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Pose Estimation Through Cue Integration:
A Neuroscience-Inspired Approach

Eris Chinellato, Member, IEEE, Beata J. Grzyb, and Angel P. del Pobil

Abstract—The aim of this paper is to improve the skills of
robotic systems in their interaction with nearby objects. The
basic idea is to enhance visual estimation of objects in the world
through the merging of different visual estimators of the same
stimuli. A neuroscience-inspired model of stereoptic and perspec-
tive orientation estimators, merged according to different criteria,
is implemented on a robotic setup and tested in different condi-
tions. Experimental results suggest that the integration of multiple
monocular and binocular cues can make robot sensory systems
more reliable and versatile. The same results, compared with sim-
ulations and data from human studies, show that the model is able
to reproduce some well-recognized neuropsychological effects.

Index Terms—Biological system modeling, grasping, intelligent
robots, robot vision systems, stereo vision.

I. INTRODUCTION

P RIMATES possess a superior ability in dealing with ob-
jects in their environment. One of the keys for achieving

such ability is the continuous concurrent use of multiple estima-
tors deriving from different cues, particularly of visual nature.
Cue integration is indeed a major principle in the primate
sensory cortex. Visual information is processed in a highly
parallel way, and different estimators for the same stimulus are
processed, compared, and merged in order to provide increased
estimation reliability through redundancy [24], [45]. Often,
motion and texture cues are at least as informative as stereoptic
data, and a method for integrating all the available information
for obtaining the most likely estimate is required. Although
some modern artificial vision approaches build strongly on bio-
logical concepts [40], these principles have not been exploited
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up to their potentialities in robotics. With this work, we put
forward a proposal for improving the reliability of artificial
systems in the estimation of visual features in 3-D based on
neuropsychological concepts.

In a previous related work, the thorough study of neuro-
science research related to the integration of monocular and
binocular retinal information for estimating object pose allowed
us to define a modular computational structure composed of
various estimators and different ways of merging them [7]. In
this paper, we apply the aforementioned computational model
to a real robotic platform, where a robot is required to observe
boxlike shapes of different size and proportion and estimate
the features useful for a potential grasping action. Estimation
of object slant and distance is performed merging a number
of different stereoptic and perspective estimators. In fact, our
working hypothesis is that a compound estimator merging
multiple estimators of different nature, both monocular and
binocular, should provide the robot with superior estimation
capabilities. The employment of visual cues that work dif-
ferently in varying visual and pose conditions is expected to
provide an important advantage for obtaining stable and reliable
measures.

The experimental results presented in this paper, regarding
pose estimation tests performed by the robotic visual system
with various objects in different visual conditions, confirm the
aforementioned hypothesis. More specifically, our experiments
show that our global merged estimator, obtained by appro-
priately weighting the contribution of each simple estimator,
provides very good performances and is robust across work-
ing conditions, offering a solution to pose estimation in real
environments inspired on biological concepts. We show that
such performances are not attainable by a simple average of
stereoptic and perspective cues and, even less, by each estimator
alone.

In addition to the contribution to robotics, our work provides
interesting insights to the study of human visual mechanisms.
We had previously reproduced in simulation the effect of
different driving factors on estimation reliability, as reported
by the neuroscience literature [7]. The new robot experiments
presented here offer a good approximation of those same
effects, providing further support to the plausibility of our
computational model of pose estimation.

The background of this research, both in neuroscience
and computational vision, is introduced in Section II.
Section III describes the model on which our implementa-
tion is based. The robotic implementation is explained in
Section IV, and experimental results are presented and dis-
cussed in Section V.

1083-4419/$26.00 © 2011 IEEE
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II. BACKGROUND

For both natural and artificial agents, the ability of estimat-
ing distance, size, and shape of surrounding objects is highly
supported by, if not fully dependent on, the use of binocular or
stereoscopic vision [28]. Binocular vision consists in the acqui-
sition of two different images taken from viewpoints, the eyes,
that are always at the same short distance. The process allows
to obtain a fast and accurate estimation of object distance, size,
and motion, through the interpretation of binocular disparities.

