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Abstract

Phase-based optical flow algorithms are characterized
by high precision and robustness, but also by high com-
putational requirements. Using the CUDA platform, we
have implemented a phase-based algorithm that maps ex-
ceptionally well on the GPU’s architecture. This optical
flow algorithm revolves around a reliability measure that
evaluates the consistency of phase information over time.
By exploiting efficient filtering operations, the high inter-
nal bandwidth of the GPU, and the texture units, we obtain
dense and reliable optical flow estimates in realtime at high
resolutions (640×512 pixels and beyond). Even though the
algorithm is local and does not involve iterative regulariza-
tion, highly accurate results are obtained on synthetic and
complex real-world sequences.

1. Introduction

The recovery of visual motion or optical flow from a
sequence of images is crucial for autonomous navigation
through complex environments. Dense optical flow fields
contain a large amount of information that can be used to
extract self-motion, to describe the three dimensional struc-
ture of the environment, to detect interesting events such as
independently moving objects, to recognize actions, etc.

A wide variety of optical flow algorithms have been in-
troduced in the past. An important distinction can be made
between local and global methods. The first class only
uses the intensity information in a small region surrounding
the pixel [10], whereas the second class enforces additional
global constraints (e.g. smoothness of the optical flow field)
[9]. Local methods are very simple and straightforward to
implement, but typically the results are not very precise.
Global methods on the other hand deliver highly accurate
estimates but require a lot of parameter tuning and iterative
optimization. Both classes usually employ the assumption
that brightness remains constant over the sequence.

Filter-based approaches, in particular those that employ
phase information, provide a middle ground, in that they

deliver precise and reliable estimates, that more closely re-
semble those obtained with global methods, but without
the complex parameter tuning and iterative optimization re-
quired by the latter.

Phase-based techniques towards the computation of op-
tical flow were introduced by Fleet and Jepson [5] and have
been shown to be more accurate than other local methods
[2]. This is mainly due to the fact that phase information is
robust to changes in contrast, scale, orientation, and speed
[5]. The main drawback of phase-based techniques, and the
reason why current realtime implementations rely on dedi-
cated hardware [4] (these implementations usually focus on
binocular disparity estimation), is the high computational
load associated with the filtering operations.

We demonstrate here that, using modern graphics hard-
ware, it is possible to estimate reliable optical flow fields
with these techniques at very high resolutions and frame
rates. We use a modified version of Fleet and Jepson’s al-
gorithm which contains a reliability measure that evaluates
the consistency of phase information over time [7]. In addi-
tion, this algorithm has been extended with a coarse-to-fine
control strategy, as in [13].

We first discuss the algorithm and its implementation in
more detail, and then demonstrate its performance on syn-
thetic and real-world sequences.

2. Phase-based Optical Flow

In this section we discuss the efficient filterbank used
and we provide details on the multiscale phase-based op-
tical flow algorithm [7, 13].

2.1. Filterbank

For a specific orientation θ, the spatial phase at pixel lo-
cation x = (x, y)T can be extracted using 2D complex Ga-
bor filters:

G(x, fθ) = e−|x|2/σ2
ei x·(2πfθ) , (1)

with peak frequency fθ = (fx,θ , fy,θ)T. A highly effi-
cient spatial-domain implementation of a Gabor filterbank
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Figure 1. Even (top row) and odd (bottom row) filters used to ex-
tract spatial phase at eight orientations. The entire filterbank re-
sponse can be obtained by appropriately combining the responses
of 24 1D convolutions with 11-tap filters.

has been proposed in [11]. The filters introduced there
are tuned to a very high frequency (|fθ| = 1/4 pixels−1),
and separability [8] and symmetry considerations were ex-
ploited to obtain responses at four orientations using only
12 1D convolutions with 11-tap filters. Since the optical
flow algorithm presented here relies on an orientation vot-
ing mechanism, responses at a larger number of orientations
are preferable. For this reason, we compute phase at eight
orientations. Following a similar procedure as in [11], the
required responses can be obtained on the basis of only 24
1D convolutions (again using 11-tap filters). The effective
filterbank is depicted in Fig. 1.

