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Implicit mapping of the peripersonal space by
gazing and reaching

Eris Chinellato,Member, IEEEMarco Antonelli, Beata J. Grzyb and Angel P. del PoMember, IEEE

Abstract—Primates often perform coordinated eye and arm community, that such ability is achieved through the use of
movements, contextually fixating and reaching towards nearby gain fields and basis function representations, that petonit
objects. This combination of looking and reaching to the same simultaneously represent stimuli in various referencenés.
target is used by infants to establish an implicit visuomotor rep- . . .
resentation of the peripersonal space, useful for both oculontor In fact, the basis funqtlon approach_ has the attractiveufeat
and arm motor control. In this work, taking inspiration fromsuch ~ that both head-centric representations for arm movements
behavior and from primate visuomotor mechanisms, a shared and retino-centric representations for gaze movement$ean
sensorimotor map of the environment, built on a radial basis encoded concurrently in the same neural map [1]. In the basis
function framework, is configured and trained by the coordinated function framework, explicit encoding of targets in retino

control of a humanoid robot eye and arm movements. Simulated tri dinates i h d vi in fields to hold i
results confirm that mixed neural populations, such as those centric coordinates 1s enhanced via gain fields 1o hold 1a par

found in some particular brain areas modeled in this work, are allel an implicit encoding in other reference frames [2]cBu
especially suitable to the problem at hand. In the final experi- gain fields are found in retino-centric organized eye moveme
mental setup, by exploratory gazing and reaching actions, either greas LIP [3], [4] and FEF [5] and, most importantly, in

free or goal-based, the _artlfl(:lal agent learns tp_perform direct posterior parietal area V6A, as explained in Section II.
and inverse transformations between stereo vision, oculomotor . .
In this work, eyes and arms of a humanoid robot are

and joint-space representations. The integrated sensorimotor . .
map that allows to contextually represent the peripersonal space treated as separate effectors that receive motor conteol vi

through different vision and motor parameters is never made different specific representations, which combine to form a
explicit, but rather emerges thanks to the interaction of the ageh  ynique, shared visuomotor map of the peripersonal space.
with the environment. The exploratory behavior of the robot is based on a func-
tional model of the tasks performed by the primate posterior

l. INTRODUCTION parietal cortex, which main building block is a basis fuanti

representation that associate different reference fragidag

UMANS gnd other prlmate_s bunql their p_ercep_tlon of th‘ﬁwem mutual access to each other, during planning, executio

. ;urrogndmg space by act|v_ely interacting with near_bé{nd monitoring of eye and arm movements. We will build
St'mlu“’ mamlr)]/ looking and reaching at them.fTr?rough Vg ch representation by relying upon findings from human and
exploration, they construct a representation of the envrent monkey studies, especially from data on gaze direction and

useful for further interactions. The main sensory infoliorat arm reaching movements in monkey posterior parietal area
used to build such representation is retinotopic (visuaa)daVGA [6]

and proprioceptive (eye, neck and arm position). A critical
issue in this process is to coordinate movements and agsocj

she nsory INputs, in lor(;jerdto obtain 3 coherent mental m}agetﬂ ough the practical interaction with the environmenings
the environment. ‘ndeed, eye and arm movem_ents often GGy, stereoptic visual input and proprioceptive data comce
together, as we fixate an object before, or while, we reamJ eye and arm movements. Following this approach, the

towards it. Such combination of looking and reaching tovsrarqobot should naturally achieve very good open-loop reaghin

the same target Is usgd 0 eStab“Sh a consistent, integralfy gaccade capabilities towards nearby targets. Thisigoal
visuomotor representation of the peripersonal space.

) . ) represented in Figure 1, which depicts a simple conceptual
In primates, areas within the dorsal visual stream of t hema of how the space representation is generated and

