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a b s t r a c t

A computational model for the control of horizontal vergence, based on a population of disparity tuned

complex cells, is presented. Since the population is able to extract the disparity map only in a limited

range, using the map to drive vergence control means to limit its functionality inside this range. The

model directly extracts the disparity-vergence response by combining the outputs of the disparity

detectors without explicit calculation of the disparity map. The resulting vergence control yields to

stable fixation and has small response time to a wide range of disparities. Experimental simulations

with synthetic stimuli in depth validated the approach.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The retinal binocular disparity is used by the brain as a source
of information to achieve depth perception and to control the
movement of the eyes in order to actively get a better perception
of the scene, on the basis of the characteristics of the scene itself.
Experimental evidences show that, though the complex cells of
the primary visual cortex (V1) are the computational substrate for
both stereopsis [1] and vergence [2], these two tasks are carried
out by two separate cortical mechanisms. The difference between
these two mechanisms is that, while the former is capable of
producing a single percept from two different retinal images, only
when the disparities are within a limited range known as Panum
fusional area [3], the latter allows us to extract a control of
vergence for wider disparities. In this way, the system is brought
back in the fusible range (FR) to ensure again the singleness of
vision.

Previous vergence models that are based on a population of
disparity detectors require first the computation of the disparity
map for the extraction of the control signals [4,5], thus limiting
the functionality of the vergence system within the range of
disparities in which the system is able to fuse the left and right
images. Making a parallel with the biological system, this means
that vergence eye movements would be reliable only inside the
Panum’s area, where they are not useful.

Although each neuron of Medial Superior Temporal (MST) area
sensitive to retinal disparity has been found to encode only some
limited aspects of the motor response for vergence eye move-

ments, the activity of the whole population directly correlates
with the magnitude, direction, and time course of the initial
vergence motor response [6,7]. In this paper, mimicking the
behavior of the cells of the MST area, we present a model that, by
combining the response of a population of complex cells, does not
take a decision on the disparity values (disparity map), but
extracts disparity-vergence responses that allows us to nullify the
disparity in the fovea, even when the stimulus disparities are far
beyond the FR. Furthermore, [8,9] suggest that vergence eye
movements are not controlled by a simple continuous feedback
system [10], but they exhibit dual-mode slow and fast responses.
From this perspective, the proposed model provides two distinct
vergence control signals: a ‘‘fast’’ signal enabled in the presence of
large disparities, and a ‘‘slow’’ signal enabled in the presence of
small disparities. The dual-mode theory postulates that a portion
of the vergence eye movements response is controlled by a
switching control strategy similar to the one that governs the
saccadic response [11]. Hence, the model presented in this paper
includes a trigger signal to switch the control between the two
modes, according to the stimulus disparities.

The paper is organized in sections as follows: Section 2 presents
the overall description of the model, including (1) the coding and
decoding strategies of binocular disparity through a population of
energy complex cells, (2) the proposed approach to construct
disparity-vergence responses usable to drive vergence eye move-
ments in a wide range of disparities, and (3) how to combine a set of
stereotyped disparity-vergence curves in a dual-mode so as to have
fast reaction for large vergence and slower but high precision control
for smaller vergence changes. Section 3 reports the results of the
model both for synthetic stimuli and a virtual environment, and in
Section 4 the behavior of our model is comparatively discussed
against psychophysical and neurophysiological data.
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2. Model description

An overview of the proposed model’s architecture is sketched
in Fig. 1. The left side diagram schematically frames the core
components of our model (grayed blocks) in the cerebro-midbrain
circuitry responsible for the generation of the vergence eye
movements: the visual information from the retina reaches
the primary visual cortex (V1) and from there it projects to the
extrastriate areas, middle temporal (MT) and medial superior
temporal (MST). MST projects to the frontal eye field (FEF), which,
in turn, projects to the supraoculomotor area (SOA) and adjacent
reticular formation around the oculomotor nucleus that contain
premotor neurons related to vergence eye movements [12,13].
The right side diagram shows the three components of the model,
from the distributed representation of the binocular disparity to
the generation of the vergence signal, as detailed in the following
subsections.