2.2. Phase-based Optical Flow using Spatial Filter-
ing

The filter response, obtained by convolving the image,
I(x), with the oriented filter from Eq. 1 can be written as:

R(x) = (I ∗G)(x) (2)

= ρ(x)ei φ(x) (3)

= C(x) + i S(x) . (4)

Here
ρ(x) =

√
C(x)2 + S(x)2 , (5)

and
φ(x) = arctan[S(x)/C(x)] , (6)

are the amplitude and phase components, and C(x) and
S(x) are the responses of the quadrature filter pair. The
∗ operator depicts convolution. Phase-based techniques
center around the assumption that constant phase surfaces
evolve according to the motion field [5]. Accordingly,
points on an equi-phase contour satisfy φ(x, t) = c, with
c a constant. Similar to the brightness constancy assump-
tion, this phase constancy assumption can be transformed
into a phase gradient constraint:

∇φ · v + ψ = 0 , (7)

where ∇φ = (δφ/δx , δφ/δy)T is the spatial phase gradi-
ent, v = (vx, vy) is the optical flow, and ψ the temporal
phase gradient, δφ/δt. Due to the aperture problem, only

the velocity component along the spatial phase gradient can
be computed (normal flow):

(∇φ · v)
∇φ
|∇φ| = −ψ ∇φ

|∇φ| . (8)

This is identical to:

|∇φ| c = −ψ ∇φ
|∇φ| , (9)

where c is the velocity component along the spatial phase
gradient. We then obtain:

c =
−ψ
|∇φ|

∇φ
|∇φ| . (10)

Under a linear phase model, the spatial phase gradient can
be substituted by the radial frequency vector, 2πfθ [6]. In
this way, the component velocity, cθ(x), at pixel x and for
filter orientation θ, can be estimated directly from the tem-
poral phase gradient, ψθ(x):

cθ(x) = −ψθ(x)
2π|fθ|

fθ
|fθ| . (11)

At each location and for each orientation, the temporal
phase gradient is estimated on the basis of the evolution
of the spatial phase in time. It is obtained by solving the
following linear model in the least-squares sense:

φθ(x, t) = a+ ψθ(x)t . (12)

The intercept, a, is discarded. To cope with the periodicity
of the phase, the phase is first unwrapped sequentially from
φθ(x, 2) up to φθ(x, n), where n is the number of frames in
the short sequence used (n > 2). We use a simple unwrap-
ping technique that only considers the (unwrapped) phase at
the previous time instance. The reliability of each compo-
nent velocity is measured by the mean squared error (MSE)

of the linear fit,
∑

t

(
∆φθ(x, t)

)2

/n:

∆φθ(x, t) =
(
a+ ψθ(x)t

)
− φθ(x, t) . (13)

Note that this reliability measure examines the consistent
evolution of phase information in time, and is thus more
closely related to the concept of motion than most other
measures that examine the variability of intensity in space.
A component velocity is considered reliable if its MSE is
below a certain threshold, τl (the phase linearity threshold).
Each reliable component velocity provides a constraint on
the full velocity:

|cθ(x)| = v(x)T
cθ(x)
|cθ(x)| = v(x)T

fθ
|fθ| . (14)



If several reliable component velocities with different ori-
entations are present, the corresponding constraints can be
combined to estimate the full velocity. Provided a min-
imal number of component velocities at pixel x are reli-
able, they are integrated into a full velocity by means of an
intersection-of-constraints procedure:

v∗(x) = arg min
v(x)

∑
θ∈O(x)

(
|cθ(x)| − v(x)T

cθ(x)
|cθ(x)|

)2

,

(15)
where O(x) is the set of orientations for which reliable
component velocities have been estimated. Contrary to
most other approaches, estimating the full velocity from
component velocities requires information from the current
pixel only in this algorithm. This is possible since spatial
information has already been collected in the filtering stage.

The entire procedure discussed in this section requires
three parameters: the number of frames in the short se-
quence, the minimal number of reliable component veloc-
ities, and the phase linearity threshold. In the remainder
of the paper, the first two parameters are fixed to five and
four respectively. Only the linearity threshold is adjusted
according to the noise level of the sequence.