Despite its fundamental importance, stereoptic information
alone is often not enough, and motion, texture, shading, and
other cues are used to complement it. Indeed, in each modality,
the brain seems to efficiently use a large set of different cues
at the same time [31]. Cue evaluation and integration is a
major principle in the primate sensory cortex, and particularly
in vision, in order to obtain the most likely final estimates
of stimulus properties. Visual information is processed in a
highly parallel way, and different cues for the same stimulus
are processed, compared, and merged in order to provide in-
creased estimation reliability through redundancy [24]. In this
section, vision science concepts and approaches related to cue
generation and integration both in natural and artificial systems
are reviewed.

A. Visual and Visuomotor Brain Areas

The basic mechanisms of stereoscopic vision have been
studied for long time and are discussed in fundamental works
[22], [29]. Neuronal responses to disparity stimuli in cortical
visual areas have also been thoroughly investigated [10], [33].
Disparity detection is a fundamental aspect of visual processing
that begins already in primary visual areas of the primate brain.
In higher visual regions, disparity coding spans areas of the
visual field wide enough to provide a proper interpretation
of stereoptic information, both in monkeys and in humans
[44]. Advanced visual areas are thought to be in charge of
processing both higher order disparities and basic perspective
cues [48].

Of special interest for the research presented in this paper is
an area of the posterior parietal cortex of primates, the caudal
intraparietal sulcus (CIP), which is dedicated to the extraction
and description of visual features suitable for grasping pur-
poses. Its neurons are strongly selective for the orientation of
visual stimuli, represented in a viewer-centered way. Selectivity
toward disparity-based orientation cues is predominant in mon-
key and human’s CIP [38], [44]. On the other hand, many CIP
neurons also respond (some exclusively) to perspective-based
orientation cues. The evidence suggests that CIP integrates
stereoptic and perspective cues for obtaining better estimates
of orientation [45], [48]. This sort of processing performed
by CIP neurons is the logical continuation of the simpler
orientation responsiveness found in earlier visual areas and
makes CIP the ideal intermediate stage toward the grasping-
based object representations of downstream associative
areas [3], [38].

Distance and location estimation of target objects is also
performed in primates’ posterior parietal cortex. More exactly,

according to psychophysiological research in humans [42],
what is actually estimated and used is the reciprocal of distance,
that is, nearness. In the parietal cortex, distance and disparity
are processed together, the former acting as a gain modulation
variable on the latter [14]. This mechanism allows to properly
interpret stereoscopic visual information [30], as described in
Section III-A.

B. Cue Integration

Cue integration, or combination, is one of the main work-
ing principles of the human sensory systems. Restricting to
unimodal cue integration, vision is probably the best example
of the complexity reached in the process of getting the best
estimate of a stimulus from concurring and often discordant
cues. Several models have been proposed for explaining how
such best estimate is obtained, but most phenomena can be
modeled by a simple linear weighting of concurrent cues,
aimed at maximizing the likelihood of the final estimate [24].
The main underlying principles that allow us to achieve this
goal seem to be two: cue reliability and cue correlation, or
discrepancy [42].

Cue reliability is probabilistic; it depends on environmental
conditions, on the estimate itself, and, sometimes, on other
ancillary measures [24]. Considering the case of interest in
this thesis, i.e., orientation estimation, stereoscopic cues are
considered less reliable outside a certain range of disparity
but also at longer distances, being distance in this case an
ancillary cue. Often, ancillary cues directly affect the estimation
process through gain modulation, such as in the mentioned
distance/disparity example [43]. This seemingly simple and
safe mechanism may nevertheless suffer because of a second-
order uncertainty, the problem of assessing the reliability of
the ancillary cue itself. In any case, reliability rules have to be
learnt by a subject in her/his interaction with the environment
and can be misleading in the case of unusual situations, such as
in optical illusions.

The second principle, cue correlation, considers the degree
to which concurrent cues conflict or coincide and gains impor-
tance with increasing number of cues. In fact, there is no way
to choose between two conflicting cues only on the base of cue
correlation, but if a cue is the only one in disagreement with a
number of coincident cues, it is very reasonable to consider it
untrustworthy. Fortunately, vision systems often provide many
cues quite different from each other, so that correlation can be a
perfect criterion for weighting the cues in the final estimate [1].

The available models for extraction and integration of visual
cues usually focus on early visual processing [37] or on very
specific aspects, such as conflicting stimuli [46], maximum-
likelihood cue integration [20], temporal integration according
to cue reliability [17], and extraction of local surface slant [21].
Apparently, no published models on the subject provide details
for practical implementation on robotic vision setups.