p”matel brain, SE’% more primsely fregu]?ns Pf thhe S;Ste”%dated. Peripersonal space is represented by a plastic map
parietal cortex ( _)’ are in charge of per 9”’”'”9‘ € BIeE hat constitutes both a knowledge of the environment and a
frames Fransformaﬂons reqm'red to map visual informatin sensorimotor code for performing movements and evaluate
appropriate oc_ulomotor and limb movements. These areas @& o tcome. The map is accessed and modified by two types
the best candidates for the rolfe ﬁf acceshswt])? and u|Od‘?tl5]‘ginformation: retinotopic (visual) and proprioceptiveyé
aﬂwsuomotgr reéjresentapor; of the rgabc ah € spaci:;.. talfd arm movements). Contextually, eye and arm motor plans
often argued, and increasingly accepted by the neurodienty o geyised in accordance to the map itself. This mechanism
E. Chinellato, M. Antonelli, B.J. Grzyb and A.P. del Pobileawith allows US. to keep both eye a_-nd arm targeti.ng in register and
the Robotic Intelligence Laboratory, Jaume | University,seton de la to establish a common spatial representation of the target’
Plana, 12071, Spain. A.P. del Pobil is also with the Departnwnin-  |ocation. Our framework is therefore based on a common code
teraction Science, Sungkyunkwan University, Seoul, Sdthea. e-mail: for tial awaren btained b learnin r duredb
{eris,antonell,grzyb,poli@uji.es. or spatial awareness obtained by a learning proceduredbase

Manuscript received February 15, 2010. on target errors of eye or arm movements to visual targets,

Our system should finally be able to achieve a visuomotor
owledge of its peripersonal space in a dynamical way,
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) ] Retinotopic The former elaborates visual data with the main purpose
Pfﬁg;f;;g;:’e information of endowing the subject with the ability of interacting with
his/her environment, and its tasks are often synthesized as
“vision for action”. The latter is dedicated to object readgpn
and conceptual processing, and thus performs “vision for
perception”. Although a tight interaction between the two
streams is necessary for most everyday tasks, dorsal stream
areas are more strictly related to the planning and monigori
of reaching and grasping actions [7]. In fact, dorsal visual
analysis is driven by the absolute dimension and location
of target objects, requiring continuous transformatioremf
Fig. 1. Conceptual schema of the final space representation map retinal data to effector-based frames of reference. Thadra
of reference used for arm movements is body-centered, e.qg.
, i i i fixed on the shoulder. Considering a dexterous primate, or a
as described in Section Il 'As a final 'goal, the agent shoultl anoid robot endowed with a pan-tilt-vergence head, head
be able to purposefully build such visuomotor map of thg, ements are also body-centered, whilst gaze movements
environment in _3D, S|mu_ltaneously learning to look at ang., head-centered, usually referred to the cyclopean egal i
reach towards different visual targets. _ mid-point between the eyes. Visual information is retinmoce
The perception of the space and the related sensorimoiel onq there are two different retinal reference framersaf
map is thus accessed and updated by visuomotor interqgti%reo system. All these different reference frames aneghrio
e.g. moving the gaze and the arm toward a goal positiqn.register to each other by coordinated movements to the sam
More interestingly, the agent has to be able to keep Iearnlf}g et

during its normal behavior, by interacting with the world g yentral stream maintains instead a contextual coding
and contextually update its representation of the worlelfits of objects in the environment, based on their identity and

Such goal can be achieved by adjusting the weights ofo ning. spatially, such coding can be defined as object-

the basis functions according to the errors observed in tE@ntered, as it is mainly concerned with the relative lacati

oculomotor and reaching movements as guided by the sagi€,iects with respect to each other. This sort of coding is
basis functions. The concurrence of eye and arm movemepts \,sed at this stage of our research

should be sufficient to provide the appropriate error s§nal 1pe pynothesis of parallel visuomotor channels within the

even when actual distances between target and final positigfyqa| stream dedicated respectively to the transport bed t
of the action are not expllgltly prowded. We could gall th_'ﬁ)reshaping components of the reach-to-grasp action is well
approach as a “self-supervised learning” framework, inchhi oo anized [8]. Anatomically, these two channels fall both
the different modalities supervise each other, and eye end g,gige the dorsal stream, and are sometimes named dorso-
movements both improve, and obtain together a precise Visliga jia| and dorso-lateral visuomotor channels [9]. For what
motor representation of the surrounding space. Upon éactilyncerns proximal joint movements, focus of interest o thi
feedback, conf!rmlng that the. targgt Ob,JeCt has been re""Chree(:gearch, and according to a well established nomenclature
the actual gazing and reaching directions can be compajad st important reach-related cortical areas are V6A and

with the expected ones and the 3D visuomotor representat'mﬂg' both receiving their main input from V6 and projecting
accordingly updated if necessary. The presence of a tactlleihe dorsal premotor cortex [9]-[12].

