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Abstract—We present a biologically-inspired model for the one-
shot vergence control of a robotic head, which has been used for
an investigation of two vergence control networks. Both networks
do not work with explicitly computed disparity, but extract the
vergence control signal from the postprocessed response of a
population of disparity tuned complex cells, the actual gaze
direction and the actual vergence angle. Training and evaluation
of the networks are also discussed.

I. INTRODUCTION

For the depth perception humans use a number of cues, but
in this work we are focusing on the retinal binocular disparity
and the vergence angle of the eyes. There are experimental
evidences [1], [2] showing that, specific and separate tasks of
depth perception and vergence eye movements are based on
the activity of complex cells of the primary visual cortex (V1),
which in turn contain distributed representation of binocular
disparity. Vergence control models that are based on a dis-
tributed representation of binocular disparity [3], [4], usually
require first the computation of the disparity map, thus limiting
the functionality of the vergence system inside the sensitivity
range of the population of cells specialized for depth percep-
tion. As for the control of vergence larger disparities have
to be discriminated while keeping a good accuracy around
the fixation point for allowing finer refinement and achieving
stable fixations, alternative strategies might be employed.

With the use of a modular framework discussed in Sec-
tion II, we have investigated two vergence control models,
that combine the population responses without taking a deci-
sion, but extracting, directly from the population responses,
a disparity-vergence response that allows us to nullify the
disparity in the fovea, even if the stimulus presented is
far beyond the disparity sensitivity range. The first model,
similarly to [5], obtains disparity-vergence response by linear
combination of the pooled population response (see IV). Our
experiments support findings in [5], where has been shown
that the linear model can simulate ’dual-mode’ vergence
control [6] and produce accurate vergence for a simplified
experiment (fronto-parallel planar stimuli, allowed to move
only in Z-axis direction). Unfortunately, in the general case
experiments, where restrictions on the stimuli are dropped, the
linear model often produces biased results. This fact motivated
us to investigate a more sophisticated vergence control model,
which uses a convolutional neural network for the mapping
of the disparity population response to the vergence control
signal (see Section V).
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Fig. 1. The scheme of the experimental setup for vergence control model
training.

II. VERGENCE CONTROL MODEL

For the vergence control paradigm modeling we used the
framework shown in Fig. 1. This setup consists of the vergence
simulator module, the disparity detector population module,
the population response postprocessing module and the ver-
gence control network module.

A. Vergence simulator

The vergence simulator consists of a robotic head model
(RHM) and a ray-tracing engine. We used the same parameters
of the RHM as in [5] (the baseline b = 70 mm, the focal
length f0 = 17 mm and field of view ≈ 20◦). The RHM can
be controlled externally by the gaze direction (version) and
the vergence angle. Using the RHM and scene description the
ray-tracing engine renders left and right views (see Fig. 2),
which then are fed to the disparity detector population module.
In order to speed up the simulations we decided to use low-
resolution images (41× 41).

B. Disparity detectors population module

Disparity information can be extracted from a stereo image
pair by using a distributed cortical architecture [7] that resorts
to a population of simple and complex cells. The population
is composed of cells sensitive to Np × No vector disparities
δ = (δH , δV ) with Np magnitude values distributed in the
range [−∆,∆] pixels and along No orientations uniformly
distributed between 0 and π (see Fig. 3). Each simple cell
has a binocular receptive field gL(x, y) + gR(x, y) defined by
a pair of Gabor functions:

g(x, y;ψ, θ) = exp
(
− 1

2σ2
(x2
θ + y2

θ)
)

cos(2πk0xθ+ψ) (1)
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Fig. 2. An example of a simplified (a)/general (d) case synthetic scene used
by the vergence simulator to render corresponding left (b)/(e) and right (c)/(f)
eye views.

