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Abstract

Despite the well known advantages *hav a spice- ariant representation of the
visual signal offers, the required iudaptati-n of the algorithms developed in the
Cartesian domain before arnl, oo ‘hem in the log-polar space has limited a
wide use of such repres~mta’ic . in visaal processing applications. Here, we
present a set of orimoa tulee kor gesigning a discrete log-polar mapping in
order to directly wop'v, vivhoot nodification, the standard algorithms based on
spatial multi =cay~ o' nonlti-orientation filtering in the log-polar domain, and
effectivelr are advnuage of the space-variance and of the data reduction. Such
rules are bosed on o - aantitative analysis of the relationships between the spatial
filtering and tn. space-variant representation. We assess the devised rules by
using a distributed approach based on a bank of Gabor filters to computereliable
disparity maps, by providing quantitative measures of the computational load
and of the accuracy of the computed visual features.

Key words: Log-polar mapping, Gabor filtering, Design criteria, Active

vision, Disparity computation

1. Introduction

Inspired by the retina of mammals, characterized by a decreasing of the
photo-receptors from the center of the visual field (fovea) towards the periph-

ery (Schwartz, 1977), the log-polar imaging is now a well established paradigm
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for simplifying a wide number of computational problems in pattern recogni-
tion and active vision (see (Berton et al., 2006; Traver and Bernardino, 2010;
Yeasin and Sharma, 2005) for reviews). The log-polar mapping simultaneously
provides a wide field-of-view, high spatial resolution on the region of interest,
and a significant data reduction. All these features are well suitable for ac-
tive vision applications (Aloimonos et al., 1988; Schwartz et al., 1995), since
the visual systems continuously interact with the environment, by purposefully
moving the eyes, to bring the interesting objects into the foveas (Bernardino
and Santos-Victor, 1998). In such applications, the necessary real-time visual
data processing is facilitated by the comp.-ession obtained by the mapping. At
the same time, the log-polar mappicg g wwanoses wseful properties for pattern
recognition problems (Wilson anw. Eodge-n, 1992), such as rotation and scaling
invariance.

In the literature, manv .o oaches o directly solve image processing and
image understanding (as9 for spw -variant representation of the visual signal
have been describ ea (Fiscol ot 1., 1997; Nattel and Yeshurun, 2002; Smeraldi
and Bigun, 20012; Vi ov wnd Pla, 2003; Wallace and McLaren, 2003). Although,
in theory e ~onfcwal mapping should permit a direct application of the visual
operators levelop.d or Cartesian images to log-polar ones, these authors discuss
the necessity ol | coperly adapting the algorithms before applying them on the
space-variant images. Nevertheless, the extraction of visual features based on
multi-orientation and multi-scale spatial filtering (Bigun, 2006; Granlund and
Knutsson, 1995) has not been explicitly addressed yet.

In this paper, the relationships between the different parameters of a discrete
log-polar mapping and of a bank of multi-scale and multi-orientation band-pass
filters are analyzed, with the aim of demonstrating that a proper choice of such
parameters allow us to directly use the algorithmic solutions developed for the
Cartesian domain on log-polar images, without any modification. It is worth
noting that the inherent space-variance of log-polar mapping is exploited to
properly cope with the multi-scale issue. The walidity of the devised design

strategies are proved with reference to the computation of binocular disparity
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through a distributed phase-based algorithm (Chessa et al., 2009a), previously

developed for the Cartesian domain.

2. Log-polar blind-spot model

In the literature, several log-polar mapping models are described (Bolduc
and Levine, 1998; Florack, 2007; Jurie, 1999). In this paper, the central blind-
spot model is chosen (Traver and Pla, 2008). The log-polar transformation
T : (z,y) — (£,8), from the Cartesian domain to the cortical domain, can be

backwards expressed in the following way-

T = i oat sl
(1)

= patsine

where a represents the base .f ti= coo-lincarity of the mapping, pg is the radius
of the blind spot and . ;1 - (v.‘_ﬂ +?,,arc.tan (y/z)) are the usual polar
coordinates.

To deal with diyite’ may=s . .iscrete coordinates have to be considered. Given
a Cartesian ...*gv ol .7 .- n) pixels, it is transformed into a cortical image of
R rings  ad & sectes, where the discrete log-polar coordinates are denoted by
(w,v). Ths, the p.owth rate of the size of the receptive fields between two
consecutive rings (see Figure 1) can be expressed as a = exp(In{pna- /po)/ R),
where prar = %min(m,, n).

Figure 1 shows the log-polar receptive fields superimposed to the Cartesian
domain and the cortical domain. The red circle, with radius 5/27, represents
the locus where the size of log-polar pixels is equal to the size of Cartesian
pixels. In particular, in the area inside the red circle a single Cartesian pixel
contributes to many log-polar pixels (oversampling), whereas outside this region
many Cartesian pixels contribute to a single log-polar pixel, thus avoiding the
aliasing due to the undersampling (Jerry, 1977). This is pointed out in the
receptive field bordered in violet in Figure 1.

Other important parameters of the log-polar mapping must be defined, in

order to highlight properties of the transformation, such as the aspect ratio of
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Figure 1: Cartesian domain witb *he 5 -neonosivion of the log-polar receptive fields (left) and
cortical domain (right). The gree. apn/’ thocva  areas represent two receptive fields at different
angular and radial position: (thn. with different size w and &) that are mapped in the two
corresponding cortica! sixel.  The r d arcle delimits the oversampling and undesampling

areas.

the log-pola. pixc' °, i, the ratio between its width w = 3 pga~! and its
height 1 = pga" (o — 1). In the following, the importance of the parameter ~

for the visua, »re sessing will be analyzed.