C. Artificial Vision and Robotics

Object orientation (or slant) estimation is a common, and
difficult, problem in artificial vision [27]. Nevertheless, no
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research works similar to the proposed approach are available in
the literature. Existing techniques for pose estimation still build
on the fundamental concepts described by Goddard [16]. The
available approaches differ depending on the type and location
of the sensors, the illumination requirements, the object or
scene feature on which the pose is calculated, and the relative
motion between robot and object. Sometimes, noise sources and
uncertainty factors are modeled in an attempt to improve the
robustness and accuracy of the results. Among various methods,
geometry- or model-based techniques are most common. These
methods use an explicit model for the geometry of the object
in addition to its image in determining the pose. The object is
modeled in terms of points, lines, curves, planar surfaces, or
quadric surfaces [34]. Methods of this kind have been proved
useful also with moving targets [26] and even with articulated
shapes [25]. Some of these methods build on cognitive science
concepts, like Peters’ [32], in which viewpoint-based sparse
representations of objects are used. Often, the use of markers
substitutes explicit modeling [13]. Model-based techniques can
be combined with others, where appearance-based methods
are used for a rough initial estimate followed by a refinement
step [11]. A model-based approach can also be connected
with range images, for example, matching a 3-D model to
a range representation of the scene [15]. The managing of
range data is anyway quite different from vision research, and
works which locate parallel surfaces to grip from range images,
such as [47], are interesting but have little in common with
the current approach. In a work more related to this paper,
Xu et al. [49] consider parallel lines to self-calibrate a pair
of cameras and estimate the pose of geometric features. Some
of their initial assumptions are similar to ours, but they do not
include perspective data and their approach is not biologically
inspired.

For what concerns stereo slant estimation inspired on human
physiology, Ferrier [12] describes a method based on binoc-
ular disparities which make use of a model for computing
orientation of features based on eye orientation. The results
they obtain are consistent with, and complementary to, those
presented in this paper. The idea of integrating stereoptic and
perspective cues in artificial vision is not novel [9], but only
one robotic platform is nowadays making use of both visual
cues at the same time [39]. In Saxena et al.’ setup, a vision
system is trained to estimate scene depth through monocular
data using supervised learning, and a joint monocular/binocular
estimator is generated. The authors show that integration of
monocular and stereopsis data performs better than either cue
alone. The main difference between this work and our approach
is the use of traditional computer vision techniques as opposed
to our biologically inspired computational neuroscience-based
implementation. Other works, focused on object tracking [41]
and on visual servoing [23], perform cue integration, but their
visual analysis is model based and their goal is feature matching
and not feature extraction.

III. COMPUTATIONAL MODEL

As part of a computational model for vision-based grasping
based on neuroscience findings [5], [8], we developed and

implemented a model of distance and orientation estimation
inspired by human visual mechanisms. Here, we briefly ex-
plain only those concepts necessary to properly understand the
robotic implementation; please refer to the original paper for
additional references and details on computational issues [7]).

The model is based on the integration of monocular and
binocular cues. The implemented cues are perspective under
the assumption of edge parallelism and width disparity. We
assume that the target object has straight parallel edges and is
standing upright. This is reasonable from a neuropsychological
point of view, as the primate brain is actually “programmed”
to better assess vertical and horizontal edges, most common in
nature. Indeed, experiments on monkeys [45] and humans [2]
have shown that, even for purely perspective pose estimations,
a frontoparallel trapezoid is usually interpreted as a rectangular
shape slanted in depth. The model does not take into account
cyclorotation movements, which are usually not implemented
in robot vision systems, although their inclusion would consti-
tute an interesting challenge for future developments [19].

A. Orientation Estimation

We provide here a brief description of how we compute slant
estimation from stereopsis and perspective visual information,
and distance from proprioceptive eye data.