2.3. Multiscale Optical Flow

Due to phase periodicity, phase-based techniques can
only detect shifts up to half the filter wavelength. To extend
this range, a coarse-to-fine control strategy can be used [6].
An efficient solution involves the use of a Gaussian pyra-
mid [1], in which each level is separated by an octave scale.
Starting from the original image resolution at pyramid level
k = 1, the next level, k + 1, is obtained by blurring the
images with a Gaussian kernel, g(x), and subsampling:

Ik+1(x) = (S(g ∗ Ik))(x) . (16)

The subsampling operator, S, reduces the image resolution
to half the resolution of the previous level. The original
filters (Eq. 1) are now applied to each level of the pyramid:

Rk(x) = (Ik ∗G)(x) . (17)

By applying the original filters to the lower resolution im-
ages, the largest detectable shift effectively doubles at each
pyramid level.

The control strategy starts at the top of the pyramid, level
k. Using the optical flow estimate obtained at that resolu-
tion, vk, the phase estimate at the next higher resolution,
φk−1, is warped in such a way that the estimated motion is
removed [3]:

pk−1(x, t) = φk−1
(
x − 2 · vk(x) · (tc − t) , t

)
, (18)

where tc = (n + 1)/2 is the index of the center frame (as-
suming an uneven number of frames). Since the optical flow

estimate has been computed at the lower resolution, it needs
to be doubled first. The factor (tc − t) ensures that each
pixel in the sequence (t = 1, 2, . . . , n) is warped to its cor-
responding location in the center frame (t = tc). Bilinear
interpolation is used to perform these warps with subpixel
accuracy. Next, the warped phase, pk−1, is used to compute
the residual motion. Since a large component of the motion
has now been removed, this residual motion is more likely
to be within the range of the filters applied to that level. The
new optical flow estimate, vk−1, is then obtained by adding
the residual motion to 2 · vk. This process is repeated until
the pyramid level corresponding to the original image reso-
lution is reached.

The optical flow algorithm presented here is particularly
suitable for this warping strategy since it uses strictly local
information. Only optical flow vectors that can be com-
puted reliably (obtained on the basis of a sufficient number
of reliable component velocities) at the highest resolution
are retained. In other words, if the refinement made at the
highest resolution to a lower resolution estimate (that was
reliable at that lower resolution) is unreliable, the flow vec-
tor is discarded. In this way, overly smooth flow fields are
avoided.

3. GPU Implementation

The algorithm explained in the previous section is ide-
ally suited for a GPU implementation for a number of rea-
sons. First, it relies extensively on convolution operations.
If we compare convolution times using the CUDA Soft-
ware Development Kit (CUDA SDK) implementations for
GPU and CPU, we obtain a 40-fold speed-up with a Geforce
8800 GTX compared to a 2.4 GHz Core 2 Quad processor
(using a single core) when filtering a 640×512 image with
an 11 taps filter (the speed-up factor goes up to about 120
at higher resolutions). Second, the Gabor image represen-
tation is much larger than the image itself (our filterbank
returns for each scale 16 values per pixel). Although the
richness of this representation enables a variety of applica-
tions, it also requires a large bandwidth. Third, the coarse-
to-fine control strategy involves many warping operations,
which can be handled by the GPU’s texture units. We next
discuss the implementation of the algorithm in more detail.

3.1. Gabor Pyramid

All 2D separable convolutions required to construct the
image and Gabor pyramids are performed using the highly
efficient implementation available in the CUDA SDK. A
number of simple kernels are used to subsample the image
for the image pyramid construction, and to combine the 1D
convolution responses in the different ways required for the
Gabor filter response construction. The filtering sequence
and filter combination operations have been organized so as
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Figure 2. (A) Layout of the texture array containing the even and odd filter responses for 8 orientations at resolution 640×512 pixels. (B)
Circular buffer state at t=5. The five texture arrays contain the filter responses of the first five frames and the texture references point to the
consecutive arrays. (C) At the next time instance, t=6, the texture array containing the oldest frame’s filter responses is overwritten with
the new frame’s filter responses. The texture references are remapped to accommodate this: T1 now points to array 2, T2 to array 3, . . . ,
T5 to array 1.

to minimize memory transfers. All Gabor filter responses
for a particular frame, at a particular scale, are tiled in a
single texture array. The layout of this texture array is illus-
trated in Fig. 2(A) for an example resolution of 640×512.