3. Design rules of the log-polar mapping and of the filters for the

extraction of visual features

In general, image feature extraction, based on spatial filtering, has two main
drawbacks: the computational load of the filtering stage and the necessity of
exploiting a multi-scale approach. The log-polar mapping intrinsically mitigates
these issues, since the input image is compressed and a space-variant processing
is obtained. Thus, the direct extraction of the features in the cortical domain
has a lower computational load and intrinsically performs a multi-scale process-
ing. as a function of the cortical location. To “optimally” design the log-polar

mapping for visual processing tasks, it is important to study the relationships
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between the usual processing in the Cartesian domain and the direct extrac-
tion of the features in the cortical domain, by characterizing the filters with
respect to the different parameters of the log-polar mapping. In particular, we
consider Gabor filters (Daugman, 1985; Gabor, 1946), since they minimize the
joint uncertainty in both the spatial and the frequency domain. The filters are

normalized by their energy and can be expressed as:

1 ity )
glz, y o, a) = exp (——2 ) exp(jwora + @), (2)
T Qe

where o determines the spatial support of the filter, wy is the spatial peak
tuning frequency, ¢ is the phase of the =inu oidal modulation and (z,, y,) are
the rotated spatial coordinates in t¥ - Cortesiz . Ao aain. Analogously, the Gabor
filter can be directly defined in \he cuttica’! Comain g(£, 8), or we can consider
a filter mapped into the ¢ _dear aonwain glz(£.8), y(£.8)). It is worth noting
that, due to the non-li- sa1i*v ¢ the log-polar mapping, the mapped filters are
distorted (Mallot ¢ al., 1290; Vauace and McLaren, 2003). Thus, a filtering
operation directly =\ e covtical domain could introduce undesired distortions
in the filter oupuls. Vv analyze this issne, we consider the response E of the
filter g &) tv the -igual s(£,8), that can be expressed by the inner product
E = {g(£,0\, s(¢£ #)). Specifically, to characterize the filtering operations we
consider the response of a filter to a mapped and to a matched filter. The

response for a mapped filter is:

Emappcd = (Q(E:vﬂ)ﬁg(x{f:ﬂ):y{'fn E)):‘: {3)

whereas the response for the matched filter is:

Ematchea = (Q(E:-E):' glg, o). (4)

A filtering in the cortical domain results in a space-variant filtering operation in
the Cartesian domain, where both the scale and the orientation of the filters vary.
To guarantee a proper multi-orientation and multi-scale processing, we have to

verify in which conditions the distortion of the mapped filters are minimal.
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4.1, Response of a single filter as a function of the cortical location

In order to exploit the advantages provided by a space-variant processing, it
is necessary that the filtering operations perform a uniform feature extraction,
without introducing undesired anisotropies in the parametric space, thus allow-
ing a direct application of the spatial filtering in the cortical domain, without
specific modifications.

The specific visual feature extraction we are addressing constrains the choice
of the parameters py, poer and B. Once fixed these parameters, an analysis!
of the influence of the parameters of the log-polar mapping on the response
Eappea Of the Gabor filters is shown ‘u Fgure 2, to take into account the
joint effects of the spatial suppor* an o'er otica a of the Gabor filters and
of the position (£;,8;) in the cotical place for two different aspect ratios -~
of the log-polar pixel. Th: respousc of the differently oriented filters (colored
profiles in the polar pl ) r an aspect ratio v = 1 (first row) are compared
to the responses of ainud vvith © = 1 (second row). The different colors in the
polar plots represent « tferer* spatial supports of the filters. It is worth noting
the anisotrc by ~f 'he »sponses when the log-polar pixel is not squared: the
response are ighly influenced both by the orientation o of the filter, and by
the position. (£, ) in the cortical plane. For an aspect ratio v = 1 the spatial
support of the filters slightly affects the responses by lowering them without

introducing any anisotropy to the responses.

2.2 Response of a single filter as a function of the parameters of the mapping

A further analysis to systematically investigate how the energy ratio be-
tween the response E,,.ppeq of 2 mapped filter and the response E, . i0neq of the
matched filter, is affected by the relationships between the parameters of the

1t is worth noting that the analysis of the parameters, presented in this paper, has been
verified for different Cartesian image size (m x n) and for different cortical image size (R x
5). Moreover, the real and imaginary parts of the Gabor filters have been considered both
separately and jointly.
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=1

Figure 2: (Left) Mapped filters, with orientation « =0 in the Cartesian domain and constant
spatial support in the cortical plane for two + Jwes  F the aspect ratio . (Right) The polar
plots show the responses ( Eqmgppeq) of tb Gobo i 5.0 L function of different orientations
a. Three different positions in the ccruica, olan: b ve been considered: A-C for v+ = 1 D-F
for v = 1. For each of the thres no. Uone Wt corcical plane and for the two aspect ratios
three different Cartesian spatiay =uppor. ba. - heen considerad: 11 = 11, 21 x 21 and 31 = 31
pixels, whose responses are glov.od w1 red solid, dashed blue and dotted green, respectively.
The black thidc line cor =5, vm's tovhe « Lergy of the corresponding matched filter.