positioned in corresponding points x = (x, y) of the left and
the right images, rotated by the same angle θ with respect
to the horizontal axis, and characterized by the same peak
frequency k0 and spatial envelope σ, and by a proper binocular
phase shift (∆ψ = ψL−ψR), along the rotated axis xθ, which
confers to the cell its specific tuning to a disparity δpref =
∆ψ/2πk0, along the direction orthogonal to θ. Formally, given
IL(x) and IR(x) the left and the right images and δ(x) the
image disparities so that IL(x) = IR(x + δ(x)), for every
image position x, the response of a simple cell rs is given by:

rs(δ(x); θ,∆ψ) =
∫∫

(gL(x′ − x)IR(x′ + δ(x′))+

+ gR(x′ − x)IR(x′))dx′. (2)

The response of a complex cell rc is modeled by the sum
of the squared response of a quadrature pair of simple cells,
and its response is given by [8]:

rc(δ(x); θ,∆ψ) =r2s(δ(x); θ,∆ψ)+

+ r2s(δ(x); θ,∆ψ + π/2). (3)

For each orientation, the population is, in this way, capable
of providing reliable disparity estimates in the range between
−∆ and ∆, where ∆ = ∆ψmax/k0 can be defined as the
maximum detectable disparity of the population.

In this work we consider only single-scale architecture of
the disparity detector population, but the population can be
extended to multiscale mode, which is more expensive in
computational sense.

C. Postprocessing module

The response of the population through the postprocessing
module reaches the vergence control network (VC-net). The
actual gaze direction and actual vergence are used as an
additional input to the VC-net.

The postprocessing of the population response was different
for the two considered VC-nets. In the case of the linear
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Fig. 3. The population of binocular receptive fields for each retinal location.

network, the postprocessing was defined as a 2D pooling
over first two (spatial) dimensions of the population response
(Section IV).

On the one hand, the pooling operation reduces the amount
of data to process, but on the other hand, it has a major
drawback as it discards the spatial information about the
disparity encoded in the population response. The simulations
shows that, in the simplified case, this is still acceptable, but
not in general case (Section IV).

In experiments with the convolutional network we do not
postprocess population response externally, but let the network
to do this in the first two layers (Section V). In this case, the
postprocessing module works as an identical operator.

D. Vergence control module

This module is the main module of the model. The purpose
of the module is to convert postprocessed population response
together with the actual vergence and the gaze direction into a
new vergence angle. Virtually, this module can be represented
by any kind of paradigms, but in this work we discuss only
a linear network (Section IV) and a convolutional network
(Section V).

III. METHODS

In order to train and evaluate any model, one should provide
a way to learn model’s parameters and at least one method
to measure its performance. To this end, we adopted training
from examples approach and created a vergence databases
(see Section III-A) as a source of training/testing examples.
The evaluation we propose to do in terms of distance to the
fixation point, discussed in Section III-B.

A. Vergence database

The vergence simulator was used also for the creation of a
vergence database, which has been used for training and test-
ing the vergence control network. The database contains a set
of synthetic scenes and a set of samples. Each synthetic scene



consists of several simple (plane triangle, cube, tetrahedron
etc.) textured objects placed into room-like virtual environment
(see Fig. 2). All the textures (real-world images, checkerboard-
like images, random noise etc.) we used, were corrupted by
5% Gaussian noise in order to obtain a better response from
the population. Samples of the database consist of the gaze
direction, the actual vergence angle, the stereo pair (left and
right eyes images), the population response for the stereo pair
and the desired vergence angle. The actual vergence angle is
a distorted (with Gaussian noise) version of the desired one.

With the database it is easy to prepare training pairs. As the
input data vector is constructed from the gaze direction, the
actual vergence angle and postprocessed population response
are computed. The output consists of only one parameter: the
desired vergence angle.

