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Learning
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This review focuses on biological issues of reinforcement learning. Since the influential discovery of W. Schultz of
an analogy between the reward prediction error signal of the temporal difference algorithm and the firing pattern
of some dopaminergic neurons in the midbrain during classical conditioning, biological models have emerged that
use computational reinforcement learning concepts to explain adaptative behavior. In particular, the basal ganglia
has been proposed to implement among other things reinforcement learning for action selection, motor control or
working memory. We discuss to which extent the analogy between the temporal difference algorithm and the firing
of dopamine cells can be considered as valid. Our review then focuses on the basal ganglia, their anatomy and key
computational properties as demonstrated by three recent, influential models.

1 Introduction

Some recent progress in cognitive neuroscience relies on the
understanding that adaptive behavior is not an isolated pro-
cess in the brain, but rather an emergent property of the
interaction between brain, body and the environment [6].
Embodiment, epigenetic development and neuroethology,
among others, are neuroscientific research areas that can
take huge benefits from the interaction with artificial intelli-
gence, especially involving robotics. The subfield of machine
learning called reinforcement learning (RL), with its classical
agent/environment distinction [28], can be an useful frame-
work to understand not only how the actions of a subject
can be learned to maximize future rewards in a given cogni-
tive task, but also how this dependency on reward expecta-
tion and motivation can guide the formation and updating
of brain representations.

Classical conditioning (like in the famous Pavlov exper-
iment [22]) has been an example of such an interplay be-
tween behavioral sciences and computational modeling, par-
ticularly with respect to the Rescorla-Wagner model [25]. In-
creased attention to RL in neuroscience has been given since
the seminal studies of Wolfram Schultz [26] who observed
that dopaminergic (DA) neurons in the animal’s midbrain
show similar patterns as the error signal in the temporal-
difference (TD) algorithm. The integration of these DA neu-
rons into a functional pathway lead to various computa-
tional models of basal ganglia (BG) that mimic the classical
actor/critic architecture in order to explain BG functioning
in various reward-dependent tasks such as action-selection,
motor control or working memory. The idea of this short re-
view is to present what these biological models of BG have
captured from the RL paradigm, particularly the TD algo-
rithm, and how the additional biological constraints can po-
tentially influence the development of new RL algorithms
able to solve real-world cognitive tasks. An excellent com-
plementary review can be found in [9].

We will first present in section 2 the link between the
firing patterns of DA neurons during Pavlovian conditioning
and the error signal of the TD algorithm. In section 3, we
will present the BG and how its known functional anatomy
can be compared with the classical actor/critic architecture.

In section 4, we will describe three different recent computa-
tional models of BG that rely on different assumptions about
basal ganglia functioning. This selection is however highly
non-exhaustive, a review about relatively older BG models
can be found in [14].

2 Temporal-difference and dopamine

2.1 Classical conditioning
Reinforcement learning closely relates to classical condition-
ing, which is a simple form of associative learning observed
in animals and humans: Given an inborn association between
an unconditioned stimulus (US) and an animal’s uncondi-
tioned response to that stimulus (UR), the animal can be
trained to show a response to previously neutral stimuli. The
procedure works as follows: A neutral stimulus, called condi-
tioned stimulus (CS), is repeatedly presented before a partic-
ular US, thus being a temporal predictor of US presentation
for the animal. After a couple of pairings, presentation of the
CS leads to a conditioned response (CR) which is usually very
similar (but not necessarily identical) to the UR. A classical ex-
ample of this type of conditioning is the Pavlov experiment:
A dog naturally salivates (UR) at the sight of food (US). Each
time an experimenter rings a bell (CS), he delivers food after
a certain delay. After a couple of associative pairings, the bell
will produce salivation (CR) by itself.