log-polar manon. . and ¢ the Gabor filter is shown in Figure 3. Each subfig-
ure show- th* vantion of the energy ratio Epoppea/ Ematenes With respect to
pairs of pyramet.~=  f the mapping and of the filters (left side) and the profile
of the mappew © .ers for four different combinations of such parameters (right
side). If the aspect ratio of the log-polar pixel is approximately 1, the energy
ratio Enopped/ Ematenea Temains high, independently of the eccentricity & in
the cortical plane and of the orientation o of the Gabor filter (see Figure 3a-b).
Conversely, values of v different from 1 yield to lower responses of the filters
with respect to the eccentricity £ and to an anisotropy with respect to the ori-
entation o of the filter. Moreover, Figure 3¢ shows that the maxinmm response
is obtained when the spatial support of the filter is small {e.g. 11 x 11 pixels).
It is worth noting that under these conditions the deformations of the mapped
filters are relatively small (see inset A of Figure 3¢). Once fixed v = 1, the influ-
ence of the spatial support of the filter can be evidenced from Figure 3d-e. The

response of the filters decreases with an increase of the spatial support, inde-

=
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pendently of the eccentricity in the cortical plane and of the orientation o of the
filter. This can be also evidenced from the deformed profiles of the Gabor filters
(see Figure 3d-e, profiles marked by D and C). For a given value of the spatial
support (e.g. 11x11 pixels) the resp onses of the filters neither depend on the ec-

centricity in the cortical plane nor on the orientation of the filter (see Figure 3f).

In this Section, we have devised the constraints for the parameters of the log-
polar mapping and of the spatial filters, in order to obtain a signal processing
in the cortical domain equivalent to the one in the Cartesian domain. It is
worth noting that in (Traver and Pla, 7005 the authors state that a log-polar
pixel with aspect ratio equals to 1i- ac-esaan to - crectly compute the gradient
orientation. The analysis conducted b ore s0ovs that this rule can be generalized
in order to efficiently use +" e Gruor filtews as local jets to measure important
elements of the visual § .ol (4 @lson and Bergen, 1991; Fleet and Jepson, 1990;
Fleet et al., 1991; F mond 192 72; J_cenderink and van Doorn, 1987).

4. Feature _.troccion Jhrough a bank of filters

In thi: Secticn, w > address the problem of extracting visual features from the
responses of . di’ s«ct filtering in the cortical domain. In particular, we consider
the computation. for each orientation, of the local phase in the image signal.
Performing the phase measurement directly in the cortical domain requires the
verification of the quadrature conditions for the real and the imaginary part of
the Gabor-like mapped filters (if one adopts a direct measure of the local phase),
or a uniform preservation of the phase of the filters (if one adopts a distributed
representation of the local phase). Here, the latter approach is considered.
Though, it is worth noting that the following analysis is not limited to the
distributed approach, since the equivalence between direct phase measurement
and energy distributed models has been demonstrated (Qian and Mikaelian,
2000).

In particular, to perform such analysis, we analyze the different responses E;
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Figure 3: 'V .atin of vhe uergy ratio Eqgpped Ematehed with respect to the parameters
of the log-po ar map,.ne  nd of the Gabor filters (left side of each subfigure) and profiles of
the mapped filte < for particular choices of sudh parameters, marked by capital letters A-D
(right side of each subfigure). Hot colors mean high energy ratios, whereas cold colors mean
low energy ratios. (a) Aspect ratio of the log-polar pixel « with respect to the eccentricity
En in the cortical plane. The maximum energy ratio s obtained for a squared log-polar pixel
independently of the eccentricity in the cortical plane. (b} Aspect ratio of the log-polar pixel
~ with respect to the orientation o of the Gabor filter. The energy is constant independent v
of the orientation of the filter when the aspect ratio is v = 1. (¢} Aspect ratio of the log-
polar pixel « with respect to the spatial support of the Gabor filters. The maximum energy
ratio is cbtained for a squared log-polar pixel (v = 1) and a small spatial support {11 = 11
pixels). It is worth noting that under these conditions the filters show no deformation (sea
A), otherwise high deformations are present (see B-C-I0). {d) Eccentricity £ in the cortical
plane with respect to the spatial support of the filter. The maximum energy 15 obtained for
a small spatial support. {e) Orientation o with respect to the spatial support of the Gabor
filter. The maximum energy ratio is obtained for a small spatial support. (f) Eccentricity &g
in the cortical plane with respect to the orientation o of the filter. The energy is constant

independently of the wlues and the filters present only small deformation (see A-B-C-D}.
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of a bank of Gabor filters, each characterized by a different value of the phase
¢, for a given phase ¢'™ of a filter considered as the input signal. It is worth
noting that, a reliable detection of the input phase can be obtained when the
peak of the responses E; occurs for the value ¢’V of the input signal and when
the shape of the response curve is bell-shaped and symmetric with respect to
its peak.

Figure 4 describes how the filter bank response is affected by the spatial
support of the filter, the aspect ratio ~ of the log-polar pixel, and the orienta-
tion a of the filter, respectively. Since the stability of the phase-based approach
has been demonstrated (Fleet and Jeps-u, 1793), the resp onse of the filter bank
for “non-optimal” choices of the pp mceters - ay o analyzed. For each subfig-
ure the comparison between the vespouses o a bank of matched Gabor filters
{dashed blue profiles) and # .ose W = hank of mapped filters (solid red profiles),
for five different values . .“e _nase '™ is shown. The peak of the responses
E; and the value of th- phase ‘n). «t are marked by a circle and a square, re-
spectively. Furtheomer | the boer g(£.#) and the corresponding mapped filter
glz(£,0), y(r 22 wre suman.