B. Vergence angle vs. distance to the fixation point

Given a robotic head baseline b and a gaze direction vector
g = (gx, gy, gz)T , (‖g‖ = 1) it is possible to infer the distance
d to the fixation point (from the middle of the head’s baseline)
using the vergence angle α:

d =
b

2

(
s+

√
s2 + 1

)
, where s =

1
tanα

√
1− g2

x

(4)

and vice versa:

α = arccos
(

vTl vr
‖vl‖ · ‖vr‖

)
, where

vr = d ·g + (b/2, 0, 0)T , and

vl = d ·g − (b/2, 0, 0)T .

(5)

From the equations (4) and (5), one can see that by considering
a fixed gaze direction and fixed baseline, the vergence angle
is equivalent to the distance to the fixation point (nevertheless
they have a nonlinear relationship). We used the deviation of
the actual distance to the fixation point from the desired one
as an additional measure of vergence performance. From our
point of view, this measure is more natural compared to the
deviation of the vergence angle.

IV. LINEAR NETWORK

The first attempt in the modeling of a network for vergence
control was done with the simplest possible network consisting
of only one linear unit. The simulations have revealed, that
even this simple network is able to perform similarly to the
model from [5].

A. Population response postprocessing for the linear network

As it has been mentioned above, we have defined the post-
processing of the population response for the linear network
as 2D pooling over the first two (spatial) dimensions of the
population response with a two-dimensional Gaussian kernel
Gσ:

Pij = Gσ ∗ rijc , (6)

where rijc is population response map for i-th orientation and
j-th phase shift. The kernel Gσ has the same size nr × nc as

the size of a population response map rijc , so the result of the
convolution is a scalar value Pij .

This step drastically reduces the amount of data to pro-
cess. After pooling, the network has to process only a two-
dimensional (No×Np) pooled population response instead of
four-dimensional (nr ×nc×No×Np) array, where Np is the
number of phase shifts, No is the number of orientations.

B. Training

As it has already been mentioned in the Introduction, we
consider two cases for the experiment: a simplified and a
general case. An example of the simplified case is shown in
Fig. 2(a-c): the gaze direction of the robotic head is orthogonal
to its baseline and the stimulus is a frontoparallel plane, thus,
also orthogonal to the gaze direction. The stimulus is allowed
to move only in depth. In the general case, all restrictions on
the orientation of the gaze, as well as the stimulus position,
type and orientation, are dropped. One of the examples is
shown in Fig. 2(d-f) with the only difference in the resolution
of the rendered images (for the simulation we used much lower
resolution).

For each experiment case we have prepared several vergence
databases with the number of synthetic scenes ranging from
100 to 1000 and the number of samples from 200 to 4000.

The input vector for the linear VC-net was constructed as a
concatenation of the pooled population response (56 values),
the gaze direction (2 values) and the actual vergence (1 value),
so its dimensionality is 59. The output is a prediction of the
vergence angle, which is a scalar value. Due to the linearity
of the network, there was no reason to introduce any hidden
layers, so the linear VC-net consisted of only one linear unit.
This simplest possible vergence control network has only
60 parameters (including bias), which can be learned either
directly (using robust linear regression) or iteratively (using
gradient descent) from the training database. Not surprisingly,
both training approaches produced almost identical solutions
on the same training data in the simplified case.

C. Evaluation and results

For the evaluation of the VC-net, we have adopted the
methodology described in [5] with the next differences:
• the stimuli are allowed to move in the direction of the

gaze (not only in Z direction),
• the rendered stimuli cover 60-100% of the image area

(allowing for depth discontinuities),
• in the general case the stimuli can be not only 2D plane

rectangles but also 3D primitives (cubes or tetrahedrons),
• in the general case the stimuli can have arbitrary position

and orientation inside the workspace.
The first item is very important for the general case, when the
gaze direction is not necessarily parallel to the Z-axis.

Three standard tests (ramp, sinusoid and staircase) were
carried out for the simplified as well as the general case.
The typical results of the performance, measured in terms of
distance to the fixation point, are shown in Fig. 4.
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(a) Simplified scenario
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(b) General case scenario
Fig. 4. A typical examples of the depth-based performance plots for a linear
vergence control network in the simplified (a) and general case (b) scenarios.