1) Perspective: The slant of an object can be estimated
using only monocular data, as shown in Fig. 1(a), in which the
origin of the axes is one of the eyes. As explained earlier, given
a rectangle slanted in depth, we can exploit the assumption
of parallelism and equality of opposite edges (PS and RQ in
the image). Angles β in the figure represent the vertical retinal
angles associated to such edges. The equation which leads from
retinal angles to orientation estimation can be derived from
Fig. 1(a) [7], and can be referred entirely to either the left or
the right eye (monocular separation ψQ = (αQ − αP )/2):

tan θ =
tanβQR

tanβPS sinψQ
− 1

tanψQ
. (1)

2) Stereopsis: In Fig. 1(b), a viewing scene is seen from
above: Object PQ of length l is slanted about a vertical axis
with orientation θ. Its extreme P is the fixation point, placed
straight ahead from the cyclopean eye (a point lying slightly
behind the midpoint between the eyes). All α angles represent
the retinal projections of points P and Q on the left and right
eyes, I is the interocular distance, ψQ is the binocular separa-
tion of points P and Q (being ψP = 0), and γP is the vergence
angle. The horizontal slant θ of an object can be computed only
from retinal angles using the following expression, which can
be derived from the image [7]:

tan θ =
(tanαrQ − tanαlQ) − (tanαrP − tanαlP )

tanαlP tanαrQ − tanαlQ tanαrP
. (2)

B. Distance Estimation

The distance of a fixated point from a viewer can be es-
timated by either retinal and/or proprioceptive information



CHINELLATO et al.: POSE ESTIMATION THROUGH CUE INTEGRATION 533

Fig. 1. Schemes for deriving slant from perspective and stereopsis, adapted
from [7]. (a) Perspective. (b) Stereopsis.

(accommodation and vergence). Proprioceptive cues are prefer-
ably used when retinal data are not available or considered not
reliable, and for short distances [1]. Neuropsychological exper-
iments [42] suggest that distance estimation is most probably
performed in our brain using nearness units instead of distance
units. Nearness is the reciprocal of distance, so that a point at
infinite distance has zero nearness and a point at the maximum
vergence angle has nearness of one (or 100%). Although, in
our computational implementation with radial basis functions
[7], we showed that nearness is a more convenient measure,
for practical purposes, we will use distance in this paper. The
distance estimator that we designed is based on proprioceptual
vergence data, according to the following simple equation,

Fig. 2. Robotic setup with arm, hand, and stereoscopic camera. (a) Robotic
arm and hand. (b) Detail of hand with stereo camera.

where d is the viewing distance, I is the interocular interval,
and γ is the vergence angle:

d =
I

2 tan(γP /2)
. (3)

In [7], we implemented with neural networks a multiple
cue orientation estimator which makes use of the equations
provided in this section and different cue merging methods. The
data from neuropsychological experiments that we were able to
reproduce are explained in Section V-A. In the next section, we
extend such approach to robotics research.

IV. ROBOTIC POSE ESTIMATION

The extension of our computational model to robotics has
been done with two purposes. The first goal is to obtain an
orientation estimator that is very robust and reliable to use in
a robotic vision-based grasping system. The second goal is to
try and reproduce the mentioned effect with real experimental
data, thus further validating the model.

From a robotic point of view, our approach for computing the
orientation of an object is original in that it pursues estimation
reliability through the merging of different estimation methods,
as in the primate brain. We have implemented the described
computational method on our robotic setup and performed a
number of different experiments to verify how the ideal results
change when the model has to face the uncertainties of the real
world.

A. Setup and Visual Processing

Our robotic setup, shown in Fig. 2, consists of a seven-
degree-of-freedom (DOF) Mitsubishi PA10 arm, on which are
mounted a three-finger four-DOF Barrett hand and a stereo-
scopic camera Videre Design (eye-in-hand style). The robot
world is a dark environment in which boxlike clear shapes are
placed on a table at variable positions and orientations (see
Fig. 3). The range of possible positions includes those that
allow to view the object and also keep it at reaching distance
for the hand. The system is able to estimate distance, pose,
and size of the object without using models, only exploiting the
assumption, supported by neuroscience studies, that what looks
like a trapezoid is most likely a slanted shape having parallel
and equal edges [38].
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Fig. 3. Workspace with possible target objects.

Fig. 4. Left and right images from the initial position, with labels of detected
corners.

The choice of object and background color was driven by
the need of keeping image processing as fast and lean as
possible. Given the image of a target object, we binarize it,
extract the contour, and detect its salient points, corresponding
to the object corners (Fig. 4). Object faces are not segmented
separately, so the number of detected corners ranges from
four to six depending on point of view and object pose. Even
with this simplified setup, to reliably detect the salient points,
we perform a double search on the contour, combining the
information given by two different algorithms for corner [4]
and edge detection, to maximize the chance of finding all six
visible corners of the object when possible. Although a system
able to segment the three faces of the object separately would
probably provide a better estimate, good results were obtained
with this simple approach.