Figu : 4a show: tue filter bank response for different phase values ¢V in
the input s’ anal for .. bank of filters with the reference set of parameters: spatial
support equal to 11 x 11 pixels, aspect ratio v = 1 and filter orientation o = 0.
Figure 4b shows the filter bank response with a spatial support equal to 51 x 51
pixels. For a small spatial support the response of a bank of Gabor filter and
the one of a bank of mapped filter is similar, with the peak response coincident
with the input phase value. The aspect ratio ~ of the log-polar pixel also affects
the filter bank resp onse (not only the response E of a single filter). Figure 4c
shows how the peak of the response does not coincide with the input phase
¢! V. Moreover the profile of the mapped filter shows a significant deformation.
Finally, if the spatial support of the filter is small and the aspect ratio of the
log-polar pixel is equal to 1, the orientation of the filter does not affect the filter

bank response (see Figure 4d).

10
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1

(d)

Figure4: Comparison between the responses of a bank of matdhed filters (dashed blue profiles)
and those of a bank of mapped filters (solid red profiles), for five different values of the phase
&1V The peak of the responses E; and the value of the phase input are marked by a circle and
a square, respectively. The filter g{£, 8) and thecorresponding mapped filter g(x(£. 8}, wi(£.8))
are shawn. (a) The response of the Gabor filters for the reference set of parameters: spatial
support 11 %11 pixels. aspect ratio v = 1 and orientation a = (. (b} The response of the filter
bank when the spatial support of the Gabor filters is 51 = 51 pixels. (¢} The response of the
filter bank when the aspect ratio v of the log %Ll&r pixel is larger than 1. (d} The response of

the filter bank when the Gabor filter orientation o is 7/3.
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5. Remarks about the log-polar mapping for the visual processing

4.1, Fovea design

In the literature, different techniques to handle the information in the blind
spot have been proposed. A Cartesian representation in the foveal region can be
used (Bolduc and Levine, 1998), although it is necessary to take into account the
discontinuity between the central area and the peripheral area. An alternative
represen tation it is to consider a polar fovea (Berton et al., 2006). However, the
polar fovea model has the major drawback of generating an aspect ratio - that
changes with the distance from the origin® thus it is not useful for the visual
processing, as we have demonstratec in Sectios 3. It is also worth noting that
the size of the blind spot is usual y -mall i compared with the spatial support

of the filter, thus the probler a. ~aisted vith the discontinuity issue diminishes.

S.20 Muiti-seale analys. <

To optimally deect o’ fecent features at different levels of resolution in the
input image, a 1. - sca'e approach is necessary. Considering that Gabor filters
act in the Lequescy dooaain as band-pass filters, centered at their own spa-
tial peak frequeccy, vhereas information in natural images is spread on a wide
range of freq ey les, it is necessary to use a technique that allow to capture
information from the whole range. In general. a multiresolution analysis can
be efficiently implemented through a coarse-to-fine strategy that allows us to
recover feature values larger than the spatial support of the filter. Thus, the
number of spatial scales depends on the specific processing task addressed. The
space variance of the log-polar mapping, i.e. the linearly increase of the filter
size with respect to the eccentricity, can be exploited to efficiently implement
a multi-scale analysis. A pyramidal approach (Burt and Adelson, 1983) can

be considered as a “vertical” multi-scale, i.e. the variation of the filter size

2In the polar region of the mapping the aspect ratio is 4 = (kp2m/S)a. where kp is a
constant that takes into account the continuity condition between the polar and the log-polar

mapping, and % represents the eccentricity.

12
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at a single location, whereas the log-polar spatial sampling acts as an “hori-
zontal” multi-scale, i.e. the variation of the filter size across different location
(Schwartz, 1985; Bonmassar and Schwartz, 1997). The “vertical” multi-scale is
also addressed in the literature as “cortical pyramids” (Colombo et al., 1996).

To exploit the “horizontal” multi-scale properties, an additional rule to de-
sign the log-polar mapping is introduced, in order to take into account the de-
sired filter size at the maximum eccentricity, and, consequently, the maximum
log-polar pixel size Wi,,,. Consequently, it is necessary to devise how the pa-
rameters of the log-polar mapping can be expressed as a function of Wi,,,.. The
novel rule that relates the total number of rings R with W, can be expressed
by:

W s ¢
Re —_ (£ sas 0

(e~ Woiax)/ Prmax ) (5)

Hence, the log-polar m. oping s ! Sned by three parameters: py, prar and

Winar, by assuming the aspe-t -atio of the log-polar pixels v = 1.

2.3, Vector featurc oo ping

In comp tex vizfon ‘mportant visual features, such as the optic flow and the
disparity for » stere v active vision system with convergent axes, are described
by vector elds. Smmce the visunal features (d) are computed in the cortical
domain, the transformation of a vector field from the (£,#) domain to the (z,y)
domain can be expressed in terms of general coordinates transformation (Chan
Man Fong et al., 1997):

PP
| _ % & ac | -
dy a a5 | L d

Combining Eqs. 1 and 6, we obtain:

i, . cosfl —s=n f# de
= poa® Infa) . (7)
d, sinfd cosd s

The scalar coefficient of Eq.7 represents the scale factor of the log-polar

vector and the matrix describes the rotation due to the mapping.

13
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6. Experimental validation

In this Section the analyzed design rules are assessed by using a multi-
scale and multi-orientation approach for the extraction of visual features. In
particular, a distributed phase-based algorithm for vector disparity evaluation
has been considered (see Appendix A for details).

.1, Dhsparity computation in log-polar @mages

The issue of disparity estimation for log-polar foveated systems has been
addressed by several authors in the literature (Bernardino and Santos-Victor,
1996, 2002; Grosso and Tistarelli, 2000, *ancotti et al., 2001; Schindler, 2006).
In (Grosso and Tistarelli, 2000) - .arsc d.v o't maps are obtained by using
a matching of Laplacian featnres. Bevnan'io and Santos-Victor (1996) and
Manzotti et al. (2001) pres at techuic es tor extracting a disparity measure for
vergence control, thus .egle~tiog the contribution of the vertical disparity. In
(Bernardino and & atos Victor, 2002) the authors follow a Bayesian approach
to estimate bot™ hoviz, atal wna vertical disparities. However, the lack of quan-
titative resu ts pvevens: an explicit comparison with our approach.