response, as feedback for the correct execution of a regchin o hsigering the functional role of the dorso-medial stream

movement, provides a reliable “m.aster" signal to ensure “ﬂﬁormation regarding eye position and gaze direction is/ve
accuracy of the global representatllon. The results predent likely employed by area V6A in order to estimate the position
this paper refers to the computational implementation ef thy 5 ,rrounding objects and guide reaching movements toward
model, and we are currently working on its development Qe Two types of neurons have been found in VBA that
our humanoid robot setup (Section 1il-C). allow us to sustain this hypothesis [6]. The receptive fields
Il BACKGROUND of neurons of the first type are org_anized i_n retinotopic eoor
dinates, but they can encode spatial locations thanks te gaz

This research builds on neuroscience findings and insightgedulation. The receptive fields of the second type of nesiron
computational intelligence concepts and techniques, @rd @re organized according to the real, absolute distribuifdhe
gineering goals and constraints posed by the final robolighject peripersonal space. In addition, V6A contains owesir
application. In this section we introduce the fundamentgdat arguably represent the target of reaching retinoiatiy;
i_nspiring concepts and relevant literature for each of éhegng others that use a spatial representation [13]. Thisgiyo
fields. suggests a critical role of V6A in the gradual transformatio

from a retinotopic to an effector-centered frame of refeeen
A. Sensorimotor transformations in the posterior parietal- \oreover, some V6A neurons appear to be directly involved in
tex the execution of reaching movements [9], indicating thi th

The visual cortex of the primate brain is organized iarea is in charge of performing the visuomotor transforomesti
two parallel channels, called “dorsal’” and “ventral” strea required for the purposive control of proximal arm joints,

& motor goals:

Eye movements <———,

Plastic space
representation
map

Arm movements <¢———
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integrating visual, somatosensory and somatomotor signal (RBF) networks remains relatively unexplored. AlthoughfRB
order to reach a given target in the 3D space. have been successfully applied to the computation of ievers
kinematics, alone [21] or together with SOM [22], to the
B. The basis function approach to sensorimotor transform&€St of our knowledge only two papers describes the use of
tions RBF networks for visuomotor transformations. The system
Basis functions are building blocks that, when combine%f Marjanow_c et al. [23] firstly Ie_arns the mapping between
. . ; . image coordinates and the pan/tilt encoder coordinatebeof t
linearly, can approximate any non-linear function, such as .
. . . eye motors (the saccade map), and then the mapping of the
those required to map between different neural represensat N o - e
. ) . eye position into arm position (the ballistic map). A simila
of the peripersonal space (retinotopic, head-centerem; ar : : .
i ! learning strategy is employed by Sun and Scassellati [24],
centered). Basis function networks have been proposed as,a .
: . . . . Which use the difference vector between the target and the
computational solution especially suitable to model thedki oL . .
) . .hand position in the eye-centered coordinate system wtthou
of sensorimotor transformations performed by the posterig o : . o
) . . any additional transformational stages. Despite the ahityjl
parietal cortex [1], [14], [15]. Networks of suitable basis ; . i
of their approaches to ours, some major differences can be

functions are in fact able to naturally reproduce the 9a%inted out: first of all, we exploit stereo vision, realigin

field effects often observed in parietal neurons [16]. It was : ;
a coordinated control of vergence and version movements,

suggested that positions of object in the peripersonalespee moreover, the saccade map in [23] is fixed and mainly used

coded through the activity of parietal neurons that act a;asbato provide visual feedback during the ballistic map leagnin

functions, and any coordinate frame can be read out from SLBP] the other hand, our sensorimotor transformations are

population c_odmg according to th? task requirements [14]. bidirectional, so that our system learns to gaze towardsaitsi
Several different transfer functions can be used as basi

. ; P33t} also to reach where it is looking at. This skill is trained
functions, the only requirements are that they are norafine . . . .
. 7 . through a self-supervised learning framework, in which the
that their interaction is also non-linear (e.g. productstsn),

and that they cover all the possible input range. The most usdeIfferent modalities supervise each other, and both imgrov

functions, for their convenience and biological plausipi contextually their mapping of the space. The distributidn o

are Gaussian and sigmoid functions. For example retirir:)tothe RBF centers also differs from the cited works, as we
9 ' Ple, pIaece the neural receptive fields according to findings from

maps are often modeled by Gaussian basis functions, and B

position by sigmoid, or logistic, functions [14]. Learnirig ngurophysmloglcal studies on monkeys. .
: . ) . A few attempts to tackle the problem of coordinate control
basis function networks is composed of two stages, the fir