The three variables that identify object position and ori-
entation are the distance d, the slant angle with respect to
the frontoparallel position θ (see Fig. 1), and the direction of
view with respect to the horizontal plane φ. This last variable
is known by the robot and is computed by the vestibular
system in primates. We restricted the viewing direction angle
in our experiments, to allow a clear perspective view without
simplifying too much the task as it happens for large angles
(in such cases, the slant is very similar to what can be estimated
simply using the inclination of segments in the 2-D image). The
final working range is about 15◦ < φ < 50◦, and these are very
plausible values even for a human subject looking at an object
with grasping purposes. For what concerns the slant θ, we only
rule out those situations that would reduce the interest of the
slant estimation (for angles very close to 0◦ and 90◦) and which
can anyway be detected quite easily by the system, from the
number and distribution of the defining corners.

The process of distance, pose, and size estimation begins
with the arm moving until the object is placed horizontally at

TABLE I
ORIENTATION ESTIMATORS

the center of the image, in order to minimize distortions due
to the cameras’ optic. Left and right images at this position
are then processed: Corners P , Q, R, W , T , and U are found
as previously explained, and the position of S is estimated
through a two-point perspective method (Fig. 4). At this point,
the coordinates of the defining points are transformed in angles
with respect to the center of the image, using the camera focal
lens and image size in pixels as parameters. The nonlinearity of
the camera optic is the reason to avoid getting close to the im-
age borders, where distortions could affect the transformation
process.

B. Cue Estimation and Integration

Once the six points identifying the two frontal faces of
the object for both cameras have been detected, the actual
slant estimation process can begin. Eight different estimators
are calculated using the equations provided in Section III-A.
Equation (1) for slant estimation through perspective informa-
tion is applied to the couples of segments PS/QR and UT/PS
for both the left and right eyes. Stereoptic slant estimation [(2)]
is applied instead to segments PQ, SR, TS, and UP . In this
way, we obtain the first eight estimators, four perspective and
four stereoptic, in Table I.

As explained in Section II, there is a good evidence that
primates make use of many different monocular and binocular
cues and merge them according to their expected reliability
and correlation. In our experiment, we start from a situation
in which no information is available regarding the reliability
of the different cues in the various working conditions. Thus,
to begin with, there are only two solutions readily available
without the need of performing a training session for learning
the cue weights. The first is to compute a simple nonweighted
average of the simple estimators (estimator 12 in Table I)

θ̂G =
1
8

8∑

i

θ̂i. (4)

The same can be done for perspective and stereoptic estima-
tors separately, to obtain estimators 9–10 in Table I (estimator
11 is thus the average of the two). The second, slightly more
complex, method is to compute an average in which weights
are calculated using cue correlation (estimator 13). In our case,
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we use the deviation of each estimator from the simple average
of all estimators, thus reinforcing estimators that are supposedly
more representative of the whole measure

θ̂W =
8∑

i

wiθ̂i, wi =
|θ̂i − θ̂G|∑8
j |θ̂j − θ̂G|

. (5)

The first experiments performed with the robot revealed
that, sometimes, measurements were not stable and that one or
more estimators could strongly deviate from the average in an
unpredictable way. For this reason, before calculating the final
merged estimator, we check for possible outliers (completely
wrong estimations). In nature, bad estimations could be due
to momentary occlusions, unusual light conditions, sudden
movements, etc. In our simple setup, we discovered that any
previous processing step could affect the final results, so, again,
illumination issues, imperfections in the binarization, or corner
detection can cause one or more cues to deviate hugely from
the average estimate. For example, a bad detection of point
U would affect estimators 3, 4, and 7. The average of all
estimators would still be reasonably good, as deviations are
usually random around the correct value, but estimators 3, 4,
and 7 would differ substantially from the average and their
exclusion would improve the global measure.

Outlier detection is a full subbranch of statistics [36], and
many different methods are available. The methods we tried
did not give significantly different results, and we finally chose
the classical Rosner’s many outliers test [35], widely used
in the literature for similar problems. We tested the method
with different values of the significance level α and obtained
the best results for α = 0.01, which gave a final estimation
improvement of more than 5% compared to the implementation
without outlier rejection. The possibility of performing outlier
rejection is offered by the use of multiple estimators, which
make sure that bad values of a small subset of all estimators
do not fully corrupt the global average.