The . lgoritm u ea for the experimental validation presented in this paper
is suitable .~ be directly applied on cortical images, since 2D vector disparity
is computed without an explicit search of the correspondences, between the left
and the right images, along the epipolar lines. In this way, it is not necessary to
take into account that the straight lines in the Cartesian domain become curves

in the log-polar space (Schindler, 2006).

.2, Results

The 2D vector disparity is computed for stereo image pairs acquired by
an active vision system: the two cameras of the system can actively fixate
points in the 3D workspace through vergence and version movements. In order
to quantitatively benchmark the proposed approach, stereo sets with available
ground truth disparities are necessary. To this aim, the tool described in (Chessa

et al., 2009b) is used. Such a tool, exploiting the ground truth awvailable from a

14
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3D model of the observed scene, virtual or real, and the related projected stereo
images, provides a way to validate the behavior of an active vision system in
a controlled and realistic scenario. Figure 5 shows the left image of the stereo

pairs used in the following analysis.

Figure 5: Left images of the consideres .teeo pair |0 A svothetic frontoparallel plane.

(b}{c} Real-world scenarios acquired Yw a 20 las-r . canner.

The visual task, we are vonsideving constraints the choice of the blind spot
radius and the number of scoles Tince in active vision systems information
in the fovea is the mosu in o ant, the py is kept small, i.e. in the range
between 3 and . »iiels. Morcover, since the presence of large disparities in the
periphery al =cts ‘he nu.. ber of scales, both “horizontal” multi-scale, see Eq. 5,
and “ver.ieal” 1oulth scale are used. The values of W, range between 4 and
8. and the mumby - of “vertical” scales is chosen between 1 and 3.

According to these choices, we first transform the stereo image pair into the
cortical domain, then the 2D vector disparity is computed in the cortical domain
{(£,8) by using a bank of Gabor filters with spatial support 11 x 11 pixels, peak
frequency wp = 1/4, bandwidth 0.833 octave and 8 different orientations a.
Finally, the vector disparity is transformed into the Cartesian domain (z,y) by
using Eq. 7, where we perform the quantitative benchmark with respect to the
ground truth data.

Figure 6 shows the resulting estimate of the horizontal and vertical dispar-
ities for a frontoparallel plane. with the camera axes vergent in the center of
the plane. Figure 6 (first row) shows the disparities computed in the cortical

domain, by using two “vertical” scales. It is worth noting that two “vertical”
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spatial scales are not sufficient to recover the correct disparity range if the bank
of filters is applied into the Cartesian domain, directly (see Figure 6 (second

row | ).

Figure 6: Horizontal (HDY) and vertical (VDY) disparities for a frontoparallel plane, when the
optical axes are vergent in the center of the plane. (First row) Computation in the cortical
domain with two “wvertical” scales. [Second row) Computation in the Cartesian domain with

two “vertical” scales and with five “wertical” scales (third row).

In order to quantitatively analyze the reliability of the results, the computed
disparity maps are compared to the awailable ground truth maps. Figures 7, 8
and 9 show the computed disparity maps obtained from stereo pairs representing
a plane and two more complex real-world scenes, acquired by a laser scanner,

respectively. Furthermore, the reliability of the disparity values with respect to

16
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HD estimation VD estimation HD ground truth

|
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Figure 7. Comparison between the estimate  dispa-ity ~aps and the ground truth for a

fromtoparallel plane (first row) and for & ane <d | ane (aocond row). In both situations the
axes of the two cameras are vergent m  he -entel of ¢ e planes. The average errors in the
computation of the horizontal (HEY acd woeto-al [V ) disparities are: 1.72 and 0060 pixels for
the first row, and 1.71 and .70 xels foo the second row, The ground truth disparity range

iz batwesn —16 and 16 pixe

the parameters of the (napping L analyzed. Tables 1 and 2 show how the size of
the cortical image, defined vy py and Wi, .., and the number of the considered
“vertical” scales affect both the execution time, and the global average error
on the computation of the disparities, with respect to the ground truth. In
addition to the global average error, computed by considering all the pixels of
the image, the average error around the fovea (a region with a radius half of
the image size) and in the periphery is computed separately. This approach
is necessary, since the central part of the image is mostly important for active
vision tasks and the error in the peripheral area is affected by the increased size
of the log-polar pixel. The analysis show that the average error in the region
around the fovea is small, i.e. less than 1 pixel in every condition.

The execution time is expressed as a fraction of the algorithm execution time

in the Cartesian domain with the optimum set of parameters, in this way the

L7

VD ground truth

h

-
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HD estimation VD estimation

Figure 8: Comparison between t. e estun ~tewd “lsparity maps (first row) and the ground truth
(second row) for a stereo po 0 obyin d from a real scenario acquired by a laser scanner. The
sverage errors in the r opotacdon o) the horizontal (HDY) and vertical (VD) disparities are
1.50 and 0.57 pixels, wes,o ve . 7 e groumd truth disparity range is between —13 and 21

pixels.

obtained vesult. are 1ot bound to a specific implementation. It is worth noting
that the tim. nec =ssary for the forward and backward log-polar transformation

is a small percentage of the total execution time.

