fram&,, as presented in Section 3.1.

In this case, when the camera achieves the desired pogegl, by changing the coordinate frame,
frames¥, and %, are coincident, thus* = 0 and
CR(J(I) = FRppRo(t)

e = s = “R,R(us(0)e™), (65)

P,
= ( uo ) (55)  which is a composition of the constant rotatiéR, and

the variable rotation around the constant axi®s given in
If an exponential decoupled convergence of the task funeq. (60).

tion is imposed then

6= e (56) I mage Point Trajectories for Object Pose

which is a vectorial differential equation whose solution is The trajectory of a point, which is rigidly attached to the

object, is
o =ede &7 ‘pi(t) = R, ()°p; + “p,(t) (66)
Following the definition of the error, where*p, is the position of such a point in the object frame.
() = PO Since the point is rigidly attached, this position is constant.
ud(r)y = uf0e™ (58) From egs. (63) and (65)

‘(1) = “R,RuO0)e™)p;
+ (°p,(0) — “p,)e™ +“p,. (67)

where

ppo (O) = pRcrpa(O) + ppr
(dRo)_lcpn(O) + Opd

= (dRu)ilcpn(o) - (dRo)ildpo
(“R,)"* (p,(0) — “p,) (59) R(Uf) = I3+ [u]? (1 — cosh) + [u], sind (68)

A rotation matrix with axisu and angl& can be expressed
as
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which, if 6 is small, leads to

R(u#) =~ 153+ [u], 6. (69)

Assuming such an approximation, eq. (27) becomes

‘R,(1) ‘R, + ‘R, [u], 6(0)e ™. (70)

Thus, the trajectory of the object point is

‘Pi(1) ~ ‘R, (ls+[u].6(0)e™)p;
+ (‘P.(0) — ‘p,)e +p,
~ dRoopi + dpo
+ ((CR()(O) - dRa)Opi + Cpo(o) - dpo) e_}\t
~ pi+ (Cpi 0 - dpi) e, (71)

Velocity Screw for Object Pose

Let us calculate the control law which achieves the desired
exponential decoupled convergence, as imposed in eq. (56).
Using the task-function approach (Samson, Le Borgne, and

Espiau 1991), the velocity screw is
v=—xiL'e (72)

whereL, is theinteraction matrix (also known as themage

interaction matrix) which relates the derivatives of the feature

vector and the velocity screw:
S=1L,v. (73)
The interaction matrix for the defined feature vector is

L= )

(74)
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where
B 0 . % .
Lt=1+ Esmc2 (§> [ul, + (1 —sina®)) [u]>. (79)

Originally, the error vector has been defined in fraffie
thus the velocity screw is calculated in the same coordinate

frame:
"p,
uo

Py = —)”<_C;3 _[pp(’]xl-;l

—L!

L —rp, — |:pp0]>< L;lue
= —X ( ity . (80)
Sinceuu = 0 and after eq. (79),
L 'ug = uo (81)
and, consequently,
— _”po - [pp”]x ue
Py = =) ( —ug . (82)

We should note that the precedent simplification cannot be
applied in the camera framg,., as indicated in Section 3.4
since, in the general cade., ], u, is not null.

Let us calculate now the velocity screw inthe camera frame

v = 3 Re (-”po—[”po]xue)—["pp]XﬂRl,ue
—R,ué
—R,u6
_(.0+do_co dR(;G
- —A( P p—"R[uF;]X u ) ©3)

whereu andé are the axis and angle which correspond to the

wherelL , is the submatrix which relates the rotational COMgqtation matrix

ponents:
d(ue)
=—-L,0. 75
p 0 (75)
As presented in Malis, Chaumette, and Boudet (1999), t
matrix is
0 sina9) )
L,=1—<[ul,+1—-—-)[ul} 76
P+ (A= SoElit (78

where the function sin@), calledsinus cardinal, is defined
as

sing

The inverse of the interaction matrix is
_ _I - [pp>] L_l
1_ 3 olx Tw
Ls - ( 0 —L;l (78)

R(u9) "RR,

(‘R)R,. (84)
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