2.2 Temporal-difference model
A core idea for RL introduced by Sutton and Barto [28] was
the temporal-difference (TD) algorithm for evaluating the
value function V π associated to a policy π. This bootstrap-
ping method uses directly transitions within a Markov deci-
sion process to modify its evaluations based on the following
error signal:

δt = rt+1 + γ · V (st+1)− V (st)

This signal computes the difference between the expected
reward after a transition (the reward rt+1 actually received
after the transition plus the value V of the next state st+1)
and the value of the current state st. It can be used to update
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the values of the states (when δt is positive, the real value of
the state is higher than its current estimation; when negative
it is lower) and also to find the optimal policy (when δt is pos-
itive, the action that lead to this transition is considered to
lead to a "good surprise" and should be preferentially chosen
the next time; when negative it should be avoided). This led
to the development of the "actor-critic" architecture, where
the critic estimates the values of the states and computes δt,
and the actor learns to perform the optimal action in each
state.

Suri and Schultz [27] extended this TD model within a
more biologically inspired actor/critic architecture to simu-
late the response of DA neurons in the context of a spatial
delayed response task. The agent receives one of two tem-
poral stimuli (e1, e2) as inputs (CS) and has to select one of
the two possible actions (a1, a2). If it selects the correct one
(e.g. e1 → a1, e2 → a2), reward is given after a short delay.
The actor is implemented by a direct mapping between the
stimuli and the actions, through connection weights which
are learned according to a Hebbian rule modulated by the δt

signal. The authors used a temporal representation of each
event ("complete serial compound stimulus") to bridge the
delay between the stimulus, actions and rewards. Thus, each
stimulus is represented by a series of neurons, each neuron
progressively responding through time after the onset of the
stimulus: The first neuron is activated at stimulus onset, the
second one 100 ms later, and so on. This representation al-
lows to keep track of the appearance of a stimulus and gives
information about the time elapsed since its onset. Each of
these neurons is considered as a state of the system, even if
the transition between them is fixed.

During learning, the delivery of reward progressively in-
creases the value of the neurons that have been active be-
fore, accompanied by a positive δt, at the condition that the
delay between stimulus onset and reward stays constant.
Step by step, all the states between reward and stimulus on-
set get a high value (they all predict oncoming reward). After
learning, δt will get positive at stimulus onset but not when
reward is given, whereas initially, at the beginning of learn-
ing, it was only positive at reward delivery. If reward delivery
is omitted after learning, δt will become negative, because
rt+1 was expected at this particular time.

The first two columns of Figure 1 show respectively the
reward prediction and reward prediction error δt of this ex-
tended TD model before and after conditioning, as well as in
the case where reward is omitted. Reward prediction repre-
sents the values of the states (time here is the state space).
In agreement with its most prominent predecessor for con-
ditioning (Rescorla-Wagner model [25]) this extended TD
model also explains the observed phenomena of extinction,
blocking and conditioned inhibition:
− Extinction: A CS which was previously associated to a US is
repeatedly presented alone (without a subsequent US) and
loses its predictive value [22]. The associative strength of this
CS then declines asymptotically to zero.
− Blocking: One CS (CS1) has already been learned to pre-
dict the upcoming of a US. When a second CS is then si-
multaneously presented with CS1, this second CS does not
acquire associative strength [15]. The extended TD model
can account for this phenomenon by assuming that the total
amount of associability is limited.
− Conditioned inhibition: Two kinds of trials alternate. Either

Figure 1: Reward prediction error of the extended TD model
and dopamine firing. From [26]. Reprinted with permission
from AAAS.

a particular CS (called CS1) is constantly followed by a US
or a combination of CS1 and a second CS (named CS2) is
never followed by reward [22]. In this situation CS1 is asso-
ciated with the upcoming of the US, whereas CS2 is associ-
ated with the US not being presented, even if CS1 is present.
The extended TD model displays exactly this behavior: CS1
gains positive associative strength while CS2 gains negative
strength.

2.3 Dopamine firing in the midbrain

Dopamine (DA) is a neurotransmitter mainly produced by
two small groups of neurons in the midbrain: ventral
tegmental area (VTA) and substantia nigra pars compacta
(SNc). They send diffuse although segregated connections
to different areas of the brain, such as basal ganglia, most
of cerebral cortex, amygdala, hippocampus, thalamus or the
superior colliculi. Dopamine has been involved in many as-
pects of brain functioning (such as motor control, attention,
memory, reward anticipation, pleasure, addiction) and dys-
functioning of the DA system leads to severe deficits such as
the Parkinson disease, schizophrenia and autism [18].

