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Implicit mapping of the peripersonal space by
gazing and reaching
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Abstract—Primates often perform coordinated eye and arm
movements, contextually fixating and reaching towards nearby
objects. This combination of looking and reaching to the same
target is used by infants to establish an implicit visuomotor rep-
resentation of the peripersonal space, useful for both oculomotor
and arm motor control. In this work, taking inspiration from such
behavior and from primate visuomotor mechanisms, a shared
sensorimotor map of the environment, built on a radial basis
function framework, is configured and trained by the coordinated
control of a humanoid robot eye and arm movements. Simulated
results confirm that mixed neural populations, such as those
found in some particular brain areas modeled in this work, are
especially suitable to the problem at hand. In the final experi-
mental setup, by exploratory gazing and reaching actions, either
free or goal-based, the artificial agent learns to perform direct
and inverse transformations between stereo vision, oculomotor
and joint-space representations. The integrated sensorimotor
map that allows to contextually represent the peripersonal space
through different vision and motor parameters is never made
explicit, but rather emerges thanks to the interaction of the agent
with the environment.

I. I NTRODUCTION

H UMANS and other primates build their perception of the
surrounding space by actively interacting with nearby

stimuli, mainly looking and reaching at them. Through active
exploration, they construct a representation of the environment
useful for further interactions. The main sensory information
used to build such representation is retinotopic (visual data)
and proprioceptive (eye, neck and arm position). A critical
issue in this process is to coordinate movements and associate
sensory inputs, in order to obtain a coherent mental image of
the environment. Indeed, eye and arm movements often go
together, as we fixate an object before, or while, we reach
towards it. Such combination of looking and reaching towards
the same target is used to establish a consistent, integrated
visuomotor representation of the peripersonal space.

In primates, areas within the dorsal visual stream of the
primate brain, and more precisely regions of the posterior
parietal cortex (PPC), are in charge of performing the reference
frames transformations required to map visual informationto
appropriate oculomotor and limb movements. These areas are
the best candidates for the role of accessing and updating
a visuomotor representation of the reachable space. It is
often argued, and increasingly accepted by the neuroscientific
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community, that such ability is achieved through the use of
gain fields and basis function representations, that permitto
simultaneously represent stimuli in various reference frames.
In fact, the basis function approach has the attractive feature
that both head-centric representations for arm movements
and retino-centric representations for gaze movements canbe
encoded concurrently in the same neural map [1]. In the basis
function framework, explicit encoding of targets in retino-
centric coordinates is enhanced via gain fields to hold in par-
allel an implicit encoding in other reference frames [2]. Such
gain fields are found in retino-centric organized eye movement
areas LIP [3], [4] and FEF [5] and, most importantly, in
posterior parietal area V6A, as explained in Section II.

In this work, eyes and arms of a humanoid robot are
treated as separate effectors that receive motor control via
different specific representations, which combine to form a
unique, shared visuomotor map of the peripersonal space.
The exploratory behavior of the robot is based on a func-
tional model of the tasks performed by the primate posterior
parietal cortex, which main building block is a basis function
representation that associate different reference frames, giving
them mutual access to each other, during planning, execution
and monitoring of eye and arm movements. We will build
such representation by relying upon findings from human and
monkey studies, especially from data on gaze direction and
arm reaching movements in monkey posterior parietal area
V6A [6].

Our system should finally be able to achieve a visuomotor
knowledge of its peripersonal space in a dynamical way,
through the practical interaction with the environment, using
both stereoptic visual input and proprioceptive data concern-
ing eye and arm movements. Following this approach, the
robot should naturally achieve very good open-loop reaching
and saccade capabilities towards nearby targets. This goalis
represented in Figure 1, which depicts a simple conceptual
schema of how the space representation is generated and
updated. Peripersonal space is represented by a plastic map,
that constitutes both a knowledge of the environment and a
sensorimotor code for performing movements and evaluate
their outcome. The map is accessed and modified by two types
of information: retinotopic (visual) and proprioceptive (eye
and arm movements). Contextually, eye and arm motor plans
are devised in accordance to the map itself. This mechanism
allows us to keep both eye and arm targeting in register and
to establish a common spatial representation of the target’s
location. Our framework is therefore based on a common code
for spatial awareness obtained by a learning procedure based
on target errors of eye or arm movements to visual targets,
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Fig. 1. Conceptual schema of the final space representation map

as described in Section III. As a final goal, the agent should
be able to purposefully build such visuomotor map of the
environment in 3D, simultaneously learning to look at and
reach towards different visual targets.