C. Distance and Size Estimation

As we assume that there is no previous knowledge regarding
object dimension, it is not possible to disambiguate the pair
distance/size only from retinal data. We thus make use of (3)
and only have to estimate the proprioceptive vergence angle γ.
Our stereo camera does not allow vergence movements of the
eyes, so we have to simulate them. The simple procedure we
adopt is to center point P of our object in one of the images
first and rotate the camera around the cyclopean eye, in order to
center again P on the other image without changing the actual
distance. To take advantage of this movement, we take left and
right images both from the initial and the final position and
consider them as two independent slant estimation experiments.
We actually observed that estimations from the initial position
are slightly better than those from the final, probably because,
although horizontal centering is performed in both cases, only
the first experiment starts from an ideal vertical alignment of
the object.

Regarding size estimation, the relative size of the object (pro-
portion between its edges) can be detected from orientation and

separation angles alone. Once distances have been estimated,
the actual dimensions of the object can be computed through
simple geometric equations, as the ambiguity size/distance has
been resolved.

V. RESULTS AND DISCUSSION

A. Simulation Results

Experiments with human subjects tell that distance, as an
ancillary cue, and slant itself are the two most important driving
factors for slant estimation reliability [1], [20]. With increasing
distance, both perspective and stereoptic estimators become
less reliable, but stereoscopic cues are more affected. The effect
of orientation is more complex, as perspective methods are
more sensitive and precise for pronounced slants, which gener-
ate higher differences in vertical disparities. Disparity methods
also prefer high slants at long distances, but for short distances,
the ones we use in all our vision-for-grasping experiments,
their error is minimum for low slant values, which grant higher
binocular disparities [20].

The purpose of our previous work [7] was to reproduce with
our model some of the aforementioned effects. For pursuing
this goal, we trained a set of neural networks with the equations
described in the previous section and computed slant from
different monocular and binocular visual features. Introducing
random noise, we observed how the estimation performance
was affected with variations of distance and slant itself. The
similarity of the obtained results to what is described in the
literature was remarkable [7]. The second effect we could
reproduce was the improved performance obtained through
a maximum-likelihood merged estimator in which cues were
weighted according to their reliability (experimentally learnt),
as explained in Section II. In this paper, we plan to further
validate our model using real robot experiments. We want to test
if the described trend is still valid when applying our equations
to an actual hardware system acting in a real 3-D environment.
Compared to the simulated tests, in which random noise was
employed, we deal now with real-world uncertainty, presenting
our slant estimation method with an entirely new level of
complexity. At the same time, we want to check if the proposed
bio-inspired approach has not only theoretical meaning but also
practical usefulness in a real robotic application.

B. Experimental Results

Overall, we executed 422 slant estimation experiments with
different values of slant and distance, as shown in Table II. The
global average estimation errors of all executed experiments are
provided in Table III. Perspective estimator θ̂P and stereopsis
estimator θ̂S are calculated merging the four estimators of each
modality alone. The simple average θ̂A is the mean between the
two, and the global average θ̂G is the mean of all eight initial
estimators. It can be observed how the combination of multiple
cues, particularly when they come from different kinds of visual
information, strongly improves the estimation performance.
The worst merged estimator θ̂P performs better than the best
single cue estimator, i.e., Stereopsis I; the global average θ̂G
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TABLE II
NUMBER OF EXPERIMENTS PER DISTANCE AND SLANT

TABLE III
OVERALL AVERAGE ERRORS

improves the merged stereopsis estimator θ̂S by more than 25%.
The cue correlation weighted average estimator θ̂W shows a
further improvement of around 8% compared to θ̂G, bringing
the overall mean error close to 2.5◦, which constitutes a very
good pose estimation for a robotic grasping system. It is worth
mentioning that even the least precise estimators, such as Per-
spective III, are not bad in all cases. This means that, most of the
times, they still provide a useful contribution to the estimation
process. On the other hand, when they deviate from the general
trend, they are either ruled out as outsiders or their contribution
to the weighted average is much reduced.