2.1. Distributed representation of binocular disparity

Disparity information is extracted from a sequence of stereo
image pairs by using a distributed cortical architecture that
resorts to a population of simple and complex cells. The
population is composed of cells sensitive to Np � No vector
disparities d¼ ðdH ; dV Þ with Np magnitude values distributed in
the range ½-D;D� pixels and along No orientations uniformly
distributed between 0 and p. Each simple cell has a binocular
receptive field gLðx; yÞþgRðx; yÞ defined by a pair of Gabor
functions (see Fig. 2a):

gðx; y;c; yÞ ¼ exp �
1

2s2
ðx2

yþy2
yÞ

� �
cosð2pk0xyþcÞ ð1Þ

positioned in corresponding points x¼ ðx; yÞ of the left and the
right images, rotated by the same angle y with respect to the
horizontal axis, and characterized by the same peak frequency k0

and spatial envelope s, and by a proper binocular phase shift
ðDc¼cL-cRÞ, along the rotated axis xy, which confers to the cell
its specific tuning to a disparity dpref

y ¼Dc=2pk0, along the
direction orthogonal to y. Formally, given ILðxÞ and IRðxÞ the left
and the right images and dðxÞ the image disparities so that
ILðxÞ ¼ IRðxþdðxÞÞ, for every image position x, the response of a
simple cell rs is given by

rsðdðxÞ; y;DcÞ ¼
ZZ

gLðx
0�xÞIR½x

0 þdðx0Þ�þ � � � þgRðx
0�xÞIRðx

0Þdx0

ð2Þ

The response of a complex cell rc is modeled by the sum of the
squared response of a quadrature pair of simple cells, and its
response is given by [14] (see Fig. 2 b)

rc½dðxÞ; y;Dc� ¼ r2
s ðd; y;DcÞþr2

s ðd; y;Dcþp=2Þ ð3Þ

Accordingly, rc has its maximum when the product of the
magnitude of the stimulus disparity d and the spatial peak
frequency equals the phase difference in the binocular receptive
field [15]. The population is, in this way, capable of providing
reliable disparity estimates in the range between -D and D, where
D¼Dcmax=2pk0 can be defined as the maximum detectable
disparity of the population.

It is worth noting that the population of complex cells are, by
construction, tuned to oriented disparities, i.e. jointly tuned to
horizontal ðdHÞ and vertical disparities ðdV Þ. In general, indeed, the
retinal disparity is a two-dimensional (2D) feature and the full
decoding of the population response would require the proper
solution of the aperture problem [17]. This can be achieved, by
example, through the intersection of the constraints provided by
the different orientation channels (cf. [4]). If one proceeds in such
a way that is by recovering the full disparity vector, the disparity
detectability range would still be limited to 7D, and the
horizontal (vertical) component of the full disparity vector will
then used for the control of horizontal (vertical) vergence. Unless
one uses computationally expensive multiscale techniques for
widening the disparity detectability range, this approach would
considerably limit the working range of the vergence control. As
for the control of vergence, larger disparities have to be
discriminated while keeping a good accuracy around the fixation
point for allowing finer refinement and achieving stable fixations,
alternative strategies might be employed to gain effective
vergence signals directly from the complex cell population
responses, without explicit computation of the disparity map.
To this end, we can map the 2D disparity feature space into the 1D
space of the projected horizontal disparities, where the orienta-
tion y plays the role of a parameter. More precisely, by assuming
dV ¼ 0, the dimensionality of the problem of disparity estimation
reduces to one, and the orientation of the receptive field is used as
a degree of freedom to extend the sensitivity range of the cells’
population to horizontal disparity stimuli. In this way, each
orientation channel has a sensitivity for the horizontal disparity
that can be obtained by the projection of the oriented phase
difference on the (horizontal) epipolar line in the following way:

dyH ¼
Dc

2pk0cosy
ð4Þ

Fig. 3a shows the horizontal disparity tuning curves obtained
from the population for different orientations of the receptive
fields. To decode the horizontal disparity at a specific image point,
the whole activity of the population of cells, with receptive fields
centered in that location, is considered. By using a center-of-mass
decoding strategy, the estimated horizontal disparity dest