{ . .
for choosing the shape and location of the basis functloosfs gazing and arm movements by using neural networks,
. Ut not RBFs, have also been reported. Schenk et al. [25]
and the second to map them to the output representation. The :
. : . employ a feedforward neural network for learning to saccade
first step is usually unsupervised, the second depend orserro

observed during the sensorimotor interaction with the evorl toward_targets, and a recu_rrent ”e“fa' network Is e_mploy_ed f
executing the transformation carrying from the visual inpu

to an appropriate arm posture, suitable to reach and grasp a

C. Connectionist sensorimotor transformations in robstic target object. The reaching model of Nori et al. [26] corssist

Although the use of artificial neural networks in roboticén learning a motor-motor map to direct the hand close to the
is very diffuse and not at all novel [17], just few works confixated object, and then activate a closed loop controllat th
cern visuomotor transformations involving arm movementssing visual distance between the hand and the target ireprov
and especially rare is the coordinate control of gazing amelaching accuracy. Eye gazing control is not adaptive, ey t
reaching movements. Visuomotor arm control has been ysualb not consider the importance of contextually maintairsng
tackled with the use of Self-Organizing Maps (SOM). Someeries of representations in different body reference désgras
works [18], [19] apply them to the coordination between gisu suggested by neuroscience findings related to referenceefra
information and arm control, modeling two cameras (althoudransformations, especially regarding posterior pdriatea
not in a classical stereo head configuration) and three dsgr§/6A.
of freedom manipulators. Neither of the above papers censid
eye movements, and their applicability to real robot seigps |||. SENSORIMOTOR TRANSFORMATIONS WITHRADIAL
limited, respectively by the huge number of required laagni BASIS FUNCTIONS
steps [18], and by the discrete sampling of the space WhiChA

makes any target reachable only up to a certain pref:isiaih, %scription of Section II, the main sources of inspiration f
only after a number of steps dependent on the sampling [19 D’ﬁr model are the basis function approach [14], [16] and

recent extension of these works [20] makes use of altema.tWeuroscience experiments on the role of intraparietalsarea

SOM maps linked to different cameras, in order to deal wi iallv VA : ; hi :
occlusion, and takes also into account the issue of obst s]pema y V6A) during gazing and reaching actions [6], [9

avoidance. Especially interesting is the flexibility of ithe
system to changes in the geometry of the effector, which we
are able to reproduce with our approach. A. Conceptual framework
Whilst the use of SOM networks is relatively common, the The use of a robot hardware constitutes a possible compli-
employment of biologically inspired Radial Basis Functioration in the realization of a model of cortical mechanisms,

s mentioned in Section | and considering the theoretical
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Tactile
information

l

Somatosensory/
arm motor map

Cyclopean
vision

Disparity case, we include visual information about potential targetd

proprioceptive data on eye position and arm position. Sver
possible alternatives for representing the above infdonat
can be employed. Among possible alternatives for repragent
binocular information we favor the composition of a cyclape
image representation with a disparity map (under the assump
tion that the correspondence problem is already solved); ov
the option of having separate left and right retinotopic sap
(see left side of the schema of Fig. 2). Similarly, consiugri
Fig. 2. Building blocks of the global 3D space representatibhe body- that we are modeling extrastriate and associative viswasar
centered 3D map constitutes the integrated visuomotor reptation of the  jt jg plausible to assume that gazing direction is represkent
peripersonal space. by version and vergence angles instead of the two explicit
eye positions. This scheme allows us to transform ocular

) ] o movements and stereoptic visual information to a body/head
and some issues that would easily be solved in simulated @@ntered reference frame and also, when needed, eliciythe e