These dopaminergic neurons exhibit stereotyped phasic
excitatory responses of high amplitude, short duration (<
200ms) and short latency (70-100 ms) after several types of
events: Delivery of primary rewards; sudden appearance of
novel, intense or salient stimuli; and arbitrary stimuli clas-
sically conditioned by association with primary rewards [26].
The third column of Figure 1 shows the typical activation of a
dopaminergic cell in SNc after classical conditioning: The cell
only responds to the CS and not anymore to the reward de-
livery. This response pattern can be compared to the predic-
tion error signal δt of the TD algorithm previously presented.
Moreover, when reward is omitted, these DA cells also show
a pause in firing (below baseline) that can be considered as
a negative value of δt.

This analogy between DA firing and the reward predic-
tion error of TD raises the question of the functional role of
these DA neurons. If the TD analogy is correct, the phasic
bursts observed in DA neurons should act as a "critic" signal
for other other brain areas (which could then be considered
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as the "actor"). We will see in the section 3 that there are
some elements supporting this point of view.

2.4 Limits of the TD analogy
Despite this striking similarity between DA firing and the TD
error signal in classical conditioning, DA neurons can exhibit
a different behavior from what would be expected if their
only functional role was to be the "critic". Some of these crit-
icisms can be found in [4, 23].
− Backward shift in time: In the extended TD model applied
to classical conditioning, the positive δt gradually shifts back
in time during learning from the time of reward to stimu-
lus onset. However, what is observed in DA neurons is more
a gradual decrease of the amplitude of the reward-related
DA burst concurrently to a gradual increase of the CS-related
activity. Nevertheless, a TD model using certain parameter
settings (long-lasting eligibility traces) can mimic these ob-
servations [21].
− Temporal representations: No strong evidence has been
found yet about a neural mechanism allowing to represent
the time elapsed since stimulus onset by means of a suc-
cessive firing of chained neurons (’eligibility traces’). What is
rather found is "ramping" activities in the thalamus that in-
crease from baseline activity at different speeds, until they
reach their maximum level when an action has to be per-
formed [29]. How these signals can be used to provide a use-
ful temporal representation for a TD-like model is still unclear.
− Varying stimulus-reward intervals: The stimulus-reward in-
terval can be uniformly varied (1 to 3 seconds) during the
learning phase. Dopaminergic neurons are in this case re-
sponding both at stimulus onset and reward delivery, what-
ever the delay [10]. This can not be directly taken into ac-
count by TD-inspired models, which rely on a fixed stimulus-
reward interval during learning. This is mainly due to the
use of temporal representations for the learning of the critic.
In [4], the authors address this problem by building a "mix-
ture of experts" system, where each expert specializes on a
specific stimulus-reward interval, but the questions of the
number of experts needed, their temporal resolution and
their biological plausibility remain unsolved.
− Uncertainty of rewards: More recent experiments have
shown that the information carried by phasic DA bursts is
not so stereotyped and represents quite finely reward am-
plitude and reward uncertainty [30]. This aspect is not taken
into account in most TD-inspired models.
− Novelty detection: Contrary to the TD reward prediction er-
ror, DA cells also respond to the sudden appearance of novel,
intense or salient stimuli, even if they are not associated to
reward [12]. However, this response decreases when the sub-
ject becomes habituated to such an unrewarding stimulus.

In conditioning tasks with fixed stimulus-reward intervals,
the firing of DA cells can be efficiently compared to the er-
ror signal of the TD algorithm, and some biological models
have taken benefits from this approach (see [9] for a review).
However, the above-mentionned limits show that DA cells
can have a much more complex behavior and are involved
in other tasks than pure conditioning. From the biological
perspective, the TD analogy recently served as a guide to
understand the functional role of DA and most experiments
aimed at confirming this concept, but it may also be that the
experiments that critically test the TD analogy have not been
done so far.