H is

Fig. 1. (left) Simplified scheme of the neural circuitry involved in the control of

vergence eye movements. Abbreviations: V1, primary visual cortex; MT, medio

temporal area; MST, middle superior temporal area; FEF, frontal eye fields; SOA,

supraoculomotor area. The grayed blocks represent the core components of the

model present in this paper. (right) Schematic representation of the modeled. The

left and right images are processed by a population of disparity detectors, inspired

by complex cells of area V1. The population produces a distributed representation

of the retinal disparity, and through convolution with weighting kernels it is

decoded in order to obtain a family of vergence cells that are able to provide a

direct vergence motor response, in accordance with the experimental evidences in

area MST. Since the task is to drive vergence eye movements so as to improve the

fixation and the estimation of disparity, the information is gathered only from the

central (parafoveal) portion of the visual field (white areas).
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obtained by

dest
H ¼

PNp

i ¼ 1

PNo

j ¼ 1

Dci

2pk0cosyj
rij

c

PNp

i ¼ 1

PNo

j ¼ 1 rij
c

ð5Þ

where rij
c denotes the response of the complex cell characterized

by the i-th phase difference and by the j-th orientation. The
dashed line plots in Fig. 3 b–c show the resulting disparity curves
obtained by population decoding. The estimate of the disparity
can be considered correct when the stimulus disparity is within
7D. By analyzing the tuning curves of the population (see Fig. 3
a) we observe that the peak sensitivity of cells that belong to a
single orientation channel is uniformly distributed in a range that
increases with the orientation angle y of the receptive field, as the
horizontal projection of the frequency of the Gabor function
declines to zero. Thus, applying the center of mass decoding
strategy, separately for each orientation, we can obtain j different
estimates of the disparity:

dest
H;yj
¼

PNp

i ¼ 1

Dci

2pk0cosyj
rij

c

PNp

i ¼ 1 rij
c

ð6Þ

It is worthy to note that the increase of the sensitivity range, as
the orientation of the receptive fields deviates from the vertical,
comes at the price of a reduced reliability and accuracy of the
measure (as an extreme case, horizontal receptive fields are
unable to detect horizontal disparities, i.e., dy ¼ 0

H -1). In any case,
the estimate of the disparity can be considered correct in a range
around ½-D;D�, only.

Moreover, since the 1D tuning curves of the population were
obtained under the assumption of horizontal disparity only, when
the vertical disparity in the images differs from zero, the
correctness of estimate of the actual component of the horizontal
disparity has to be verified. We observe that (see Fig. 3 b and c, top
row), the disparity estimated by the whole population is unaffected
by nonnull vertical disparities, as well as the estimate obtained by

the orientation y¼ 0 (vertically oriented cells are indeed, by
definition, sensitive to horizontal disparity only). On the contrary,
the estimated disparity obtained for ya0 shows a dependence on
vertical disparity that increases with y (see Fig. 3 c, middle and
bottom row), and leads to a systematic error response.

2.2. Control signal extraction

A desired feature of disparity-vergence curves is an odd
symmetry with a linear segment passing smoothly through zero
disparity, which defines critical servo ranges over which changes
in the stimulus horizontal disparity elicit roughly proportional
changes in the amount of horizontal vergence eye movements,
Da¼ pdH , where a is the vergence angle. Starting from the
estimated disparity curves shown in Fig. 3 b, we can exploit the
responses at different orientations to design linear servos that
work outside the reliability range of disparity estimation. Yet, we
have to cope with the attendant sensitivity to vertical disparity,
which is an undesirable effect that alters the control action.
Hence, given a stimulus with horizontal and vertical disparity dH

and dV , we want to combine the population responses in order to
extract a vergence control proportional to the dH to be reduced,
regardless of any possible dV . We demonstrate that such disparity
vergence response can be approximated by proper weighting of
the population cell responses where disparity tuning curves act as
basis functions. Due to these considerations, the population
responses are combined with two very specific goals: (1) to
obtain signals proportional to horizontal disparities, (2) to make
these signals be insensitive to the presence of vertical disparities.
The disparity vergence response curves rk

v are obtained by a
weighted sum of the complex cell responses, for the different
orientations and disparity tuning, over a spatial region related to
the parafoveal area (see Fig. 4) of approximately 51 [3]:

rk
v ¼

XNp

i ¼ 1

XNo

j ¼ 1

wk
ijr

ij
c ð7Þ

Fig. 2. Architectural resources for the distributed representation of the disparity. (a) The population of the model binocular simple cell receptive fields for each retinal