3.2. Optical Flow

After the filtering stage, the phase is computed, warped
and unwrapped, and the component velocities (and their re-
liability) are computed and integrated into the full velocity.
All these steps are performed using a single kernel that op-
erates on a single pixel. During the different steps of com-
ponent velocity computation, the five subsequent phase val-
ues are stored in shared memory. The phase warping step
relies heavily on the GPU’s texture units. In our implemen-
tation, we do not warp the phase, but rather the Gabor filter
responses (and recompute phase afterwards). In this way,
bilinear interpolation can be used to achieve subpixel ac-
curacy, resulting in much higher precision estimates. This
warping transformation depends on the previous scale opti-
cal flow estimates and is thus not known in advance. This
could result in slow memory access. However, since the
spatial locality is very high in this operation, the GPU’s tex-
ture cache ensures a high bandwidth in this crucial data-
intensive stage of the algorithm.

Since a total of five frames are used on all occasions to
estimate the temporal phase gradients, the optical flow ker-
nel operates on five texture arrays (at each scale). As illus-
trated in Figs. 2(B,C), by dynamically changing the texture
references to these arrays, we implement a circular buffer.
In this way, only data corresponding to the current frame
needs to be updated at all times, and memory transfers are
minimized.

image resolution 320×256 640×512

Gabor pyramid 5.4 11.7
optical flow 2.4 8.9

total (msec) 7.8 20.6
frames per second 127.6 48.5

Table 1. GPU processing times (in msec) and frame rates obtained
on a Geforce 8800 GTX. Gabor pyramid involves copying one im-
age from CPU to GPU memory, constructing the image pyramid
for this image, applying the filterbank from Fig. 1 to this image
pyramid, and copying the Gabor pyramid from linear device mem-
ory to the texture array. Optical flow consists of the computation
of phase, component velocity and full velocity (at all scales), and
the subsequent copy of the final optical flow field back to CPU
memory. Three scales were used at 320×256 and four scales at
640×512.

4. Results

We first report on the processing times and then discuss
results obtained when applying the algorithm to synthetic
and real-world sequences. In the remainder, the number of
frames used to estimate the temporal phase gradient is al-
ways equal to five.

4.1. Processing Times

Table 1 contains the processing times for the different
steps discussed in the previous section for two resolutions:
320×256 and 640×512. In addition to these, the pyramid
always contains the resolutions 160×128 and 80×64. In
both cases, we have observed a frame rate well above 40
frames per second. The computation times and frame rates



image resolution 320×256 640×512

Gabor pyramid 0.1 0.5
optical flow 1.1 4.8

total (sec) 1.2 5.3
frames per second 0.8 0.2

Table 2. CPU processing times (in sec) and frame rates obtained
on a 2.4 GHz Core 2 Quad processor (using a single core only)
using the same dataset as in Table 1.

reported in Table 1 have been measured by processing a
complex real-world sequence (100 frames in length) from
CPU memory, always including the CPU to GPU and GPU
to CPU memory transfers, and averaging the results (see
Fig. 5 for an example frame of the sequence used).

Filtering is currently performed one scale at a time. This
however does not fully saturate the GPU at the resolutions
used here, resulting in the comparatively slow Gabor pyra-
mid construction at 320×256. This could be improved by
filtering the entire pyramid at once. The optical flow com-
putation scales much better to lower resolutions.

We have performed the identical timing experiment us-
ing a reference CPU implementation. The processing times
(in seconds this time) and frame rates are reported in Ta-
ble 2. Particularly time-consuming on the CPU are the filter
response interpolation and the component velocity compu-
tation, which have to be performed for each orientation. We
observe over a 150-fold increase in performance with the
GPU implementation at both resolutions.

4.2. Yosemite Sequence

We have first applied the GPU implementation of the op-
tical flow algorithm to the well-known Yosemite sequence.
The top row of Fig. 3 contains (from left to right) frame 9 of
this sequence, the ground truth optical flow associated with
this frame, and the color coding used to visualize the opti-
cal flow (hue and intensity indicate respectively the direc-
tion and magnitude of the optical flow vector). The bottom
row of Fig. 3 shows optical flow fields obtained from the
five frame sequence consisting of frames 7, 8, 9, 10 and 11,
for different values of the reliability measure τl (unreliable
estimates are shown in white). As expected, the density in-
creases when the phase linearity measure is increased. The
estimated flow field closely resembles the ground truth in
all instances.