Figure 2: Schematic architecture of the BG. Pointed endings
represent excitatory connections, round endings denote in-
hibitory connections. See the text for details about the struc-
tures. Modified from [1].

3 Basal Ganglia

As reviewed above, experimental evidence suggests that the
functional role of DA neurons is related to reward-prediction
error signals, but the analogy with the TD algorithm is not
straightforward. To better understand the functional role
of DA neurons, it may be useful to look at the targets of
dopaminergic innervation (what would play the role of the
"actor"), especially the basal ganglia (BG). The basal ganglia
are a set of interconnected subcortical structures in the basal
forebrain which are in interaction with the cerebral cortex,
the thalamus and the limbic structures. They are composed
of two main input structures - the striatum (STR) and the
subthalamic nucleus (STN) -, two main output structures -
the globus pallidus pars interna (GPi) and the substantia ni-
gra pars reticulata (SNr) -, as well as one inner structure, the
globus pallidus pars externa (GPe). The DA neurons of SNc
are also considered as being part of the BG.

All these structures are densely interconnected and re-
ceive various connections from most parts of the cerebral
cortex, the thalamus and limbic structures such as the amyg-
dala and the hippocampus. However, since the influential
work of [1], a simplified connectivity for BG has received
much attention from modelers and experimentalists. On Fig-
ure 2, one can distinguish three main pathways through the
BG. The direct pathway takes STR as an input structure (it
receives dense topographical connections from the cerebral
cortex) which projects in an inhibitory manner to the output
structures of BG (GPi and SNr). These output structures are
tonically active - which means they have a very high base-
line activity - and strongly inhibit neurons in the thalamus (as
well as in various motor subcortical structures such as the su-
perior colliculi). When neurons in STR show sufficient activity,
they inhibit some GPi/SNr neurons which in turn cease to in-
hibit thalamic neurons. These thalamic neurons can then be
involved in a thalamocortical recurrent loop. As a whole, this
double inhibition mechanism in the direct pathway of BG
allows to selectively control the opening of thalamocortical
loops depending on striatal processing. This direct pathway
has been used in isolation in some BG models, for exam-
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ple [3] for sequence learning or [27] for classical condition-
ing.

The second pathway in BG involves an intermediary step
from STR to GPi/SNr through GPe. This relay is also inhibitory,
which means this pathway globally increases the tonic inhi-
bition of the thalamus by BG. This pathway is antagonistic to
the direct one, but the projections from GPe to GPi/SNr are
much more diffuse, so the compound effect of both direct
and indirect pathways resembles more a center-surround ef-
fect. Moreover, the neurons in STR that directly project to
GPi/SNr and the ones that project to GPe are mainly seg-
regated, with different types of DA receptors. SNc can then
act as a "controller" that can selectively favorize one path-
way or the other, therefore opening or closing the corre-
sponding thalamocortical loops. When one considers that DA
bursts corresponding to reward predicting events favorize
the opening of a loop and that DA depletions corresponding
to omission of reward close these loops, one can see that this
TD-like activation may be a central mechanism for selecting
rewarding actions or the content of working memory [19].

The third pathway to consider uses STN as an input,
which projects on both GPe and GPi/SNr. This hyperdirect
pathway is still not well known, but STN receives direct cor-
tical inputs and has faster conduction times than STR. STN
excitatory projections to GPi/SNr are more diffuse than the
direct or indirect pathways: it can provide a "global No-Go"
signal, that avoids premature responses of the BG to incom-
ing stimuli. The loop between GPe and STN can also provide
a timing mechanism for action execution, or allow sequence
learning.

This functional sketch is even more complicated by the
fact that BG is organized in parallel segregated loops, each
in different modalities (motor, limbic, associative...) [2]; or by
the fact that DA also modulates learning of the connections
between the cerebral cortex and the striatum. What needs to
be pinpointed is the fact that BG can act as a controller for
activities in the rest of the brain, and that DA has a central
role in its functioning. The part of the striatum called strio-
somes on Figure 2 and the dopaminergic neurons can be
functionally considered as a "critic" for this system, whereas
the rest of this complex architecture would act as the "actor".