vironments have to be dealt with more accurately considerig,gvements that are necessary to foveate on a given visual
the real world implementation. The approach we follow iﬁarget. On the right hand of the conceptual schema of Fig. 2
epigenetic, being the robot endowed with an innate knovdedg,e find the somatosensory/arm-motor map, required to code
of how to move in its environment, which is later developeg,m movements. Such map is modified by proprioceptive and
and customized through exploration and interaction wisual  tactjle feedback, and allows to execute reaching actionart
and tactile stimuli. Following this idea, all transforn@is \;s,al or remembered targets. The integrated map, builief t
are first implemented on a computational model, which fingl,5 sides of the schema, is thus accessed and updated upon
configuration represents the genetic component of the deV@quirements, as described in the next subsection.
opmental process, and is then used as a bootstrap conditiofhe exploration of the environment through saccades and
for the actual experimental learning process by the robot. re4ching movements constitutes the basic behavior thanis e
Although in principle one representation should be enougiloyed to build the visuomotor representation of the peripe
for all the required transformations, the number of neuro’®nal space. Building such representation is done incremen
necessary to contextually code ferdifferent signals is given tally, through subsequent, increasingly complex intéoast
by the size of the signals to the power of It is easy to The learning sequence is inspired by infant developmerit [27
see that a representation maintaining both eye visual ang a first step, the system learns the association between
proprioceptive signals, and arm joint information would bgetinal information and gaze direction (i.e. propriocepteye
Computationally unfeasible, even for the brain itself. Armo position)_ This can be done S|mp|y by successive foveation
logical structure is one in which a central, body-centesgt r on salient points of the binocular images. The subject look
resentation is accessed and updated both by limb sensorim@found and focus the eyes on certain stimuli, thus learning
signals on the one hand and visual and oculomotor signalst@@ association between retinal information and vergence a
the other hand. Indeed, this seems to be how the problemyégsion parameters. Then, gaze direction is associatethto a
solved within the brain, in which different areas or populayosition, e.g. moving the arm randomly and following it with
tions of neurons in the same areas are dedicated to differgié gaze, so that each motor configuration of the arm joint
transformations. Most importantly, this approach is cstesit s associated to a corresponding configuration of the system
with the findings related to area V6A, which contains neurofgr eye motor control. In this case, proprioceptive infotioia
that code for the retinocentric position of targets, othbuest regarding arm position is included in the computation, dre t
code for their limb-related pOSitiOﬂ, and even others teans vectors Corresponding to reaching movements can be eatract
to maintain both codings and look thus especially critic&limilarly to what is done for ocular movements. This process
for performing sensorimotor transformations. In this waynake the subject learn a bidirectional link between diffiere
different representations of the same target can be maewai sensorimotor systems. The subject can look where its hand is
contextually, and used to act on the target if required. It fut also reach a point in space he is looking at. Later onavisu
the relation between these representations that is actesse targets are shown to the system, which is required to perform
modified by a conjunction of gaze and reach movements f§gth saccadic and arm reaching movements toward them. This
the same target. The global structure of the model followgquires the use of both direct and inverse transformations
this principles, and is thus modular, separating the retma and allow to fine-tune the sensorimotor representation f th
body-centered transformation and the body-centered to argpace. Tactile feedback can be used as a master signal, for
joint transformations (left and right sides of Fig. 2). confirming that the target has been reached, making all the
The quality and the nature of the sensory stimuli to berocess substantially self-supervised.
introduced in the schema is quite varied, as the process
of 3D localization requires the integration of information i )
coming from various sources and different modalities. Suh M0del implementation
integration can be modeled with different levels of detail So far, the model has been implemented in a simulated
and considering alternative data sources and formats. in @mvironment, taking always into account the final applarati

Visual/ oculomotor
map

Version Vergence Arm position
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RBF rEF
Retinotopic Visual/
i oculomotor
representation 0
transformation

Motorsignalrelease:

It is hence not surprising that the logarithmic organizatio
e Of the centers allowed to obtain results about ten times as
good as by using a homogeneous distribution (0.10 against
1.1).For setting the number of neurons, we defined an arpitra
threshold of 0.1mm error, that was achieved by a 7x7 neural

Oculomotor/
jointspace
transformation

Head/body-
centered
representation

Jointspace

control lattice in the cyclopean/disparity input space. The nekwor
training points are provided by the simulated execution of

Fig. 3. Computational framework of the visuomotor integrativodel. Two Saccadic movements and the estimation of the target visual

transformations allow to code a stimulus contextually in &lswculomotor displacement. The learning process is performed by applyin

Vergence —version
control

and arm-motor frames of reference. the delta rule gradient descent technique, and the ingising

of the weights is done employing the linear pseudoinverse

solution, typical for RBF networks. The use of an incrementa

on our humanoid robotic setup. The computational framewofk, ning rule allows to keep the system flexible to possible
is depicted in Fig. 3, which is a simplification of the conaegt changes in visual accuracy and body kinematics. In priecipl

schema of Fig. 2, in which the neck is fixed, and thus bOd)é(pplying the delta rule should allow to adapt to unavoidable

centered corresponds to head-centered. Also, there ictile ta hardware asymmetries, image distortions, and also to tieeep
feedback for the moment, and the control of arm movementssqory information, as described below. As an additional
is based purely on proprioception. The visual input regaydi i, 5 1o mentation option, we tested either Gaussian and simo
a potential target is expressed with its location in a CYB®P 5] activation functions, for both cyclopean visuakitand
ylsual field z_icc_ompanled by information on binocular d'SpaHisparity, and try the corresponding nets with differentsgls.