The results of the evaluation of the linear VC-network
show, that in the simplified setup, it can produce an accurate
and robust vergence control using spatially pooled population
responses. The relative error (distance-based as well as angular
measure) was always less then 1% in all tests of the simplified
scenario (see Fig. 4a).

Though, in general, this approach has unpredictable system-
atic error, which in our tests was up to 7% (see Fig. 4b). The
large magnitude of the vergence error of the linear network
in the general case can be explained, from our point of view,
by the presence of the vertical disparity asymmetric patterns
(due to the arbitrary orientation and position of the stimuli)
and by the disparity discontinuities (caused by the limited
size of the stimuli). In the simplified scenario, the vertical
disparity information is symmetrically spread over the spatial
dimensions of the population response, and is discarded in the
preprocessing stage by spatial pooling. This does not happen
in the general case, so the pooled population response is biased
by the residual vertical disparity, and linear network, in turn
produces a biased vergence control signal.

This situation motivated us to investigate a more complex
paradigm for the vergence control, which should be able to
recognize particular patterns in the population responses in
the general case, and produce a proper vergence control signal.
To this purpose, we have chosen a convolutional network [9],
[10], [11], as it has proved to be one of the best paradigms
for pattern recognition.

C layer
10 feature maps

5×5
2×2

S layer
10 feature maps

C layer
16 feature maps

S layer
16 feature maps

C layer
100 feature maps

F layer
7 outputs

Input image

Fig. 5. An example of typical convolutional network.

V. CONVOLUTIONAL NETWORK

The first convolutional network (CN) appeared in the work
of Fukushima in [9] and was called Neocognitron. The
basic architectural ideas behind the CN (local receptive fields,
shared weights, and spatial or temporal subsampling) allow
such networks to achieve some degree of shift and deformation
invariance and, at the same time, reduce the number of training
parameters.

Since 1989, Yann LeCun and co-workers have introduced in
[12] a series of convolutional networks with the general name
LeNet, which contrary to the Neocognitron use supervised
training. In this case, the major advantage is that the whole
network is optimized for the given task, making this approach
useable for real-world applications. LeNet have been success-
fully applied to character recognition nonlinear-dimensionality
reduction of image-sets [13] and even to obstacle avoidance
in an autonomous robot [14].

A typical convolutional network is a feed-forward network
of layers of three types: convolutional (C-layer), subsampling
(S-layer) and fully-connected (F-layer). The C-layers and S-
layers usually come in pairs and are interleaved, and F-layers
come at the end (see Fig. 5). The output of a C-layer is
organized as a set of feature maps. Each feature map contains
the output of a set of neurons with local receptive fields.
All neurons in the feature map share the same weights, so
the feature map is responsible for a particular local visual
feature which is encoded in the weights of these neurons. The
computation of a feature map starts with a 2D convolution of
the input with a fixed kernel defined by the neuron’s weights.
A feature map can have inputs from several feature maps of the
previous layer. In order to condense the extracted features and
make them more invariant with respect to spatial deformations,
the C-layer is typically followed by an S-layer which does a
local averaging and subsampling. Each neuron in a F-layer
just does summation of bias with all weighted inputs and then
propagates the sum through a nonlinear transfer function (RBF
or sigmoid).

The network is trained in a supervised manner using back-
propagation. For the efficient training of large CNs, LeCun and
colleagues proposed a number of tricks and a modification of
the Levenberg-Marquardt algorithm [15].

A. Extended convolutional network

For the modeling of CN-based vergence control we have
developed our own version of the convolution network in
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Fig. 6. Convolutional network (and its input) used for the vergence control.