4 Computational models of BG

A good review of former BG models relying on the ac-
tor/critic architecture (e.g. [7,13]) can be found in [14]. We will
now focus on three different BG models that, even if they do
not all directly deal with RL, give further insight into the pos-
sible roles of BG in adaptive behavior. The interested reader
could also have a look to other models of BG, for example [8]
that incorporates an internal model of the environment to
perform a tree-search predictive algorithm, or [16] which is a
very biologically detailed models of dynamical oscillations in
the BG.

4.1 Brown, Bullock and Grossberg (1999)
The idea that a single unitary mechanism is responsible for
the responses of DA cells to both CS and rewards has been
contested by [5]. Previous BG models derived from the TD
analogy considered that the DA bursts for CS and reward
were provoked by excitation from either primary rewards

(limbic structures) or state evaluation in the striosomes of
STR. The pause in DA firing was caused by a temporal mis-
match between these two sources. In [5], the authors ex-
plored more precisely the possible biological sources of stim-
ulation of DA neurons. They propose that the pedunculopon-
tine tegmental nucleus (PPTN) is the unique source of exci-
tation of DA neurons. This nucleus receives itself information
about primary rewards (from lateral hypothalamus) as well as
information about the appearance of a CS (from the output
of BG, the "actor" part). The relevance of the appearance of
a CS for reward has to be learned in the BG through asso-
ciation between a working memory of this stimulus and the
delivery of reward.

The pause in DA firing when reward is omitted is solely
due, according to the authors, to inhibition of SNc coming
from the striosomes of STR. The question arose to know how
to compute the timing of this inhibition, which should occur
only at the time reward is expected. They proposed to use
a mechanism for striosomal neurons called "spectral timing",
which is an intracellular calcium-dependent timing mecha-
nism. This mechanism generates something similar to the
temporal representation, but only the neurons active at the
time of reward delivery are selected for the learning process:
there is no backward chaining in time.

At the time reward occurs (or is expected), there is an in-
teraction in SNc between the reward-related excitation com-
ing from PPTN and the inhibition coming from the strio-
somes. At the beginning of learning, the inhibition is weak,
and the DA cells respond to the delivery of reward. Af-
ter learning, excitation and inhibition compensate for each
other, and the SNc neurons do not respond anymore to re-
wards, even if PPTN neurons still excite them. If reward is
omitted, only the learned inhibition is transmitted to SNc,
leading to a pause in DA firing.

This model is an elegant attempt to provide a biologically
plausible explanation to the firing pattern of DA neurons
during classical conditioning. Dopaminergic firing does not
rely anymore on the temporal derivative of the predicted re-
ward, but on separate mechanisms for reward-related bursts,
CS onset-related bursts and pause in DA firing. However, it
only uses the direct pathway of BG to compute the excita-
tory drive to PPTN leading to CS onset-related DA burst and
spectral timing is not yet fully confirmed in striosomal cells.

4.2 O’Reilly and Frank (2006)
O’Reilly and colleagues recently proposed in [20] a
biologically-inspired algorithm for conditioning called PVLV
(Primary Value / Learned Value), which is principally derived
from the previously presented model of Brown, Bullock and
Grossberg [5], although with significant differences.

The PVLV algorithm relies on two separate modules de-
picted on Figure 3. The PV (Primary Value) module learns
to predict the appearance of a primary reward, by means
of an excitatory component (PVe, supposed to be located in
the lateral hypothalamus LHA) and an inhibitory component
(PVi, supposed to be located in the striosomes of STR). These
two components have opposite effects on the firing of the
DA neurons. The PVe component simply reflects the deliv-
ery of primary rewards, similarly to PPTN in the model of
Brown, Bullock and Grossberg. The PVi component learns to
predict the time interval between CS onset and reward deliv-
ery. Contrary to [5], this timing mechanism is not supposed
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to lie in the striosomal cells, but rather to come from an ex-
ternal signal computed in the the cerebellum, where precise
timing-related activities have been found [17]. The PV is only
active at the time when reward is delivered or expected to be
delivered. It explains the inital reward-related DA bursts be-
fore learning, its slow decrease in amplitude during learning,
as well as the depletion of the dopaminergic signal when a
predicted reward is omitted.