The perception of the space and the related sensorimotor
map is thus accessed and updated by visuomotor interaction,
e.g. moving the gaze and the arm toward a goal position.
More interestingly, the agent has to be able to keep learning
during its normal behavior, by interacting with the world
and contextually update its representation of the world itself.
Such goal can be achieved by adjusting the weights of
the basis functions according to the errors observed in the
oculomotor and reaching movements as guided by the same
basis functions. The concurrence of eye and arm movements
should be sufficient to provide the appropriate error signals
even when actual distances between target and final position
of the action are not explicitly provided. We could call this
approach as a “self-supervised learning” framework, in which
the different modalities supervise each other, and eye and arm
movements both improve, and obtain together a precise visuo-
motor representation of the surrounding space. Upon tactile
feedback, confirming that the target object has been reached,
the actual gazing and reaching directions can be compared
with the expected ones and the 3D visuomotor representation
accordingly updated if necessary. The presence of a tactile
response, as feedback for the correct execution of a reaching
movement, provides a reliable “master” signal to ensure the
accuracy of the global representation. The results presented in
this paper refers to the computational implementation of the
model, and we are currently working on its development on
our humanoid robot setup (Section III-C).

II. BACKGROUND

This research builds on neuroscience findings and insights,
computational intelligence concepts and techniques, and en-
gineering goals and constraints posed by the final robotic
application. In this section we introduce the fundamental
inspiring concepts and relevant literature for each of these
fields.

A. Sensorimotor transformations in the posterior parietalcor-
tex

The visual cortex of the primate brain is organized in
two parallel channels, called “dorsal” and “ventral” streams.

The former elaborates visual data with the main purpose
of endowing the subject with the ability of interacting with
his/her environment, and its tasks are often synthesized as
“vision for action”. The latter is dedicated to object recognition
and conceptual processing, and thus performs “vision for
perception”. Although a tight interaction between the two
streams is necessary for most everyday tasks, dorsal stream
areas are more strictly related to the planning and monitoring
of reaching and grasping actions [7]. In fact, dorsal visual
analysis is driven by the absolute dimension and location
of target objects, requiring continuous transformations from
retinal data to effector-based frames of reference. The frame
of reference used for arm movements is body-centered, e.g.
fixed on the shoulder. Considering a dexterous primate, or a
humanoid robot endowed with a pan-tilt-vergence head, head
movements are also body-centered, whilst gaze movements
are head-centered, usually referred to the cyclopean eye, ideal
mid-point between the eyes. Visual information is retinocen-
tric, and there are two different retinal reference frames for a
stereo system. All these different reference frames are brought
in register to each other by coordinated movements to the same
target.

The ventral stream maintains instead a contextual coding
of objects in the environment, based on their identity and
meaning. Spatially, such coding can be defined as object-
centered, as it is mainly concerned with the relative location
of objects with respect to each other. This sort of coding is
not used at this stage of our research.

The hypothesis of parallel visuomotor channels within the
dorsal stream dedicated respectively to the transport and the
preshaping components of the reach-to-grasp action is well
recognized [8]. Anatomically, these two channels fall both
inside the dorsal stream, and are sometimes named dorso-
medial and dorso-lateral visuomotor channels [9]. For what
concerns proximal joint movements, focus of interest of this
research, and according to a well established nomenclature,
the most important reach-related cortical areas are V6A and
MIP, both receiving their main input from V6 and projecting
to the dorsal premotor cortex [9]–[12].