It is interesting to compare the error distributions obtained
in the real practical experiments with the theoretical ones and
those obtained in the simulation. Fig. 5 shows the average error
plotted as a function of slant [Fig. 5(a)] and distance [Fig. 5(b)].
The error is thus averaged across distance in Fig. 5(a) and across
slant in Fig. 5(b). The variability of the setup did not allow
to obtain clean smooth curves, and some slant and distance
values are probably affected by some external factors; see, for
example, the bad quality of stereopsis and, consequently, of
the merged estimators, for slant = 60. It is very difficult to
understand why there are sudden drops or improvements in
performance for certain values of slant or distance. We believe
that they are due to particular shading properties for certain
conditions that make corner detection more or less difficult.
A more robust visual processing would probably solve, at
least in part, this issue and would provide smoother curves.
Nevertheless, the trends are quite clear, and the expected effect
of slant and distance on the different estimators is reproduced.
In Fig. 5(a), the improvement in perspective estimation and
the deterioration in stereoptic estimation with increasing slant

Fig. 5. Slant estimation error as a function of slant and distance; experimental
results. For clarity, errors on errors are plotted only for θW . (a) Error (◦) versus
slant (◦). (b) Error (◦) versus distance (in millimeters).

are clearly visible, and the weighted average is definitely the
best available estimator. Fig. 5(b) shows that stereoptic esti-
mation gradually decreases its precision with distance, while
perspective seems nearly uncorrelated with it, apart for extreme
values. As in the simulation, the weighted average presents a
clearly advantageous behavior in all conditions. The application
of our model on the robot has hence obtained the same general
trends indicated by the cognitive science literature and by the
simulated tests.

Fig. 5 shows that the weighted estimator maintains its reli-
ability across conditions. Error bars of θW are always small,
apart for extreme conditions. Errors for other estimators (not
plotted for clarity reasons) are always quite larger. This is a very
important aspect for a robotic application, as there are no “blind
spots” for which its estimation capabilities become unreliable.
The implementation of a multiple cue estimation method thus
provides a robotic system with a robustness hardly achievable
with perspective or stereopsis alone.

For what concerns distance estimation, the global average
error for all experiments is of 33.4 mm, and the error distri-
bution shown in Fig. 6, although noisy, follows the expected
trend, showing decreasing estimation precision with increasing
distance. Size estimation revealed to be less precise compared
to slant and distance estimation. In part, this is due to the fact
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Fig. 6. Distance estimation error; error (in millimeters) versus distance (in
millimeters).

that it makes use of two estimators and the theoretical final
error is the product of the two initial errors. Moreover, for high
slants and for small objects, the edges of the least visible side
have very short separation angles, for which the relative error is
much higher. Anyway, the worst case error is never larger than
a few centimeters, and this is enough for reliable grasping by
the robot hand, as it remained clear from experiments executed
with our robotic grasping setup [5], [18].

VI. CONCLUSION AND EXTENSIONS

The robotic implementation of a computational model for
estimating object features in 3-D permitted us to achieve two
important results. On the one hand, we provided our robotic
grasping system with a very reliable and versatile visual es-
timation of slant, distance, and size of target objects. On the
other hand, we could reproduce at a reasonable level of ap-
proximation effects described in neuropsychological data. Cue
integration is the fundamental principle which allowed us to
obtain such results, through the efficient merging of a set of
stereoscopic and perspective estimators.

The research presented in this paper has been carried out
for further developments in both engineering and scientific
aspects. For what concerns the goal of modeling primate visual
estimation of the properties of nearby objects, a full model of
the information flow through the visual and visuomotor cortices
has been completed and selectively implemented, using visual
input to obtain reaching plans and candidate grips for a target
object [5], [6].

From the pragmatic point of view of robot grasping perfor-
mance, the model has been extended to allow the system to
deal with other simple objects, such as cylinders and spheres.
Successful reaching and grasping experiments have been per-
formed using our estimated measures as inputs [18]. The accu-
rateness of the final action is assessed through tactile feedback,
and we plan to use it as a way to learn the reliability of each
estimator in different conditions. The next-generation estimator
will thus perform cue integration using both correlation and
reliability, as in the primate brain.

Other two important extensions for improving our research
are currently under development. The first is to make feature

estimation more stable and less prone to lighting and shading
conditions by using more elaborate visual processing tech-
niques. With this extension, we should obtain clearer error
trends and even better overall performances. A second inter-
esting extension is to make our slant estimation system able
to deal with moving targets or obstacles. Indeed, in our current
research, we are pursuing the integration of a sequence of visual
stimuli in time. Thus far, we have dealt with the effect of
saccadic eye movements on the perception of the surrounding
visual environment [6]. We are currently exploring the way we
can employ concepts of visual integration through a sequence
of eye movements to apply them to moving visual targets.
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