location. For each spatial orientation y, the binocular simple cell response is obtained by summing the response of a left receptive field characterized by a phase cL ¼ 0,

with a right receptive field characterized by one of the Np phases in the range ð�p;pÞ. (b) The complex cells binocular energy unit for a single orientation channel is

constructed as the squared sum of a quadrature pair of simple cells. The green and the red pathways relate to the monocular ‘‘quadrature pair’’ of left and right simple cell

receptive fields, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where the index k denotes the different kind of the desired
vergence response curves. Referring to a common classification
[16] we divide the V1 cells into five categories: near (NE) and far
(FA) dedicated to coarse stereopsis, and tuned near (TN), tuned far
(TF) and tuned zero (T 0) for fine stereopsis. The weights wk

ij are
obtained through a recursive LMS algorithm. Actually, to decrease
the computational cost, the complex cell responses can be first
averaged in a parafoveal region and then decoded to compute the
vergence cells rk

v , producing the same results. From the control
point of view, we assume that small values of vertical disparities
do not affect the disparity-vergence curves. Moreover, to mildly
constraint the solution of the problem and, in the meantime to
ensure a good control stability, we pose the VD independence
constraint for HDC0, only. Under this assumption, we can design
the disparity-vergence curves that define the visual servos by
considering the tuning curves obtained separately for VD=0 and
HD=0 (i.e. the orthogonal cross-section of the oriented 2D
disparity tuning curves of the binocular energy model). More
precisely, the profile of the desired vergence curve uk

H is
approximated by a weighted sum of the tuning curves for
horizontal disparity rcðdH; y;DcÞ. To gain the insensitivity to
vertical disparity we add a constraint term in the minimization
formula. This term ensures that the sum of the vertical disparity
tuning curves rcðdV ; y;DcÞ, weighted with the same wk,
approximates uk

V . To overcome the difficulties of approximating
a constant with a combination of a limited number of periodic
basis functions, we impose uk

V to have a profile that is mildly

constant as the one that can be obtained by summing the tuning
curves all together ðuk

V ¼
PNp

i ¼ 1

PNo

j ¼ 1 rij
c ðdV ÞÞ. Hence, the weights

wk are obtained by minimizing the following functional:

EðwkÞ ¼
XNp

i ¼ 1

XNo

j ¼ 1

rij
c ðdHÞw

k
ij�u

k
H

������
������

2

þ � � � þl
XNp

i ¼ 1

XNo

j ¼ 1

rij
c ðdV Þðw

k
ij�1Þ

������
������

2

ð8Þ

where l40 balances the relevance of the second term over the
first. In our simulations we fixed l¼ 1 in order to give the same
relevance to both dH and dV . To test the functionality of the
model, at this stage, we used the same kind of stimuli adopted to
compute the disparity tuning curves of the cells, so that we
expect the disparity vergence tuning curve to be the same we
drew from the minimization. The stimuli have a disparity
varying in the same range used for the tuning curves, and the
control computed has the same shape of the desired curves
(Fig. 4 b). A drawback that arises is that if the image contrast is
lowered, disparity vergence tuning curves hold the same shape,
but their gain is consequently lowered, with the effect that the
speed of the vergence movements is modulated by the image
contrast. The estimated disparity does not show this effect
because the center of mass decoding strategy means to take a
decision on the disparity value, regardless to the contrast of
the stimulus (cf. [18]). By analogy with the formula used to
decode the disparity, we can introduce the same normalization
term to let the system work in the proper way independently

Fig. 3. (a) Disparity tuning curves of complex cells at different orientations: the increase of the slant of the receptive field produces an apparent increase of the range of

reliability of the estimated disparity. (b) Estimated horizontal disparity using single orientation channels (solid lines) in the presence of horizontal disparity only ðdV ¼ 0Þ.