Considering the functional role of the dorso-medial stream,
information regarding eye position and gaze direction is very
likely employed by area V6A in order to estimate the position
of surrounding objects and guide reaching movements toward
them. Two types of neurons have been found in V6A that
allow us to sustain this hypothesis [6]. The receptive fields
of neurons of the first type are organized in retinotopic coor-
dinates, but they can encode spatial locations thanks to gaze
modulation. The receptive fields of the second type of neurons
are organized according to the real, absolute distributionof the
subject peripersonal space. In addition, V6A contains neurons
that arguably represent the target of reaching retinocentrically,
and others that use a spatial representation [13]. This strongly
suggests a critical role of V6A in the gradual transformation
from a retinotopic to an effector-centered frame of reference.
Moreover, some V6A neurons appear to be directly involved in
the execution of reaching movements [9], indicating that this
area is in charge of performing the visuomotor transformations
required for the purposive control of proximal arm joints,
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integrating visual, somatosensory and somatomotor signals in
order to reach a given target in the 3D space.

B. The basis function approach to sensorimotor transforma-
tions

Basis functions are building blocks that, when combined
linearly, can approximate any non-linear function, such as
those required to map between different neural representations
of the peripersonal space (retinotopic, head-centered, arm-
centered). Basis function networks have been proposed as a
computational solution especially suitable to model the kind
of sensorimotor transformations performed by the posterior
parietal cortex [1], [14], [15]. Networks of suitable basis
functions are in fact able to naturally reproduce the gain-
field effects often observed in parietal neurons [16]. It was
suggested that positions of object in the peripersonal space are
coded through the activity of parietal neurons that act as basis
functions, and any coordinate frame can be read out from such
population coding according to the task requirements [14].

Several different transfer functions can be used as basis
functions, the only requirements are that they are non-linear,
that their interaction is also non-linear (e.g. product vs.sum),
and that they cover all the possible input range. The most used
functions, for their convenience and biological plausibility,
are Gaussian and sigmoid functions. For example, retinotopic
maps are often modeled by Gaussian basis functions, and eye
position by sigmoid, or logistic, functions [14]. Learningin
basis function networks is composed of two stages, the first
for choosing the shape and location of the basis functions
and the second to map them to the output representation. The
first step is usually unsupervised, the second depend on errors
observed during the sensorimotor interaction with the world.

C. Connectionist sensorimotor transformations in robotics

Although the use of artificial neural networks in robotics
is very diffuse and not at all novel [17], just few works con-
cern visuomotor transformations involving arm movements,
and especially rare is the coordinate control of gazing and
reaching movements. Visuomotor arm control has been usually
tackled with the use of Self-Organizing Maps (SOM). Some
works [18], [19] apply them to the coordination between visual
information and arm control, modeling two cameras (although
not in a classical stereo head configuration) and three degrees
of freedom manipulators. Neither of the above papers consider
eye movements, and their applicability to real robot setupsis
limited, respectively by the huge number of required learning
steps [18], and by the discrete sampling of the space which
makes any target reachable only up to a certain precision, and
only after a number of steps dependent on the sampling [19]. A
recent extension of these works [20] makes use of alternative
SOM maps linked to different cameras, in order to deal with
occlusion, and takes also into account the issue of obstacle
avoidance. Especially interesting is the flexibility of their
system to changes in the geometry of the effector, which we
are able to reproduce with our approach.

Whilst the use of SOM networks is relatively common, the
employment of biologically inspired Radial Basis Function

(RBF) networks remains relatively unexplored. Although RBF
have been successfully applied to the computation of inverse
kinematics, alone [21] or together with SOM [22], to the
best of our knowledge only two papers describes the use of
RBF networks for visuomotor transformations. The system
of Marjanovic et al. [23] firstly learns the mapping between
image coordinates and the pan/tilt encoder coordinates of the
eye motors (the saccade map), and then the mapping of the
eye position into arm position (the ballistic map). A similar
learning strategy is employed by Sun and Scassellati [24],
which use the difference vector between the target and the
hand position in the eye-centered coordinate system without
any additional transformational stages. Despite the similarity
of their approaches to ours, some major differences can be
pointed out: first of all, we exploit stereo vision, realizing
a coordinated control of vergence and version movements,
moreover, the saccade map in [23] is fixed and mainly used
to provide visual feedback during the ballistic map learning.
On the other hand, our sensorimotor transformations are
bidirectional, so that our system learns to gaze towards itshand
but also to reach where it is looking at. This skill is trained
through a self-supervised learning framework, in which the
different modalities supervise each other, and both improve
contextually their mapping of the space. The distribution of
the RBF centers also differs from the cited works, as we
place the neural receptive fields according to findings from
neurophysiological studies on monkeys.