ity; we obtain in output the correspondent head/body centgfe pest performance was achieved for Gaussian functians fo
representation built of a potential vergence/version muame both inputs.

required to foveate on the target. This transformation haSTo validate the model, we are comparing its behavior with

functions, is used instead to maintain a contextual coding @, qe| hehavior in the case of the deceptive visual feedback,
stimuli in both a body-centered and an effector based frandg 1, a5 in typical experiments of saccadic adaptation [29].
of reference. It is used to recode oculomotor coordinates Hhis is done by eliciting a saccade (based on vergencedversi
arm jqint space and vice-versa. Each ching corresponds tgy% movement control) toward a given visual target, and
POte”t'a' moven_1ent, so that, thank to th's_ secon_d trans{‘?mbroviding a fictitious error on the reached final position.
tion, the agent is able to reach where it is looking at (diregt,. 1o computational model, this is achieved by adding an
transformation) and to foveate on the position of the ha'erfset to the output. On the robot, the same effect will be
(inverse transformation). If one of the potential motomsily obtained moving the visual target as for human subjects.
is not released, eye and arm movements can be decoupled, Aoy sis of how (as in the saccadic adaptation protocolisuc
the system can for example reach toward a peripheral visuafiicia| displacement of the target affects the artificigent
target without directing th_e gaze tf_’Wﬂfd I, _only using thScqumotor and arm motor abilities can serve as a validation
b_ody-c_entered representation as an |r?te.rmed|ate stepddeae of the underlying model, and may help in advance hypothesis
visual input to arm motor response. Similarly, arm moversen, saccadic adaptation mechanisms in humans and monkeys.
can also be planned but not executed, e.g. waiting for a C§§ tar we were able to verify that our model do exhibit
signal in an experimental protocol of delayed reaching.  g5cadic adaptation, altering its ability to perform cotre

1) Visual to oculomotor transformatiori:earning the trans- saccades according to the deceptive feedback. The analysis
formation from binocular visual data to eye position cotssisof error distributions around the target point and of error
in identifying visual targets and foveating them with botlyectors is also providing interesting information that we a
eyes, in order to associate appropriate version and veggesarrently studying with more detail, together with cogeti
movements to retinal locations. Either left and right retin science colleagues. For the moment, the model is able to
images or a cyclopean visual field accompanied by a dispargproduce saccadic transfer effects similar to those wbder
map can be used as visual input, and we employed the lat{gith human subjects, and we expect to achieve even more
The transformation was implemented with an RBF networkevealing insights from applying the same protocol to the
for the theoretical reasons explained above. robotic setup.

We decided to employ fixed centers, favoring biological 2) Oculomotor to arm-motor transformationn the second
plausibility over performance. For this reason, we disttiéldl  learning phase, arm movements are introduced, as exerdplifie
the centers according to a retinotopic-like criterion (inpo in Figure 4. This phase is further subdivided in two stages, r
V6A is, at least partly, retinotopic), following a loganttic spectively free and goal-based. The free exploration stsef
distributions of the centers. For what concerns cyclopeaandom arm movements and subsequent saccades toward the
visual input, a logarithmic organization of the neural @ee final hand position, which allows to learn the transformatio
fields is suitable to model foveal magnification, whilst fofrom joint space to oculomotor space. In the goal-oriented
disparity it corresponds to a finer coding for smaller disexploration a target object in space has to be foveated and
parities, actually observed in the primate visual corte8].[2 reached. During this process, the inverse transformagawing
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Fig. 4. Gazing and reaching schema. At each training steprtifieial agent,

either model or robot, is required to move its hand and gazertbte same Fig. 5. Mapping of the space according to uniform distribogi in a

point, and update its sensorimotor representation usinghierved error.  vergence/version oculomotor space (red), in a J1/J2 joiatesgcyan) and
in a standard Cartesian space (green).

arm joints in output is learnt.