T. Conclusion

In this paper, we have addressed the problem of the multi-orientation and
multi-scale filtering in the log-polar domain. The extraction of features based on
spatial filtering has a great importance for many applications of image processing
and computer vision. Nevertheless, this topic has not been fully investigated in
the literature. To this aim, a systematic analysis of the relationships between
the parameters of the discrete log-polar mapping and of a bank of Gabor filters
has been carried out. The major outcome of this analysis is the definition

of a set of general design rules, that allow us to use algorithms, which were

15
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HD estimation VD estimation

Figure : Comparison between t. e estun ~tew “lsparity maps (first row) and the groumd truth
(second row) for a stereo po 0 obyin d from a real scenario acquired by a laser scanner. The
average errors in the r opotacdon o the horizontal (HD) and vertical (VD) disparities are
1.29 and 0.54 pixels, resw Livelr. 7 e groumd truth disparity range is between —6 and 10

pixels.

originall, desigred n the Cartesian domain, directly in the log-polar space,
without requiting specific modifications. Moreover, we have deduced a novel
rule to efficiently implement a multi-scale analysis, by exploiting the space-
variance of the log-polar mapping.

The validity of such analysis has been proved by applying a distributed
phase-based approach for the computation of binocular disparity based on a
bank of Gabor filters on log-polar stereo pairs. The obtained results show that
it is possible to recover reliable values of the horizontal and vertical disparities
by directly applying the algorithm in the cortical domain, thus achieving a
consistent reduction in the execution time.

The possibility of efficiently exploiting a space-variant representation is of
great importance in the development of active systems capable of interacting

with the environment, since a precise processing of the visual signal is possible
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in the foveal area. where the feature errors are small enough to allow a fine
exploration of the object of interest. At the same time, the coarse computation
of the feature in the peripheral area provides enough information to detect new
saliencies and to bring the focus of attention there.

To allow a future quantitative comparison with the results presented in this
paper, the stereo pairs and the ground truth data considered for the analysis

are made publicly available at wuw.pspc.dibe .unige.it/Research/vr.html.
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Appendix A. Distributed dispan > v computation

In this Appendiy an appro.ch’ o extract disparity from a sequence of stereo
image pairs, using a Y rib e bio-inspired architecture that resorts to a pop-
ulation of tv- ~d vul*s, is described (Chessa et al., 2009a).

The © spu'ation thiat has been used to compute the features is based on a
bank of ovented T oor filters (cf. Eq. 2), each having the same peak spatial
frequency wy. rwdowing the phase-shift model (Fleet et al., 1996), to obtain the
tuning to a specific disparity, a pair of filters, g"(x) and §(x), is applied in
the same position X3 = (xg, yp) of the left and the right images, respectively.
The filter pair share the same properties, but are characterized by a phase
difference A¢ = ¢ — . For each spatial orientation o, a set of K binocular
phase differences are chosen to obtain the tuning to different disparities. The
sensitivity to binocular disparity is obtained from a quadrature pair of binocular

energy units (Ohzawa et al., 1990; Fleet et al., 1996), described by :
E(xp:a.d) = |E"(x0:a) + E%(xp:a)f.

where EX(xp;a) = {g"(x —xa). I"(x)), Ef(xp:0) = {g7(x —xq). T7(x))

and I'%(x) = I*(x + d). The binocular energy E(xg;a,d) has its maximum

20
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when the product of the projection d, along the orientation a of the filter, of
the stimulus disparity d and the spatial peak frequency wy equals the binocular

phase difference Ae¢: d = A¢/w, To obtain precise feature computation a

1B

Aoy A N
{ 5\/ “«{ }Qf /

v

Figure A.10: Population decoding by a welzghte 1 sum of the population response. The tuning

1. .

"

curves of each unit are represented in . the res v a0 L(xpia.d;) are shown as the green

bars and the decoded componenf disp iy a, 15 roorosented by the blue bar.

wetghted sum (i.e. a populalior vestor, of the responses for each orientation o
is performed. The component deowg ty d,. is obtained by:

S diE(xg; o, d;)

YL, Blxgia.d;)

where d; are the 7~ v, ~ disparities and E(xp; o, d;) are the binocular energies

welxpie, =

obtained for ea h sp: tial unit (see Figure A.10). Then, the vector disparity d is
obtained trococh  combination of the different component disparities. Finally,
by exploiting the pyramidal approach a coarse-to-fine refinement is obtained.
The feature values computed at a coarser level of the pyramid are used to warp
the outputs of the filtering stage at the finer level, then the residual values of

the feature are computed.

References

E. Schwartz, Spatial Mapping in the Primate Sensory Projection: Analytic
Structure and Relevance to Perception, Biological Cybernetics 25 (1977) 181

194,

F. Berton, G. Sandini, G. Metta, Encyclopedia of Sensors, chap. Anthropomor-

phic visual sensors, American Scientific Publishers, 1-16, 2006.

21



400

401

403

403

404

405

406

407

402

409

410

411

412

413

EYESHOTS - Technical Report - F. Solari, M. Chessa, S.P. Sabatini -
submitted to Pattern Recognition Letters

V. Traver, A. Bernardino, A review of log-polar imaging for visual perception

in robotics, Robotics and Autonomous Systems 58 (4) (2010) 378 — 398.

M. Yeasin, R. Sharma, Machine Learning and Robot Perception, chap. Foveated
Vision Sensor and Image Processing A Review, Springer-Verlag, 57 — 98, 2005.

J. Aloimonos, I. Weiss, A. Bandyopadhyay, Active vision, International Journal

of Computer Vision 1 (4) (1988) 333-356.