A few attempts to tackle the problem of coordinate control
of gazing and arm movements by using neural networks,
but not RBFs, have also been reported. Schenk et al. [25]
employ a feedforward neural network for learning to saccade
toward targets, and a recurrent neural network is employed for
executing the transformation carrying from the visual input
to an appropriate arm posture, suitable to reach and grasp a
target object. The reaching model of Nori et al. [26] consists
in learning a motor-motor map to direct the hand close to the
fixated object, and then activate a closed loop controller that
using visual distance between the hand and the target improves
reaching accuracy. Eye gazing control is not adaptive, and they
do not consider the importance of contextually maintaininga
series of representations in different body reference frames, as
suggested by neuroscience findings related to reference frame
transformations, especially regarding posterior parietal area
V6A.

III. SENSORIMOTOR TRANSFORMATIONS WITHRADIAL

BASIS FUNCTIONS

As mentioned in Section I and considering the theoretical
description of Section II, the main sources of inspiration for
our model are the basis function approach [14], [16] and
neuroscience experiments on the role of intraparietal areas
(especially V6A) during gazing and reaching actions [6], [9],
[13].

A. Conceptual framework

The use of a robot hardware constitutes a possible compli-
cation in the realization of a model of cortical mechanisms,
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Fig. 2. Building blocks of the global 3D space representation. The body-
centered 3D map constitutes the integrated visuomotor representation of the
peripersonal space.

and some issues that would easily be solved in simulated en-
vironments have to be dealt with more accurately considering
the real world implementation. The approach we follow is
epigenetic, being the robot endowed with an innate knowledge
of how to move in its environment, which is later developed
and customized through exploration and interaction with visual
and tactile stimuli. Following this idea, all transformations
are first implemented on a computational model, which final
configuration represents the genetic component of the devel-
opmental process, and is then used as a bootstrap condition
for the actual experimental learning process by the robot.

Although in principle one representation should be enough
for all the required transformations, the number of neurons
necessary to contextually code forn different signals is given
by the size of the signals to the power ofn. It is easy to
see that a representation maintaining both eye visual and
proprioceptive signals, and arm joint information would be
computationally unfeasible, even for the brain itself. A more
logical structure is one in which a central, body-centered rep-
resentation is accessed and updated both by limb sensorimotor
signals on the one hand and visual and oculomotor signals on
the other hand. Indeed, this seems to be how the problem is
solved within the brain, in which different areas or popula-
tions of neurons in the same areas are dedicated to different
transformations. Most importantly, this approach is consistent
with the findings related to area V6A, which contains neurons
that code for the retinocentric position of targets, othersthat
code for their limb-related position, and even others that seem
to maintain both codings and look thus especially critical
for performing sensorimotor transformations. In this way,
different representations of the same target can be maintained
contextually, and used to act on the target if required. It is
the relation between these representations that is accessed and
modified by a conjunction of gaze and reach movements to
the same target. The global structure of the model follows
this principles, and is thus modular, separating the retinal to
body-centered transformation and the body-centered to arm-
joint transformations (left and right sides of Fig. 2).

The quality and the nature of the sensory stimuli to be
introduced in the schema is quite varied, as the process
of 3D localization requires the integration of information
coming from various sources and different modalities. Such
integration can be modeled with different levels of detail
and considering alternative data sources and formats. In our

case, we include visual information about potential targets and
proprioceptive data on eye position and arm position. Several
possible alternatives for representing the above information
can be employed. Among possible alternatives for representing
binocular information we favor the composition of a cyclopean
image representation with a disparity map (under the assump-
tion that the correspondence problem is already solved), over
the option of having separate left and right retinotopic maps
(see left side of the schema of Fig. 2). Similarly, considering
that we are modeling extrastriate and associative visual areas,
it is plausible to assume that gazing direction is represented
by version and vergence angles instead of the two explicit
eye positions. This scheme allows us to transform ocular
movements and stereoptic visual information to a body/head-
centered reference frame and also, when needed, elicit the eye
movements that are necessary to foveate on a given visual
target. On the right hand of the conceptual schema of Fig. 2
we find the somatosensory/arm-motor map, required to code
arm movements. Such map is modified by proprioceptive and
tactile feedback, and allows to execute reaching actions toward
visual or remembered targets. The integrated map, built of the
two sides of the schema, is thus accessed and updated upon
requirements, as described in the next subsection.