MATLAB. This network can be considered as an extension
of LeCun’s LeNet because it has the next features:

• any directed acyclic graph can be used for connecting the
layers of the network;

• the network can have any number of arbitrarily sized
input and output layers;

• the neuron’s receptive field (RF) can have an arbitrary
stride (step of local RF tiling), which means that in the
S-layer, RFs can overlap and in the C-layer the stride can
differ from 1;

• any layer or feature map of the network can be switched
from trainable to nontrainable (and vice versa) mode even
during training;

• new layer type: M-layer.

The M-layer works similarly to the C-layer with the only
difference in the subsampling operation s(x, a) = a

∑
i xi is

replaced by a softmax-like M-operation:

m(x, a) =
∑
i xie

axi∑
i e
axi

, (7)

where the receptive field is denoted by x = (x1, x2, . . . , xn).
This function m(x, a) has been chosen because its properties:

• m(x, a) ≈ max{xi}i, if a� 1 (e.g. a = 100);
• m(x, a) ≈ min{xi}i, if a� −1 (e.g. a = −100);
• m(x, a) =

∑n
i=1 xi/n, if a = 0.

B. Convolution network design

The idea behind the use of the convolutional network as a
vergence controller consist in an assumption that this powerful
network, after proper training, will be able to recognize
disparity patterns directly from the population responses, and
convert them into a proper vergence signal. The architecture of
the convolutional network, used for our experiments, is CSFF
and is depicted on Fig. 6. The main challenge in this approach
was the amount of data: the population response consists of 56
(7×8) maps of resolution 41×41 (rendered image resolution),
so the input of the network has 94136 (41 × 41 × 8 × 7)
components. In order to be able to train the network with such
high dimensional input data, we had to reduce the number of
the training parameters. The first (convolutional) layer was set
as fixed (nontrainable) with Gaussian kernels of size 19× 19
with standard deviation 6. The second (subsampling) layer has
also 56 feature maps size of which was set to 3× 3.
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(a) Simplified scenario
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(b) General case scenario
Fig. 7. A typical examples of the depth-based performance plots for a
convolutional vergence control network in the simplified (a) and general
case (b) scenarios.

C. Evaluation and results

For the evaluation of the convolutional network we have
used exactly the same tests as for the linear network (see
Section IV). The performance was very similar in both scenar-
ios (see Fig. 7). The average relative error (in distance-based
measure) for both scenarios is less than 1%. Comparing the
performances of two the networks, it is possible to conclude
that the convolutional one has a more pronounced inertia with
respect to the linear one, but it still is able to handle the general
case tasks with an acceptable accuracy and robustness. But, on
the other hand, vergence control based on the convolutional
network is much more computationally expensive than linear-
based.

VI. CONCLUSION AND FUTURE STEPS

Most of the conventional vergence control models [16], [3],
[4], [6], [17], are based on the minimization of the horizontal
disparity.

Following an approach similar to [5], we propose to avoid
explicit computation of the disparity map and extract the
vergence control signal directly from the population response,
over the ”foveal” region, of a cortical-like network orga-
nized as hierarchical arrays of binocular complex cells [7].
A neural network paradigm has been chosen for this type
of conversion/extraction procedure. Specifically, an increasing
complexity strategy in the learning process is adopted: starting



from the simplest one-unit architecture we increase the number
of units/layers until an acceptable level of generalization error
is reached.

Although the model only resort to a population of neurons
in a single scale, we demonstrate that, using a convolutional
network, accurate and fast vergence control can be achieved
in a closed loop, for different orientations of the gaze.

In the direction of the development of the vergence control
networks, our next steps of investigation are the following:
• we can allow the first (C-)layer of the convolutional

network to be trained (in a supervised or unsupervised
manner);

• we can replace the disparity detector population by addi-
tional non-trainable layers of the convolutional network;

• we can specialize the disparity detectors at different
levels in the hierarchical network architecture, in order
to explore the effect of learning specific coding and
decoding strategies for active vergence control and depth
vision.
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