E. Schwartz, D. Greve, G. Bonmassar, Space-Variant Active Vision: Definition,

Overview and Examples, Neural Netwocks 8 (7-8) (1995) 12971308,

A. Bernardino, J. Santos-Victor, Visuw! behowvi ars for binocular tracking,

Robotics and Autonomous Syswenn= 25 ‘3-1) (1998) 137-146.

J. Wilson, R. Hodgson, A [ ttern vev ~uition system based on models of aspects
of the buman visual =_sten: 12 International Conference on Image Processing

and its Applicat’ .ns, 255 -26 | 1992,

B. Fischl. M. Coiowne Wl Schwartz, The local structure of space-variant images,
Neura) Ne work: 10 (b, (1997) 815 — 831,

E. Nattel, V. Yeshurun, Direct feature extraction in a foveated environment,

Pattern Recognition Letters 23 (13) (2002) 15371548,

F. Smeraldi, J. Bigun, Retinal Vision applied to Facial Features Detection and

Face Authentication, Pattern Recognition Letters 23 (2002) 463-475.

V. Traver, F. Pla, Dealing with 2D translation estimation in log-polar imagery,

Image Vision Comput. 21 (2) (2003) 145-160.

A. Wallace, D. McLaren, Gradient detection in discrete log-polar images, Pat-
tern Recognition Letters 24 (14) (2003) 2463-2470.

J. Bigun, Vision with Directions: A Systematic Introduction to Image Process-

ing and Computer Vision, Springer-Verlag, Berlin Heidelberg, 2006.

22



4i4

415

418

417

418

419

410

471

412

423

424

415

476

427

418

419

430

431

432

433

4314

435

438

437

438

EYESHOTS - Technical Report - F. Solari, M. Chessa, S.P. Sabatini -
submitted to Pattern Recognition Letters

G. Granlund, H. Kmutsson, Signal Processing for Computer Vision, Kluwer
Academic Publishers, Dordrecht, 1995,

M. Chessa, S. Sabatini, F. Solari, A Fast Joint Bioinspired Algorithm for Optic
Flow and Two-Dimensional Disparity Estimation, in: ICVS, 184-193, 2009a.

M. Boldue, M. D. Levine, A Review of Biologically Motivated Space-Variant
Data Reduction Models for Robotic Vision, Computer Vision and Image Un-
derstanding 69 (2) (1998) 170184,

L. Florack, Modeling Foveal Vision, in: Scale Space and Variational Methods
in Computer Vision 2007, 919-928, % 07,

F. Jurie, A new log-polar mappiug v spaec variant imaging. - Application to

face detection and trackir t, .- w*teon hocognition 32 (1999) 865-875.

-

V. Traver, F. Pla, Lc_-powt mappug template design: From task-level re-
quirements to gz amevy para neters, Image Vision Comput. 26 (10) (2008)

13541370,

A. Jerry. Th» Shanou sumpling theorem - Its various extensions and applica-

tions: . tutor.o! v view, Proceedings of the IEEE 65 (11) (1977) 1565-1596.

J. Daungman, Uncertainty Relation for Resolution in Space, Spatial Frequency,
and Orientation Optimized by Two-Dimensional Visual Cortical Filters, J.
Opt. Soc. Amer. A A/2 (1985) 1160-1169.

D. Gabor, Theory of Communication, J. Inst. Elec. Eng. 93 (1946) 429459,

H. A. Mallot, W. Seelen, F. Giannakopoulos, Neural mapping and space-variant
image processing, Neural Networks 3 (3) (1990) 245-263.

E. Adelson, J. Bergen, The Plenoptic and the Elements of Early Vision, in:
M. Landy, J. Movshon (Eds.), Computational Models of Visual Processing,
MIT Press, 320, 1991.

23



437

440

441

442

443

444

445

445

447

443

149

450

451

452

453

454

455

458

457

453

459

460

451

453

483

464

EYESHOTS - Technical Report - F. Solari, M. Chessa, S.P. Sabatini -
submitted to Pattern Recognition Letters

D. Fleet. A. Jepson, Computation of component Image Velocity from local phase

information, International Journal of Computer Vision 1 (1990) 77-104.

D. Fleet, A. Jepson, M. Jenkin, Phase-Based Disparity Measurement, CVGIP:
Image Understanding 53 (1991) 198-210.

L. Haglund, Adaptive Multidimensional Filtering, Ph.D. thesis, Linkoing Uni-
versity, Sweden, 1992,

J. Koenderink, A. van Doorn, Representation of local geometry in the visual

system, Biol. Cybern. 55 (1987) 367-375.

N. Qian, S. Mikaelian, Relationshin Bevwveru Ph- e and Energy Methods for
Disparity Computation, Neurw Compot. 12 (2) (2000) 279-292.

D. J. Fleet, A. D. Jepson, ~ cabili'v ot Phase Information, IEEE Trans. Pattern
Anal. Mach. Intell. 1. (1.} (- 993) 1253-1268.

P. Burt, E. Adelson, The Ja,l¢ ian Pyramid as a Compact Image Code, IEEE
Trans. Commyo. COL-31 (1983) 532-540.

E. Schw rtz. Imape Piocessing Sinmlations of the Functional Architecture of
Primate Striate Cortex, Investigative Ophthalmic and Vision Research (Sup-
plement) 26 (3) (1985) 164.

G. Bonmassar., E. Schwartz, Space-Variant Fourier Analysis: The Exponential
Chirp Transform, IEEE Trans. Pattern Anal. Mach. Intell. 19 (10) (1997)
10801089,

C. Colombo, M. Rucci, P. Dario, Image Technology: Advances in Image Pro-
cessing, Multimedia and Machine Vision, chap. Integrating selective attention
and spacevariant sensing in machine vision, L.C. Sanz (Ed.), Springer, 109

127, 1996.