The exploration of the environment through saccades and
reaching movements constitutes the basic behavior that is em-
ployed to build the visuomotor representation of the periper-
sonal space. Building such representation is done incremen-
tally, through subsequent, increasingly complex interactions.
The learning sequence is inspired by infant development [27].
As a first step, the system learns the association between
retinal information and gaze direction (i.e. proprioceptive eye
position). This can be done simply by successive foveation
on salient points of the binocular images. The subject look
around and focus the eyes on certain stimuli, thus learning
the association between retinal information and vergence and
version parameters. Then, gaze direction is associated to arm
position, e.g. moving the arm randomly and following it with
the gaze, so that each motor configuration of the arm joint
is associated to a corresponding configuration of the system
for eye motor control. In this case, proprioceptive information
regarding arm position is included in the computation, and the
vectors corresponding to reaching movements can be extracted
similarly to what is done for ocular movements. This process
make the subject learn a bidirectional link between different
sensorimotor systems. The subject can look where its hand is
but also reach a point in space he is looking at. Later on, visual
targets are shown to the system, which is required to perform
both saccadic and arm reaching movements toward them. This
requires the use of both direct and inverse transformations,
and allow to fine-tune the sensorimotor representation of the
space. Tactile feedback can be used as a master signal, for
confirming that the target has been reached, making all the
process substantially self-supervised.

B. Model implementation

So far, the model has been implemented in a simulated
environment, taking always into account the final application
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Fig. 3. Computational framework of the visuomotor integrationmodel. Two
transformations allow to code a stimulus contextually in visual, oculomotor
and arm-motor frames of reference.

on our humanoid robotic setup. The computational framework
is depicted in Fig. 3, which is a simplification of the conceptual
schema of Fig. 2, in which the neck is fixed, and thus body-
centered corresponds to head-centered. Also, there is no tactile
feedback for the moment, and the control of arm movements
is based purely on proprioception. The visual input regarding
a potential target is expressed with its location in a cyclopean
visual field accompanied by information on binocular dispar-
ity; we obtain in output the correspondent head/body center
representation built of a potential vergence/version movement
required to foveate on the target. This transformation has
been implemented with a RBF network, described below. The
second transformation, also implemented with radial basis
functions, is used instead to maintain a contextual coding of
stimuli in both a body-centered and an effector based frame
of reference. It is used to recode oculomotor coordinates in
arm joint space and vice-versa. Each coding corresponds to a
potential movement, so that, thank to this second transforma-
tion, the agent is able to reach where it is looking at (direct
transformation) and to foveate on the position of the hand
(inverse transformation). If one of the potential motor signals
is not released, eye and arm movements can be decoupled, i.e.,
the system can for example reach toward a peripheral visual
target without directing the gaze toward it, only using the
body-centered representation as an intermediate step to recode
visual input to arm motor response. Similarly, arm movements
can also be planned but not executed, e.g. waiting for a cue
signal in an experimental protocol of delayed reaching.

1) Visual to oculomotor transformation:Learning the trans-
formation from binocular visual data to eye position consists
in identifying visual targets and foveating them with both
eyes, in order to associate appropriate version and vergence
movements to retinal locations. Either left and right retinal
images or a cyclopean visual field accompanied by a disparity
map can be used as visual input, and we employed the latter.
The transformation was implemented with an RBF network,
for the theoretical reasons explained above.