The choice of how to distribute the basis function neurorand nearby areas perform all the transformations requaed f
is less straightforward for this second network. Automaticorrect gazing and reaching, and for this reason, an immborta
placing driven by the training points is a standard solytadso requirement is that the same pool of artificial neurons,arsnt
employed by [24], but again we favor biological plausilyilit of the radial basis functions, have to be used in the diredt an
over performance. Our main inspiration is on neurosciengg/erse transformations, so we included both transfoinati
findings regarding the posterior parietal cortex, and dafigc in the comparison. To avoid biasing toward one or the other
area V6A. In a previous work, we showed that a populatiatistribution, training and test sets were taken randondynfr
of VB6A neurons is properly modeled by a basis functioa Cartesian space. As depicted in Figure 5, the ranges were
approach [30]. As anticipated, this area includes neurans htaken so that the superposition between the center digtnisu
ing only visual response, neurons apparently involved iairand the training and test sets were equivalent between the
in motor actions and mixed neurons, activated in all phasesulomotor and the joint space. A further complication in
of sensorimotor processes. With our model we wanted tiee comparison between distributions is that differentroeu
check what computational advantages could be given by syshcements and different transformations are optimizetth wi
responsiveness pattern. For simplicity at this stage, omty different number of neurons and amplitudes. We tried to
arm joints were used, and no tilt movements of the eyes, $o tharmalize the various solutions as much as possible in order
the accessible environment is a 2D space placed horizgitiall to make them comparable. The number of neurons of the pure
front of the subject, as in Figure 4. This is anyway consisteaculomotor and joint space distributions were 49 (7x7), to
with most of the monkey experiments in which activity in V6Arepeat the population of the first network, whilst for the eux
was registered. distribution we employed 50 neurons (5x5x2) to match the

At this stage of the model development, we want thustal number of neurons as close as possible, obtaining the
to achieve good performances in the learning of the trangacement shown in Figure IlI-B2. For each configuration we
formations between oculomotor and arm motor space, whgearched for the best values of the spreads, and the results
respecting, and trying to emulate, the responsiveneserpattof the different tested configurations are shown in Table I. A
observed in area V6A. We simulated the different types ofin be observed, the vergence/version distribution ofaresur
neurons of V6A with populations of radial basis functioris reasonably good in both transformations, from oculomoto
neurons uniformly distributed in the vergence/versioncspato joint space and inverse, whilst the joint space distidwut
(representing oculomotor neurons) and in arm joint spaite good only for the joint to oculomotor transformation. A
(representing arm-motor neurons). Homogeneous disimiteit mixed distribution, with both types of neurons, allows to
are used in this case instead of logarithmic ones, becaese dbtain the best results in both transformations, much bette
reachable space has to be covered all with the same precistban either distribution alone. As a further experiment, we
Again, we tested with both Gaussian and sigmoid functionsied to distribute the neurons according to a forward d&lac
finding slightly better results for the former, as for the tfirsalgorithm, that automatically place the centers to bestét t
network. training data. As shown in Tab. I, the results are better than

In order to check their suitability to model the transformahe single criterion distribution but not better than thexeci
tions performed by V6A neurons, we trained RBF networksne. The stop condition for the forward select algorithm was
having the centers distributed as in Figure 5, red and cytmhave 50 neurons, to allow for a fair comparison with the
graphs, for vergence/version and joint space respectivélx other methods.
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Fig. 7. Typical learning curve to adapt to the new parametéer ¢he

Fig. 6.  Radial basis functions distributed according to a emix25 Kinematics of the robot model has been changed.
oculomotor + 25 arm motor) criterion (red stars), visualizegroa typical
Cartesian training set (blue dots).

TABLE | what suggested by neuroscience data, we were able to learn

PERFORMANCE OFRBF NETWORKS WITH NEURONS DISTRIBUTED very accurately the transformations between oculomotar an

ACCORDING TO A VERGENCHVERSION OCULOMOTOR SPACKV), ARM  joint space, in a way suitable to their application to theotab
JOINT SPACE(J) AND MIXED SPACE (M), FOR BOTH DIRECT AND INVERSE setup

TRANSFORMATIONS OCULOMOTOR< ARM-JOINT.