The LV (Learned Value) module learns to respond to the
appearance of conditioned stimuli that are reliably associ-
ated to reward. It is also decomposed into an excitatory com-
ponent (LVe, which is thought to be located in the central
nucleus of the amygdala CNA) and an inhibitory component
(LVi, also located in the striosomes of STR). Similarly to PVi,
the LVe component learns to associate a CS with reward, but
only at the time reward is actually given or expected (as com-
puted by the PV system), through a learning rule derived
from the Rescorla-Wagner rule [25]. This feature is important
for understanding the model, because a permanent repre-
sentation of the CS has to be present at the time reward
is delivered or expected. This works perfectly for delay con-
ditioning (the CS is still present when reward is given), but
require an additional memory mechanism for CS in the case
of trace conditioning (the CS is removed before reward is
given). The LVi subsystem only slowly learns to cancel the
LVe burst, to denote habituation to a CS.

Figure 3: Architecture of the PVLV algorithm. PVLV is made
of two subsystems: PV (Primary Value, PVe and PVi) learns to
predict the appearance of a primary reward after CS onset.
LV (Learned Value, LVe and LVi) learns to respond for a CS
that is reliably associated to reward. Modified from [20].

This model can account for several classical condition-
ing paradigms such as aquisition, extinction, blocking, over-
shadowing and conditioned inhibition. This algorithm can
be also used to perform second-order conditioning (CS-CS
associations) by using the computed DA signal to bias corti-
cal associations between the two CS. This is in opposition to
the way TD-like algorithms deal with second order condition-
ing. More interestingly, contrary to TD-like algorithms, PVLV is
not sensible to varying stimulus-reward intervals, which is of
great interest when applied to real-world tasks. Whereas the
other algorithms represent information about the sequence
of events (time) in the stimulus representation, the PVLV al-
gorithm uses an additional timing mechanism in cerebellum.

According to the authors such external timing mechanism is
not crucial for the model but it is essential for particular ex-
perimental tasks, e.g. to fit the observed pause in DA firing.

However, this algorithm is not designed to stand on its
own, except in the case of delay conditioning. For trace con-
ditioning, the working memory of the briefly flashed CS has
to rely on another circuit involving the prefrontal cortex and
BG. In [19], the authors have designed a complete BG model
(both direct and indirect pathways) which learns in interac-
tion with the PVLV module to keep the CS that are frequently
associated to reward in working memory. This complex archi-
tecture is able to solve cognitive tasks like the 1-2-A-X task
or the Store-Ignore-Recall task.

4.3 Gurney, Prescott and Redgrave (2001)

Dopamine cells respond with a latency between 70 and 100
ms, which is shorter than the latency of the saccades bring-
ing the stimulus onto the fovea for a more detailed analysis
(150 to 200 ms). Signals regarding the identity of visual ob-
jects are detected in the inferotemporal cortex with a latency
of 80 to 100 ms after stimulus onset, therefore at least at the
same time as dopamine firing, raising the problem of how
this information can reach the dopamine areas almost im-
mediately. In [24], Redgrave and Gurney consequently con-
clude that the rich and detailed representations in the cere-
bral cortex are a bad candidate to provide the dopamine
system with an accurate reward prediction. They propose
that dopamine responses are triggered as a consequence of
limited pre-attentive processing that would be computed in
the superior colliculus (SC), which have very early visual re-
sponses and can quickly provide the dopaminergic neurons
with information about the novelty or the reward association
of a stimulus at a fixed position, without having to process
its visual details.

According to [23], DA firing would principally be used by
BG and other areas to indentify which aspect of context or
behavior is crucial in causing unpredicted events. Through
repetition of interactions between the agent and his envi-
ronment, DA would help to distinguish between the con-
sequences of the agent’s own actions and what is caused
by external events. This highlights the role of DA in operant
conditioning, contrary to the classical Pavlovian condition-
ing which requires a fine analysis of the details of the stim-
ulus and would be treated by other cortical structures like
orbitofrontal cortex.