We decided to employ fixed centers, favoring biological
plausibility over performance. For this reason, we distributed
the centers according to a retinotopic-like criterion (input to
V6A is, at least partly, retinotopic), following a logarithmic
distributions of the centers. For what concerns cyclopean
visual input, a logarithmic organization of the neural receptive
fields is suitable to model foveal magnification, whilst for
disparity it corresponds to a finer coding for smaller dis-
parities, actually observed in the primate visual cortex [28].

It is hence not surprising that the logarithmic organization
of the centers allowed to obtain results about ten times as
good as by using a homogeneous distribution (0.10 against
1.1).For setting the number of neurons, we defined an arbitrary
threshold of 0.1mm error, that was achieved by a 7x7 neural
lattice in the cyclopean/disparity input space. The network
training points are provided by the simulated execution of
saccadic movements and the estimation of the target visual
displacement. The learning process is performed by applying
the delta rule gradient descent technique, and the initial setting
of the weights is done employing the linear pseudoinverse
solution, typical for RBF networks. The use of an incremental
learning rule allows to keep the system flexible to possible
changes in visual accuracy and body kinematics. In principle,
applying the delta rule should allow to adapt to unavoidable
hardware asymmetries, image distortions, and also to deceptive
sensory information, as described below. As an additional
implementation option, we tested either Gaussian and sigmoid
neural activation functions, for both cyclopean visual input and
disparity, and try the corresponding nets with different spreads.
The best performance was achieved for Gaussian functions for
both inputs.

To validate the model, we are comparing its behavior with
some psychophysical effects described in the literature regard-
ing the tasks it executes. For example, we are checking the
model behavior in the case of the deceptive visual feedback,
such as in typical experiments of saccadic adaptation [29].
This is done by eliciting a saccade (based on vergence/version
eye movement control) toward a given visual target, and
providing a fictitious error on the reached final position.
For the computational model, this is achieved by adding an
offset to the output. On the robot, the same effect will be
obtained moving the visual target as for human subjects.
Analysis of how (as in the saccadic adaptation protocol) such
artificial displacement of the target affects the artificialagent
oculomotor and arm motor abilities can serve as a validation
of the underlying model, and may help in advance hypothesis
on saccadic adaptation mechanisms in humans and monkeys.
So far, we were able to verify that our model do exhibit
saccadic adaptation, altering its ability to perform correct
saccades according to the deceptive feedback. The analysis
of error distributions around the target point and of error
vectors is also providing interesting information that we are
currently studying with more detail, together with cognitive
science colleagues. For the moment, the model is able to
reproduce saccadic transfer effects similar to those observed
with human subjects, and we expect to achieve even more
revealing insights from applying the same protocol to the
robotic setup.

2) Oculomotor to arm-motor transformation:In the second
learning phase, arm movements are introduced, as exemplified
in Figure 4. This phase is further subdivided in two stages, re-
spectively free and goal-based. The free exploration consists of
random arm movements and subsequent saccades toward the
final hand position, which allows to learn the transformation
from joint space to oculomotor space. In the goal-oriented
exploration a target object in space has to be foveated and
reached. During this process, the inverse transformation having
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Fig. 4. Gazing and reaching schema. At each training step the artificial agent,
either model or robot, is required to move its hand and gaze toward the same
point, and update its sensorimotor representation using theobserved error.

arm joints in output is learnt.
The choice of how to distribute the basis function neurons

is less straightforward for this second network. Automatic
placing driven by the training points is a standard solution, also
employed by [24], but again we favor biological plausibility
over performance. Our main inspiration is on neuroscience
findings regarding the posterior parietal cortex, and especially
area V6A. In a previous work, we showed that a population
of V6A neurons is properly modeled by a basis function
approach [30]. As anticipated, this area includes neurons hav-
ing only visual response, neurons apparently involved mainly
in motor actions and mixed neurons, activated in all phases
of sensorimotor processes. With our model we wanted to
check what computational advantages could be given by such
responsiveness pattern. For simplicity at this stage, onlytwo
arm joints were used, and no tilt movements of the eyes, so that
the accessible environment is a 2D space placed horizontally in
front of the subject, as in Figure 4. This is anyway consistent
with most of the monkey experiments in which activity in V6A
was registered.