(c) Estimated horizontal disparity using single orientation channels (solid lines) in the presence of a fixed amount of vertical disparity ðdV a0Þ. Dashed line plots refer to the

horizontal disparity estimates obtained by combining all the orientation channels.
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of the image contrast:

rk
v ¼

PNp

i ¼ 1

PNo

j ¼ 1 wk
ijr

ij
cPNp

i ¼ 1

PNo

j ¼ 1 rij
c

ð9Þ

2.3. Signal choice

With reference to the five categories of the disparity-vergence
curves, it is plausible to think that the first two generate the fast
and coarse component and the others the slow and fine
component of the vergence movements. In practice the fast-
coarse control is given by long¼ rNE-rFA, while the slow-fine is
given by short¼ rTN�rTF (see Fig. 4). The SHORT control signal is
designed to proportionally generate, in a small range of
disparities, the vergence to be achieved, and allows a precise
and stable fixation (Fig. 4 b). Out of its range of linearity, the SHORT

signal decreases and loses efficiency to the point where it changes
sign, thus generating a vergence movement opposite to the
desired one. On the contrary for small disparities the LONG control
signal yields overactive vergence signal that make the system to
oscillate, whereas for larger disparities it provides a rapid and
effective signal.

The role of the rT 0 signal, is to act as a switch between the SHORT

and the LONG controls. When the binocular disparities are small, rT

0 is above a proper threshold TH, and it enables the SHORT control
(see white regions in Fig. 4 b). On the contrary, for large stimulus
disparities, rT 0 is below the threshold and it enables the LONG

control (see gray regions in Fig. 4 b).

An straightforward but meaningful effect that arises from
calculating the SHORT and the LONG controls in a differential way is a
strong robustness to noise. If we add a Gaussian white noise to the
population response, both the decoding of the disparity and the
computation of the rk

v signals, would be affected. Since the
weights wk are normalized, it is easy to demonstrate that the
noise terms on rNE and rFA cancel each other while differentiating
to compute the LONG control, and so it happens for the SHORT one.
Simulation results evidenced that, when one adopts the differ-
ential SHORT and LONG control signals, the S/N ratio is � 6 dB higher
than the input S/N ratio for the complex cell responses.

3. Results

3.1. Test with RDS

We tested the proposed model with synthetic stimuli
consisting of random dot stereograms (RDS) in which the
stereo image pairs are shifted horizontally. Specifically, we
applied horizontal disparity steps varying from �3D to 3D. The
model works in a perception-action loop in which the vergence
movements are simulated, reducing step by step the disparity
between the left and right images by an amount proportional to
the vergence control. The vergence movement is computed
both through the estimation of the disparity dest

H and through
the vergence signals rk

v . For a direct comparison of the vergence
control performance, we showed the percentage of vergence
movement accomplished by the two mechanisms for different

Fig. 4. (a) Extraction of the vergence control signals: in each image location, the disparity is encoded by the population of disparity detectors, i.e. the complex cells rij
c . The

population response is decoded through different weighted summations in order to extract five signals rNE, rFA, rTN, rTF, and rT 0. These signals are combined in a differential

way to obtain the LONG and SHORT controls, whose interplay is regulated by the T 0 signal. (b) The uk
H target curves to be approximated by the LMS minimization (top row), and

the effective LONG (solid line), SHORT (dashed lines), and T 0 signals, computed by the model stimulated with a random dot stereograms (RDS). When the disparities in the

scene are small T 0 is above a proper threshold TH and it enables the SHORT control (white region), otherwise it enables the LONG control (gray region).

A. Gibaldi et al. / Neurocomputing 73 (2010) 1065–1073 1069
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time steps (see Fig. 5a). Since the behavior of the two
mechanisms is symmetric with respect to zero disparity, we
show the positive semiaxis, only. A percentage value higher
than 100 indicates an overshoot of the movement, whereas a
value lower than zero indicates a movement in the opposite
(i.e. wrong) direction. After the first time step (Fig. 5 a top row),
if the stimulus disparity is within D, the behavior is slightly
better for dest

H (white bars), whereas outside this range it
produces a vergence movement that is the opposite of the one
requested. The rk

v signals (black bars) produce almost the same
movement of dest

H for small disparity steps, but they are able to
achieve slow but effective vergence movements up to the limit
of the tested range. At the second time step (Fig. 5 a middle
row), for disparity steps smaller than D, both the mechanisms
reach the target, and for higher disparities the behavior is
similar to the previous time step. After 10 time steps (Fig. 5 a
bottom row), we observed that dest

H was able to work in the
proper way only for disparities within D, whereas rk

v was able to
reach the target in all the tested range. The switching behavior
from the LONG to the SHORT mode in a simulated vergence
response is shown in Fig. 5 b. The SHORT mode plays the role
when the stimulus disparity falls into the linear servo range of
its disparity-vergence response (see Fig. 4 b), otherwise the
control relies on the LONG mode.

