Portada 4 Gossos

Agenda cultural

searc

Colaboradores

CONTACTO

EYESHOTS

10 mayo 2011 by David

El proyecto EYESHOTS (Heterogeneous 3-D Perception Across Visual Fragments), financiado por la Unión Europea a través del 7 Programa Marco. Concluidos los tres años de trabajo, han logrado avanzar en la interacción entre el control de la visión y el movimiento, y desarrollar un avanzado sistema visual tridimensional que se sincroniza con los brazos y [...]

El proyecto EYESHOTS (Heterogeneous 3-D Perception Across Visual Fragments), financiado por la Unión Europea a través del 7 Programa Marco. Concluidos los tres años de trabajo, han logrado avanzar en la interacción entre el control de la visión y el movimiento, y desarrollar un avanzado sistema visual tridimensional que se sincroniza con los brazos y que permitan al robot percibir, tomar conciencia de lo que le rodea y además recordarlo para actuar en consecuencia.

Para que un robot humanoide interaccione correctamente con su entorno y desarrolle tareas de manera autónoma, es necesario primero perfeccionar estos mecanismos básicos que todavía no están resueltas satisfactoriamente, indica el investigador Ángel Pasqual del Pobil, director del Laboratorio de Robótica Inteligente de la Universitat Jaume I (UJI) de Castellón. Han validado sus conclusiones con un sistema oculomotor consistente en un cabeza de robot con ojos móviles integrado a un torso con brazos articulados construido en la Universidad castellonense.

Para hacer los modelos computacionales, se ha partido de los conocimientos de la biología primero animal y después humana, para lo cual se han unido expertos en neurociencias, psicología, robótica e ingeniería. El estudio del control de la visión se inició registrando las neuronas de monos dedicadas a la coordinación visomotora, ya que nuestra forma de percibir el mundo la compartimos con los primates que poseen un sistema visual similar al nuestro.

La primera característica de nuestro sistema visual que se quería replicar de manera artificial es el movimiento sacádico de los ojos relacionado con el cambio dinámico de atención. Según Ángel Pasacual del Pobii. «Constantemente cambiamos el punto de vista en unos movimientos de los ojos muy rápidos. Tanto que nosotros casi no somos conscientes. Cuando los ojos están en movimiento, la imagen es borrosa y no somos capaces de percibirla nitidamente. De modo que el cerebro integra los fragmentos como si se tratase de un puzzle para damos la impresión de una imagen continua y perfecta del entorno».

A partir de los registros neuronales se hicieron modelos computacionales de la parte del cerebro que integra las imágenes con los movimientos tanto de ojos, como de brazos. La hipótesis de fondo es que esa integración es muy diferente de cómo se suele realizar en ingeniería o robótica y cómo se representa la información también difiere. En este sentido, los expertos intentaron demostrar que cuando las personas hacemos un movimiento de alcance hacia un objeto, el cerebro no calcula las coordenadas, sino que el brazo sabe dónde tiene que ir porque se lo dicen los ojos.

Comenta el investigador: «No es que a partir de los ojos, el cerebro calcule una posición y entonces el brazo se mueva a esa posición. Sino que es mucho más directo: al mirar los ojos a un punto, los ojos le dicen al brazo dónde tiene que ir. Todo esto se va aprendiendo durante las etapas de desarrollo: los bebés no conocen esa relación pero se aprende a base de conectar neuronas». De modo que estos mecanismos de aprendizaje se han simulado en EYESHOTS a partir de un modelo computacional de redes neuronales consistente en: aprender a mirar, a construir una representación del entorno, a conservar las imágenes adecuadas, y a utilizar la memoria para alcaruzar objetos con la mano aunque no se estén observando en ese momento.

Se trata, por tanto de un proyecto de investigación más básica que aplicada. «Nuestros hallazgos se pueden aplicar a cualquier robot humanoide del futuro con capacidad de mover los ojos y enfocarlos a un punto. Son cuestiones prioritarias para que los demás mecanismos funcionen correctamente», puntualiza el investigador. Coordinado por la Universidad de Génova (Italia), han participado además de la UJI, la Universidad Westfälische Wilhems (Alemania), la Universidad de Bolonia (Italia), y la Universidad Católica de Lovaina (Bélgica).

El Laboratorio de Robótica Inteligente trabaja de manera paralela en el proyecto europeo GRASP centrado en el agarre robótico, es decir, en la manipulación de objetos distintos. El objetito es demostrar que el prototipo de robot logra vaciar una cesta de la compra con objetos de diferente tamaño y forma sin que se caigan y colocarlos ordenadamente en otra ubicación. Es otra de las cuestiones fundamentales de la robótica que estos investigadores intentan receber.

Información proporcionada por: Servei de Comunicació i Publicacions i RUVID

15 de mayo de 2011

Opinion

OBSOLESCENCIA PROGRAMADA - (COMPRAR, TIRAR, COMPRAR)

¿Sabías qué?

Sabías qué? Zaragoza

Ciencia

Android Demo