(’;li(satjrlirt())lr}tion E\r/r:ng (tr;ar?])smrgit'g:v. Ebrxjrtr("’ln?rﬂ;) rmastt'?gev_ C. Robotic setup and experimental framework

v f-?g 75-&? 5-722 f-gf On the robotics side, the final goal of this work is to
M 1.07 1.20 0.29 0.48 provide the robot with advanced skills in its interactiortiwi
forward select 1.63 1.80 0.63 1.06 the environment, namely in the purposeful exploration & th

peripersonal space and the contextual coding and control of
eye and arm movements. On the other hand, the implemen-

Apart for the shear improvement in performance, the ugation on an actual sensorimotor setup is a potential source
of the mixed distribution should be especially suitable tof additional insights for the computational model, hardly
modified working conditions. To test this hypothesis, and tchievable with simulated data. Extensive experimentatio
estimate the sort of results we could expect applying thgth the robot is not yet available, and constitutes the bulk
computational framework to the robotic setup, we changed thf our current work, which methodology is outlined below.
kinematic parameters of the robot model, and start traitieg ~ Our humanoid robot (Figure 8) is endowed with a pan-
network with the old weights from the new configuration. Thélt-vergence stereo head with coordinated vergencetwers
parameters included in the model are five: lengths of arm aadntrol of the eyes and a multi-joint arm with a three finger
forearm, interocular distance, and relative position afidtier Barrett Hand (not used in this work). The workspace is
and eyes (two parameters, supposing they are aligned in thiirst positioned at eye level, so that only 2D eye and arm
coordinate). The error after modifying of about 10% to 20%movements are required. After the 2D transformation have
these parameters rise up to 40mm, and drops back almosbéen successfully applied to the robot according to the mode
the original precision only after about 50 trials, as shown idescribed in the previous Section, we plan to extend it to the
Fig. 7. This behavior show the adaptability of the system @D space, introducing tilt movements or the head and at least
changes in working conditions, and supports its suitabitit one more joint for the arm. Preliminary studies with three-
implementation on the robot. input RBF transformations were successful in this regard.

Recent experiments [P.Fattori, unpublished data] shotwv thaAs explained above, the actual map of the peripersonal
the receptive fields of many V6A neurons seem to be indesdace is learnt through active exploration. This is not done
distributed according a vergence/version criterion. Lelegr from scratch, as learning is bootstrapped with the weights
is the effect of joint space, also because of our simplificati learned during the training of the modeled network. The
of the arm joint space. In any case, our simulation suppofearning is now incremental, depending on the outcome of
the hypothesis that a mixed population of neurons such @ach action. Possible misalignments are made of two differe
that observed in V6A is especially suitable to a corticarror components, one due to the visual-oculomotor transfo
area which contextually codes for different reference fr'am mation and the other to the arm-oculomotor. The two error
From a pragmatic point of view, through the use of basomponents can be estimated measuring the visual distance
function neurons whose configuration was set according tetween the effector and the final gazing point. The use of
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with the environment. Such implicit representation allaws
contextually represent the peripersonal space throudhrdif
ent vision and motor parameters. Very importantly, thanks
to the properties of RBF networks, the transformations are
fully reversible, so that representations are both acdesad
modified by each exploratory action. The above schema is now
being implemented on a real humanoid torso. Coordinated
reach/gaze actions are being used to integrate and match
the sensorimotor maps. This learning process is the normal
behavior of the agent, constituting the most fundamental
component of its basic capability of interacting with therlap

(1]

(2]
(3]

(4]

. (6]
Fig. 8.
hand.

Humanoid robot with detail of panttilt/vergence head arm with
6]

tactile feedback upon object touching can finally consitat
master signal that allows to infer the exact magnitude ofibot
errors. This is indeed the normal behavior of the agent, kwhic[7]
simply always continues learning in each gazing or reachin%
movement towards nearby goals. ]

IV. CONCLUSION [l

Experiments of concurrent reaching and gazing allow to
generate an implicit representation of the peripersonatep
obtained by matching head-center and arm-centered sche
Such representation remains implicit, and far from being an
actual map of the environment, it rather constitutes a skill
the robot in interacting with it. As a first, simplified imple-
mentation of the model, simulated experiments of coorédihat
reach/gaze actions have been performed, in which there[1%
visual tracking of the effector but not tactile feedback.eTh
two implemented RBF networks are capable of bidirectiongl;
transformations between stereo visual information and- ocu
lomotor (vergence/version) space, and between oculomotor
and arm joint space. For our modeling purposes we used
insights and functional indications coming from monkey and4]
human studies, especially regarding the transformatioms a
the contextual encoding of features in the peripersonatespa
performed by area V6A. The network which allows to jointlyi15]
represent oculomotor and joint space was defined in accor-
dance to the above studies, supporting the hypothesis that a
mixed population of neurons is the most suitable to perforfme]
different transformations.

The final, integrated representation of the peripersoredesp [17]
emerges thanks to the simulated interaction of the agent

(11]

and contextually updating its representation of it.
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