3.2. Test with a frontoparallel plane

Considering a virtual environment in which the eyes, char-
acterized by null version and elevation angle, and by a vergence
angle a, look at a plane with a random dot texture (Fig. 6a). The
plane is at a depth Z with respect to the cyclopic position, and
perpendicular to the binocular line of sight. The interocular
distance is b¼ 70 mm, the nodal length is f0 ¼ 17 mm, and the
stimulus is projected onto the retinal plane, with a size of 6 mm,
thus considering a field of view of almost 201. At the first time
step the plane and the fixation point are at the same Z, then the
plane is moved to a new depth, and the vergence angle starts to
change step by step, until the fixation point reaches the depth of
the plane. Considering the position of the eyes, the vergence

variation is applied symmetrically: DaR ¼ -DaL ¼ -arctanðr=2f0Þ,
where r is computed by considering the weighted average of the
vergence responses rk

v or of the estimated disparities dest
H . The area

where the average is computed, is a neighborhood of the fovea of
51, and its size is based on physiological experiments [3] that
show that it is the maximum extent of the retina where the
disparity stimulus is integrated to drive vergence eye movements
in humans.

The first test considers a fixed frontoparallel plane at a given
distance, while the eyes are fixating on the surface of the plane.
The plane steps back and forth by an amount that varies from trial
to trial. Fig. 6 b shows that a control based on the disparity
computation produces the correct change of the vergence angle
(dotted lines), when the size of the step is restrained. On the other
hand, the implemented model is able to produce a faster change
of the fixation point (solid lines), and, even for larger depth steps,
the model is able to ensure a reliable vergence control. Moreover,
once the fixation point has reached the plane in depth, the
disparity in the fovea is approximately zero and the system is able
to ensure a stable fixation.

The second test considers a frontoparallel plane whose
position in depth varies continuously in time as a ramp and a
sinusoid. The slope of the ramp is varied from 0.5 cm per time step
to a pure step (Fig. 7a). While for small values only the SHORT

control is enabled, in the other cases the initial part of the
vergence is produced by the LONG one, and the interplay between
the two controls is very similar to the one observed in the
transient and sustained components of the physiological
responses [9]. In support of this hypothesis, in case of both a
divergent and a convergent ramp, the simulated vergence
movements are qualitatively very similar to the results obtained
in physiological experiments. In the same way, the frequency of
the sinusoid that controls the depth of the plane was varied
between 7 and 38 time steps, and again the simulated results
(Fig. 7 b) are qualitatively similar to the experimental data [9].
Increasing the frequency, it is evident a transition from a slow and
smooth tracking of the plane, due to the SHORT control, to a
combination of the LONG and SHORT controls. When the frequency
becomes too high, the system is no more able to follow the
stimulus in depth.
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Fig. 5. Behavior of the vergence control tested with a RDS characterized by a disparity step in a range varying from -3D to 3D. (a) Comparison of the percentage of vergence

achieved by the model using the estimated disparity dest
H (white bars), and using the rk

v signals (black bars). Only the positive axis is represented because the response is

symmetric around zero disparity. The graphs represent the status of the system after 1, 2 and 10 time steps. At each time step the rk
v signals are able to reach the target in

the whole tested range, while dest
H yields a wrong control for disparities larger than D. (b) Time course of the stimulus disparity step, after step-by-step the vergence

corrections. On each trace the interplay between the LONG and SHORT control is evidenced. The LONG control (open circles) is active when disparities are above a defined

threshold value (gray area, cf. Fig. 4 b), and the SHORT control (crosses) is active when the disparities are below that threshold (white area).
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Fig. 6. (a) The simulated experimental setup, consisting of the eyes looking at a plane characterized by an RDS pattern, and perpendicular to the binocular line of sight. (b)

Behavior of the vergence control using rk
v vs. dest

H in case of a diverging step. The eyes are forced to keep the straightforward gaze direction while changing the vergence

angle. The short-dashed line plots represent the three depths of the stimulus plane. The disparity-based and model vergence controls are denoted by long-dashed and solid

line plots, respectively. The symbols on the stimulus/control plots distinguish the amount of the disparity step: white circles refer to a step of DZ ¼ 0:1 m, gray circles to a

step of DZ ¼ 0:2 m, and black circles to a step of DZ ¼ 0:3 m. The rk
v controls yield correct fixations on the target planes in all the presented cases, whereas the dest