At this stage of the model development, we want thus
to achieve good performances in the learning of the trans-
formations between oculomotor and arm motor space, while
respecting, and trying to emulate, the responsiveness pattern
observed in area V6A. We simulated the different types of
neurons of V6A with populations of radial basis function
neurons uniformly distributed in the vergence/version space
(representing oculomotor neurons) and in arm joint space
(representing arm-motor neurons). Homogeneous distributions
are used in this case instead of logarithmic ones, because the
reachable space has to be covered all with the same precision.
Again, we tested with both Gaussian and sigmoid functions,
finding slightly better results for the former, as for the first
network.

In order to check their suitability to model the transforma-
tions performed by V6A neurons, we trained RBF networks
having the centers distributed as in Figure 5, red and cyan
graphs, for vergence/version and joint space respectively. V6A
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Fig. 5. Mapping of the space according to uniform distributions in a
vergence/version oculomotor space (red), in a J1/J2 joint space (cyan) and
in a standard Cartesian space (green).

and nearby areas perform all the transformations required for a
correct gazing and reaching, and for this reason, an important
requirement is that the same pool of artificial neurons, centers
of the radial basis functions, have to be used in the direct and
inverse transformations, so we included both transformations
in the comparison. To avoid biasing toward one or the other
distribution, training and test sets were taken randomly from
a Cartesian space. As depicted in Figure 5, the ranges were
taken so that the superposition between the center distributions
and the training and test sets were equivalent between the
oculomotor and the joint space. A further complication in
the comparison between distributions is that different neuron
placements and different transformations are optimized with
different number of neurons and amplitudes. We tried to
normalize the various solutions as much as possible in order
to make them comparable. The number of neurons of the pure
oculomotor and joint space distributions were 49 (7x7), to
repeat the population of the first network, whilst for the mixed
distribution we employed 50 neurons (5x5x2) to match the
total number of neurons as close as possible, obtaining the
placement shown in Figure III-B2. For each configuration we
searched for the best values of the spreads, and the results
of the different tested configurations are shown in Table I. A
can be observed, the vergence/version distribution of neurons
is reasonably good in both transformations, from oculomotor
to joint space and inverse, whilst the joint space distribution
is good only for the joint to oculomotor transformation. A
mixed distribution, with both types of neurons, allows to
obtain the best results in both transformations, much better
than either distribution alone. As a further experiment, we
tried to distribute the neurons according to a forward selection
algorithm, that automatically place the centers to best fit the
training data. As shown in Tab. I, the results are better than
the single criterion distribution but not better than the mixed
one. The stop condition for the forward select algorithm was
to have 50 neurons, to allow for a fair comparison with the
other methods.
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Fig. 6. Radial basis functions distributed according to a mixed (25
oculomotor + 25 arm motor) criterion (red stars), visualized over a typical
Cartesian training set (blue dots).

TABLE I
PERFORMANCE OFRBF NETWORKS WITH NEURONS DISTRIBUTED

ACCORDING TO A VERGENCE/VERSION OCULOMOTOR SPACE(V), ARM

JOINT SPACE(J) AND MIXED SPACE (M), FOR BOTH DIRECT AND INVERSE

TRANSFORMATIONS OCULOMOTOR⇔ ARM-JOINT.

Neuron V⇒J transformation J⇒V transformation
distribution Error (mm) St. dev. Error (mm) St. dev.
J 2.92 5.69 2.27 3.48
V 4.76 7.63 0.74 1.64
M 1.07 1.20 0.29 0.48
forward select 1.63 1.80 0.63 1.06

Apart for the shear improvement in performance, the use
of the mixed distribution should be especially suitable to
modified working conditions. To test this hypothesis, and to
estimate the sort of results we could expect applying the
computational framework to the robotic setup, we changed the
kinematic parameters of the robot model, and start trainingthe
network with the old weights from the new configuration. The
parameters included in the model are five: lengths of arm and
forearm, interocular distance, and relative position of shoulder
and eyes (two parameters, supposing they are aligned in thez

coordinate). The error after modifying of about 10% to 20%
these parameters rise up to 40mm, and drops back almost to
the original precision only after about 50 trials, as shown in
Fig. 7. This behavior show the adaptability of the system to
changes in working conditions, and supports its suitability for
implementation on the robot.