C. Chan Man Fong, D. Kee, P. Kaloni, Advanced Mathematics For Applied
And Pure Sciences, Cre Press, 1997,

24



EYESHOTS - Technical Report - F. Solari, M. Chessa, S.P. Sabatini -
submitted to Pattern Recognition Letters

s A, Bernardino, J. Santos-Victor, Vergence control for robotic heads using log-

456 polar images, in: Intelligent Robots and Systems, 1264-1271, 1996.

7 A. Bernardino, J. Santos-Victor, A Binocular Stereo Algorithm for Log-Polar
463 Foveated Systems, in: Biologically Motivated Computer Vision, 127-136,
152 2002,

amo E. Grosso, M. Tistarelli, Log-Polar Stereo for Anthropomorphic Robots, in:
art Computer Vision - ECCV 2000, 299-313, 2000.

sz R. Manzotti, A. Gasteratos, G. Metta, G. Sandini, Disparity Estimation on
an Log-Polar Images and Vergence Cont..' Computer Vision and Image Under-

as  standing 83 (2) (2001) 97-11T.

s K. Schindler, Geometry and cu truction of straight lines in log-polar images,

78 Computer Vision and ™age Jna-rstanding 103 (3) (2006) 196-207.

ar1 M. Chessa, F. Sola .. 8. RFavatin’', A Virtual Reality Simulator for Active Stereo

473 Vision Syster-~s, . (ISSAPP, 444-449, 2009h.

ars Do Fleet, . Wagier, D. deeger, Neural Encoding of Binocular Disparity: En-
as0 ergy Muodels, 1 ~<i* on Shifts and Phase Shifts, Vision Research 36 (12) (1996)
ast 18391857,

sz L. Ohzawa, G. DeAngelis, R. Freeman, Stereoscopic depth discrimination in the
433 visual cortex: neurons ideally suited as disparity detectors, Science 249 (1990)
454 10371041,

25



EYESHOTS - Technical Report - F. Solari, M. Chessa, S.P. Sabatini -
submitted to Pattern Recognition Letters

CARTESIAN DOMAIN

image size numhber AEH AEV AFEH AEV execution

. _ AEH | AEV ) )

fm = n) of scales fovea fovea periphery | periphery time

331 = 331 5 0.82 | 0.27 0.10 0.10 0.83 0.28 1007

331 = 331 2 3.00 1 2.43 0.30 | 0.21 3.59 2.68 89

331 = 331 1 373 | 274 0.76 ! 054 307 3.09 T

COR”.CAL D7 sm0IN
(o= S_:l number | +EHR | .:t_."\-" AEH AEV execution
AEH | AFV

By Wonas of scales ] mwas fovea periphery | periphery time

TO0 = 150 .
2 1.37 . 045 i 0.2z 0.29 1.53 .61 367

3.5

TU = T - :_ L .
2 IR IR 15 0.28 0.22 1.47 0.57 367

5.5 L\ N

TO0 = 159 | | .
1 TR PR PN 0.43 (.35 2.00 0.83 29'%

3.5

TO0 = T84 \ .
! L 0.71 046 0.29 2.07 1.01 20%

5.0 1

GF = 117 .
1 213 | 0.84 0.50 0.34 2.23 1.04 9%

5.7

Table 1: Performance comparison betwesn the computation of the disparity in the Cartesian
and in the log-polar domain for different sizes of the cortical image. The values refer to the
test image shown in Figure Sa. The global average error for the horizontal disparity { AEH)
and for the vertical disparity (AEV), together with the local error around the fovea {AEH
foven and AEY fovea) and in the periphery ( AEH periphery and AEY periphery) are shown.
The execution time is expressed as a percentage of the execution time in the Cartesian domain

with five spatial scale,
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CARTESIAN DOMAIN

mage sizé | pumber AFEH ARV AEH ARV execution
. . AEH | AEV ) )
fm = n) of scales fovea fovea periphery | periphery time
H34d = 524 3 1.02 0.84 0.24 0.10 1.20 0.55 10007
a3 = 524 2 L.45 0.98 .28 011 1.91 0.83 02"
534 = 524 1 1.98 | 1.04 0.G5 | 0.20 2.59 1.24 70
CORTICAL UM ATV
(= 8) number [ .oH T..v [AEH AEV execution
) AEH | AEV | ‘ ) )
P, Winas of scales _lievea | foea periphery | periphery time
237 373 | _
2 1.29 | 0.54 LS 0.19 1.51 0.67 124
5.4
D37 % 373 SN _
1 171l ass !l o8 | 020 1.93 0.67 31
5.4 | |
54 = 247 __I__-
2 L.70 0 08 0.52 0.29 215 1.10 214
o. G NN ‘|_
ISE R \ _
1 184 [ 0.7 0.63 0.29 2.33 1.03 15
o6
115 = 183 - _
2 2.0 1.00 0.74 0.44 2.61 1.25 12'%
a9, 8
T15 = 183
1 208 1 1.10 0.74 0.46 2.69 141 12'%
5.8

Table 2:

Performance comparison between the computation of the disparity in the Cartesian

and in the log-polar domain for different sizes of the cortical image. The values refer to the

test image shown in Figure 5b, The global sverage error for the horizontal disparity ( AEH)

and for the vertical disparity (AEV), together with the local error around the foven (AEH

fovea and AEY fovea) and in the periphery ( AEH periphery and AEV periphery) are shown.

The execution time is expressed as a percentage of the execution time in the Cartesian domain

with three spatial scale.