H controls

produce a wrong movement for a depth step above a certain threshold (long-dashed lines, black circles).
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Fig. 7. (a) Time course of the fixation point to diverging ramps with different slopes, and (b) to sinusoids characterized by different periods. The dashed line represents the

depth of the stimulus and the solid one is the depth of the fixation point.
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4. Discussion and conclusions

In conclusion, instead of a continuous and linear feedback
system, where a single vergence control proportional to the
estimated disparity is used [4,5], the model here proposed relies
on two controls with different and specific tasks. The LONG signal
produces a coarse control to yield inaccurate but fast vergence
movements for disparities that are far outside the FR. The SHORT

signal, instead, yields a precise ad smooth movements for small
vergence request.

The proposed model can be compared with neurophysiological
evidences in visual cortical areas.

Disparity selective cells are ubiquitous in the dorsal stream
of the visual system (area V1 [1,16,19–22], MT [23,24], MST
[25–27]). It has been often pointed out that these cells provide a
direct measure of vergence error and so have the potential to
provide the primary drive for vergence eye movements like
those described in our paper. More specifically, Takemura
reported that the earliest vergence eye movements were
attenuated after chemical lesions in MST [27]. A further
quantitative analysis [7] revealed that 20% of the neurons
recorded in MST were sensitive to disparity steps applied to
large textured patterns, and the associated vergence velocity
response were well correlated with their summed activity.
Although there is no direct neurophysiological evidence
supporting the weighted averaging of complex cell responses,
the hierarchical convergence principle can be advocated to
motivate as a first approximation, the biological plausibility of
our model. The receptive field at a given stage can be obtained
by aggregating overlapped receptive fields of cells of the
previous stage. In this way, the disparity tuning curves
observed in MT and MST cells can be inherited by the previous
area (V1). From this perspective, the archetypal disparity
tuning curves obtained by our model (rNE, rFA, rTN, rTF, rNET0,
see Fig. 4 b) are referable to the different groups used by
Takemura [6] to cluster MST disparity sensitivities. From direct
combination of these archetypes we derive the vergence motor
commands, in a similar but simplified way with respect to the
one proposed by Takemura, because neurophysiological tuning
curves have a larger variability than our archetypes.

From the analysis of the response amplitude of vergence
movements to step disparity stimuli in humans, Alvarez et al. [11]
pointed out that at least two control modes may mediate a single
vergence response, and the second component is generated if the
primary one does not reach at least the 80% of the stimulus
amplitude. Since the saccadic and the vergence systems share
several features, this behavior predicts that the vergence eye
movements should be controlled by a switching component
similar to the one that characterizes the saccades, even if there are
no experimental evidences of neural correlates of such a
mechanism. Moreover, the amplitude and the frequency of the
vergence response in humans increase with stimulus velocity, and
this suggests that the switching mechanism is triggered by an
error between the stimulus and the response, and that this error
could be obtained from visual feedback. From this perspective, the
T 0 signal, indeed produces the desired error, because when the
stimulus amplitude is large, it is under the defined threshold and
activates the LONG signal, which can be related to the primary
component. The resulting vergence movement reduces the
stimulus amplitude. The visual feedback produces an increase of
T 0, switching the vergence control to the SHORT signal, related to
the secondary component.

Even though the model does not take into account the eye
balls and the eye muscles, so that the movements take place
with no inertia, the vergence angle shows a behavior similar to
the one that has been observed in psychophysical data. More

precisely, considering the experimental responses of different
subjects to a divergent ramp, reported in [9], the model produces
a similar overshoot for ramps with high speed, due to the LONG

control, after which the SHORT control activates and produces a
fine refinement of the vergence to the extent to which it yields a
stable fixation on the surface of the target plane. On the other
side, with both ramps with lower speed, and with sinusoids with
a large period, the SHORT control is able to achieve a smooth and
continuous tracking of the plane moving in depth. Moreover,
for both ramps and sinusoids, it is possible to observe an
interplay between the two controls similar to the one between
the transient and the sustained components of vergence eye
movements.
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