Recent experiments [P.Fattori, unpublished data] show that
the receptive fields of many V6A neurons seem to be indeed
distributed according a vergence/version criterion. Lessclear
is the effect of joint space, also because of our simplification
of the arm joint space. In any case, our simulation supports
the hypothesis that a mixed population of neurons such as
that observed in V6A is especially suitable to a cortical
area which contextually codes for different reference frames.
From a pragmatic point of view, through the use of basis
function neurons whose configuration was set according to
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Fig. 7. Typical learning curve to adapt to the new parameters after the
kinematics of the robot model has been changed.

what suggested by neuroscience data, we were able to learn
very accurately the transformations between oculomotor and
joint space, in a way suitable to their application to the robotic
setup.

C. Robotic setup and experimental framework

On the robotics side, the final goal of this work is to
provide the robot with advanced skills in its interaction with
the environment, namely in the purposeful exploration of the
peripersonal space and the contextual coding and control of
eye and arm movements. On the other hand, the implemen-
tation on an actual sensorimotor setup is a potential source
of additional insights for the computational model, hardly
achievable with simulated data. Extensive experimentation
with the robot is not yet available, and constitutes the bulk
of our current work, which methodology is outlined below.

Our humanoid robot (Figure 8) is endowed with a pan-
tilt-vergence stereo head with coordinated vergence/version
control of the eyes and a multi-joint arm with a three finger
Barrett Hand (not used in this work). The workspace is
first positioned at eye level, so that only 2D eye and arm
movements are required. After the 2D transformation have
been successfully applied to the robot according to the model
described in the previous Section, we plan to extend it to the
3D space, introducing tilt movements or the head and at least
one more joint for the arm. Preliminary studies with three-
input RBF transformations were successful in this regard.

As explained above, the actual map of the peripersonal
space is learnt through active exploration. This is not done
from scratch, as learning is bootstrapped with the weights
learned during the training of the modeled network. The
learning is now incremental, depending on the outcome of
each action. Possible misalignments are made of two different
error components, one due to the visual-oculomotor transfor-
mation and the other to the arm-oculomotor. The two error
components can be estimated measuring the visual distance
between the effector and the final gazing point. The use of
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Fig. 8. Humanoid robot with detail of pan/tilt/vergence headand arm with
hand.

tactile feedback upon object touching can finally constitute a
master signal that allows to infer the exact magnitude of both
errors. This is indeed the normal behavior of the agent, which
simply always continues learning in each gazing or reaching
movement towards nearby goals.

IV. CONCLUSION

Experiments of concurrent reaching and gazing allow to
generate an implicit representation of the peripersonal space
obtained by matching head-center and arm-centered schemas.
Such representation remains implicit, and far from being an
actual map of the environment, it rather constitutes a skillof
the robot in interacting with it. As a first, simplified imple-
mentation of the model, simulated experiments of coordinated
reach/gaze actions have been performed, in which there is
visual tracking of the effector but not tactile feedback. The
two implemented RBF networks are capable of bidirectional
transformations between stereo visual information and ocu-
lomotor (vergence/version) space, and between oculomotor
and arm joint space. For our modeling purposes we used
insights and functional indications coming from monkey and
human studies, especially regarding the transformations and
the contextual encoding of features in the peripersonal space
performed by area V6A. The network which allows to jointly
represent oculomotor and joint space was defined in accor-
dance to the above studies, supporting the hypothesis that a
mixed population of neurons is the most suitable to perform
different transformations.

The final, integrated representation of the peripersonal space
emerges thanks to the simulated interaction of the agent

with the environment. Such implicit representation allowsto
contextually represent the peripersonal space through differ-
ent vision and motor parameters. Very importantly, thanks
to the properties of RBF networks, the transformations are
fully reversible, so that representations are both accessed and
modified by each exploratory action. The above schema is now
being implemented on a real humanoid torso. Coordinated
reach/gaze actions are being used to integrate and match
the sensorimotor maps. This learning process is the normal
behavior of the agent, constituting the most fundamental
component of its basic capability of interacting with the world,
and contextually updating its representation of it.
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