These ideas lead the authors to propose a totally different
functional model of BG in [11] which is intended to perform
action selection instead of RL (which they claim is computed
somewhere else in the brain). They propose to rearrange the
functional connectivity of the BG by giving a central role to
STN. They distinguish two pathways: one is called the se-
lection pathway and comprises a part of STR, STN and the
output nuclei GPi/SNr, the other is called the control path-
way and contains STR, STN and GPe. The selection pathway
performs the selection between different salient events (cor-
tical representations, actions...) through a disinhibition mech-
anism similar to the direct pathway of classical BG models.
The role of the control pathway is to regulate processing in
the selection pathway through the connections from GPe to
both STN and GPi/SNr. The intensity of this regulation is un-
der the influence of DA, which only signals the behavioral
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interest of salient events. This BG model has been success-
fully applied to action selection in robotic tasks.

5 Discussion

Adaptive behavior in animals and humans can be analysed
through the paradigm of reinforcement learning as the be-
havior of a rational agent aims at optimizing the future re-
wards it can obtain through interactions with its environ-
ment. It may be of particular interest to investigate more
precisely whether some analogy can be found between brain
processes and RL algorithms. Such an analogy has been sug-
gested concerning the DA neurons of the midbrain during
classical conditioning. They tend to behave similarly to the
reward prediction error signal of the classical TD algorithm.
A further look at the functional connectivity of these neu-
rons also leads to the idea that these DA neurons and a part
of STR could be viewed as critic, whereas the BG and the
cerebral cortex as a whole could be viewed as the actor in
the classical RL actor/critic architecture. This paradigm has
guided the development of several biological models of BG
performing reinforcement learning.

However, we have listed experimental evidence that the
functioning of these brain areas is not solely devoted to this
particular paradigm and that the same neurons show differ-
ent patterns depending on the type of action and learning
the agent is involved in. In particular, the models presented
in sections 4.1 and 4.2 interpreted the available data to sug-
gest that the particular behavior of DA during conditioning
is not guided by a single unitary mechanism computing the
time derivative of reward prediction, but rather by the in-
teraction of several information flows coming from distinct
brain areas. On top of their greater biological plausibility,
these models are able to make predictions about the role
of the BG in processes that are indirectly related to reinforce-
ment learning, such as working memory or more abstract
cognitive tasks.

Some authors even take a more radical approach (like in
section 4.3) and object to assign the DA bursting patterns
such a central role in adaptive behavior, especially in selec-
tion of action. They suggest that DA only signals quantita-
tively the behavioral importance of salient events, without
giving precise information about their value.

The exact role of DA in brain processes is therefore not
yet fully understood. Its firing pattern in classical condition-
ing can denote a role in criticizing other brain areas, but it
could also be a side effect of other processes elsewhere in
the brain. It can act at different levels, by modifying the intra-
cellular properties of various neurons or by modulating the
learning of synaptic strength. Its effect also varies depending
on which area is targeted: contrary to STR, the cerebral cortex
is much more affected by the tonic level of DA (its baseline)
than the phasic bursts [31]. As a consequence, RL processes
in the brain should be seen as a global process involving var-
ious brain areas that cooperate to fulfill a task, without any
clear demarcation between parts of the RL algorithms.

The performance of the presented models have been
demonstrated on a number of tasks that go further than
the pure RL paradigm, such as working memory or decision
making. Whether these high-level processes only take bene-
fit of the "built-in" RL properties of the dopaminergic system

(in an epigenetic sense), or whether they belong to a more
global process that can be reduced by specific observations
to something that looks like RL (the magnifying glass effect),
is still an open question. What is important for each RL or BG
model is to specify its domain of validity until a comprehen-
sive theory of DA can emerge. From the technical point of
view, TD models have been very powerful in solving calleng-
ing tasks, but we are still far away from fundamental solu-
tions for real-world cognitive agents. From our point of view,
future research should also focus on demonstrating that ad-
ditional biological details also lead to improved performance
for cognitive agents behaving in the real world.
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