Table 3 provides a quantitative evaluation of the results.
The difference between the estimated and ground truth op-
tical flow field is measured by the average angular error
(AAE) [2]. Small errors are observed in all instances. We
can see from this table that, both when including and ex-
cluding the sky region in the evaluation, the AAE (and den-

without sky with sky

τl AAE density AAE density

0.02 2.09◦ 63 % 3.22◦ 54 %
0.05 2.35◦ 82 % 3.99◦ 76 %
0.10 2.67◦ 91 % 4.67◦ 88 %

Table 3. Optical flow error and density obtained on frame 9 of the
Yosemite sequence (with and without the sky region) for different
settings of the reliability threshold τl. A sequence of five frames
has been used on all instances. AAE = average angular error.

sity) decreases when the phase linearity threshold is de-
creased. This confirms that the reliability measure correctly
rejects unreliable estimates.

When using five frames to estimate the temporal phase
gradient, the algorithm yields good performance on a vari-
ety of sequences. We have observed that when this number
is reduced to three, the MSE is no longer a good measure of
reliability and the results significantly deteriorate.

4.3. Real-world Sequences

We next demonstrate the performance of the algo-
rithm on real-world sequences. Ground-truth optical flow
fields are unavailable for these sequences, and therefore
only a qualitative evaluation is possible. Since real-world
sequences contain a lot more noise than the synthetic
Yosemite sequence, the reliability threshold has been set to
0.5 in the remainder. Note that although the sequences dif-
fer greatly in terms of noise-level, range of motions, camera
motion, interlacing, etc., the same threshold has been used
for all sequences. This again demonstrates the simplicity of
the algorithm.

Figure 4 shows the center images of the sequences used
(left) and the estimated optical flow fields (right) for the
publicly available Ettlinger Tor (top row) and Rheinhafen
(bottom row) sequences. These sequences have resolutions
of 512×512 and 688×565 pixels respectively. Again, the
color coding from Fig. 3 has been used, which means that
black pixels correspond to zero flow and white pixels to un-
reliable estimates. Even though strong interlacing artifacts
are present in both sequences, all moving objects, and their
direction of motion, are clearly visible. The motion bound-
aries are also reasonably sharp. These results are very sim-
ilar to results obtained with state-of-the-art algorithms and
realtime implementations [12, 16].

We next applied the algorithm to a more difficult se-
quence recorded from inside a moving car. These images
have been recorded at 640×512 pixels. The scene layout
in this sequence is much more complex. Besides the self-
motion of the car, a number of additional independently
moving objects are present as well. Figure 5(A) contains the



frame 9 ground truth optical flow color coding

τl = 0.02 τl = 0.05 τl = 0.10

Figure 3. The top row contains the center frame and associated ground truth optical flow field for the Yosemite sequence, and the color
coding used to visualize the optical flow fields (the image center corresponds to zero flow). The bottom row shows flow fields, estimated
from a five frame sequence, for different values of the phase linearity threshold. Unreliable estimates are shown in white.

center frame of the five frame sequence used, and Fig. 5(B)
the same frame with the (subsampled) estimated optical
flow field superimposed. The unreliable estimates at the
bottom of the frame result from the reflection of the car’s
ventilation outlets, which remains static over the sequence.
Real-world optical flow fields are highly complex, and in
this example the camera rotation appears to dominate the
optical flow field. However, if we look in more detail at the
horizontal and vertical components of the optical flow fields
(Figs. 5C and 5D), it is clear that the effect of the transla-
tional camera motion component (looming) is also visible.
The scene structure (traffic signs, slanted road and build-
ings) and moving objects are clearly discernible from these
figures, and are again separated by reasonably sharp bound-
aries.

5. Conclusion

We have demonstrated a high-performance implementa-
tion of a phase-based optical flow algorithm. The algorithm
is characterized by simplicity, robustness, and speed.

Future extensions will concentrate on the incorporation
of stabilization in the algorithm, which becomes crucial
when moving to higher resolutions [13], and on alternate

uses of the readily available filter responses. The high
performance of our implementation leaves ample resources
available for the simultaneous use of the rich Gabor image
representation for other purposes, such as disparity or ori-
entation estimation [14], object recognition [15], etc.
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