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Declaration by the scientific representative of the project coordinator 
 
 
I, as scientific representative of the coordinator of this project and in line with the obligations 
as stated in Article II.2.3 of the Grant Agreement declare that: 
 
 The attached periodic report represents an accurate description of the work carried out in 

this project for this reporting period; 

 The project (tick as appropriate): 

 has fully achieved its objectives and technical goals for the period;  

□ has achieved most of its objectives and technical goals for the period with 
relatively minor deviations1; 

□ has failed to achieve critical objectives and/or is not at all on schedule2. 
 
 The public website is up to date, if applicable. 

 To my best knowledge, the financial statements which are being submitted as part of this 
report are in line with the actual work carried out and are consistent with the report on 
the resources used for the project (section 6) and if applicable with the certificate on 
financial statement. 

 All beneficiaries, in particular non-profit public bodies, secondary and higher education 
establishments, research organisations and SMEs, have declared to have verified their 
legal status. Any changes have been reported under section 5 (Project Management) in 
accordance with Article II.3.f of the Grant Agreement. 

 
 

 

Name of scientific representative of the Coordinator: Silvio Paolo Sabatini 
 

 

Date: 30th April 2011 

 

Signature of scientific representative of the Coordinator:  
 

 

 
 
 
 

                                                 
1  If either of these boxes is ticked, the report should reflect these and any remedial actions taken. 
2  If either of these boxes is ticked, the report should reflect these and any remedial actions taken. 



 4

1. Publishable summary 
 
EYESHOTS is a Collaborative Project funded by European Commission through its Cognitive Systems, 
Interaction, Robotics Unit (E5) under the Information and Communication Technologies component of the 
Seventh Framework Programme (FP7). The project has run for a total of 36 months from the 1st of March 
2008 to the 28th of February 2011. The consortium is composed of 7 research units of 5 research centres: 

University of Genoa, Italy    (UG) 
Westfälische Wilhems-University Münster, Germany (WWU) 
University of Bologna, Italy     (UNIBO) 
University Jaume I, Castellòn, Spain    (UJI) 
Katholieke Universiteit Leuven, Belgium  (K.U.Leuven) 

which provide different expertise ranging from robotics, computer vision, neuroscience and experimental 
psychology.  
 

1.1  Project’s goal 
 

The goal of EYESHOTS is to investigate the interplay existing between vision and motion control, and to 
study how to exploit this interaction to achieve a knowledge of the surrounding environment that allows a 
robot to act properly. Robot perception can be flexibly integrated with its own actions and the understanding 
of planned actions of humans in a shared workspace. The research relies upon the assumption that a 
complete and operative cognition of visual space can be achieved only through active exploration of it: the 
natural effectors of this cognition are the eyes and the arms (see Fig.1). 
 

 

Figure 1: The EYESHOTS perspective for 3D space perception. 
 
Crucial but yet unsolved addressed issues are object recognition, dynamic shifts of attention, 3D space 
perception including eye and arm movements, and action selection in unstructured environments. The project 
proposes a flexible solution based on the concept of visual fragments, which avoids a central representation 
of the environment and rather uses specialized components that interact with each other and tune themselves 
on the task at hand.  
In addition to a high standard in engineering solutions the development and application of novel learning 
rules enable the system to acquire the necessary information directly from the environment.  
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1.2  Specific objectives 
 

The project aims to reach the following three specific objectives: 
 

Objective 1: Development of a robotic system for interactive visual stereopsis. The function of the systems 
is to interactively explore the 3D space by active foveations. Benefits of the motor side of depth vision are 
expected to be bi-directional by learning optimal sensorimotor interactions. 
Objective 2: Development of a model of a multisensory egocentric representation of the 3D space. The 
representation is constructed on (1) binocular visual cues, (2) signals from the oculomotor systems, (3) 
signals about reaching movements performed by the arm. Egocentric representations require regular updating 
as the robot changes its fixation point. Rather than continuously updating based on motor cues or a visual 
mechanism (i.e. optic flow), the model updates only the egocentric relationship and object-to-object 
relationships of those objects currently in the field of view. During motion, the model covertly and overtly 
shifts attention to objects in the environment to maintain the model’s current awareness of the environment. 
The updating of the internal representation of spatial relations requires binding processes across the different 
visual fragments. 
Objective 3: Development of a model of human-robot cooperative actions in a shared workspace. By the 
mechanism of shared attention the robot will be able to track a human partner’s overt attention and predict 
and react to the partner’s actions. This will be extremely helpful in cooperative interactions between the 
robot and a human.  
 

1.3 Expected final results 

By the end of the three years the following results will be achieved: 
 Implementing strong “dynamic” and “pro-active” components in which the effect of eye movements 

and of arm reaching actions will express as joint visuo-motor features, patterns and relationships for 
a perceptual awareness of space; 

 Building a contingent knowledge of the sensorimotor laws that govern the relation between possible 
actions and the resulting changes in incoming visual information. 

 Binding of objects into a global workspace for cognitive task control. 
 
Although the project EYESHOTS has an explorative, pre-industrial character, the innovative computational 
paradigms and the cognitive engineering solutions, devised to operate adaptively outside the manufactured 
environments as well as pragmatic application scenarios, are expected to have impact on service robotics. 
From this perspective, we have been contacted by the international organization e-ISOTIS (Information 
Society Open To ImpairmentS, www.e-isotis.org), established and evolved with the scope to support the 
people with disabilities and elderly to overcome the existing barriers and have an independent living and 
quality of life, which is interested in the results of our project. 
 

1.4 Work performed and main results achieved in the reporting period (01/03/10 – 28/02/11)    

At the end of its first phase (February 2009), numbered among the project's assets were a front-end vision 
module providing a cortical-like representation of the binocular visual signal for both vergence control and 
depth estimation, and a conceptual framework for modelling ventral/dorsal interactions in reaching (and 
grasping) actions. Moreover, the experimental set-up for the planned (fixate-in-depth and reach-in-depth) 
neurophysiological experiments was defined, and a first set of psychophysical experiments on saccadic 
adaptation in humans was completed. At that stage, the eyes and the arm system were considered as separate 
effectors. 

Starting from that ground, in the second year (February 2010) we more decisively addressed the problem of 
combining 3D space information obtained through active ocular and arm movements with the final objective 
of controlling spatially directed reaching actions, and, in general, visually-guided goal-directed movements 
in the whole peripersonal workspace. To this end, a first level of integration has been achieved both for (1) 
the visuomotor coordination of eye movements (K.U.Leuven, UG, WWU) and for (2) the 
visual/oculomotor/arm-motor coordination (UJI) by developing a network model with populations of radial 
basis function neurons uniformly distributed in the visual space (disparity and cyclopean position) as well as 
the vergence/version space and in the arm joint space. 
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In the third period, the work focused on the integration of the different modules on the robot platforms, in 
order to validate the approach in real-world conditions. Specific achievements are: 
 The development of working modules for stereopsis and oculomotor control 

o Distributed disparity energy model [UG] 
o Binocular object detection (and FEF saliency map) [WWU] 
o Vergence control modules [K.U.Leuven, UG] 

 The validation of interactive stereopsis behaviour in real-world situations on the i-Cub platform 
o Dual-mode vergence control [UG] 
o Concurrent disparity and gaze estimation [K.U.Leuven] 

 The realization of the non-conventional tendon-driven mechatronic binocular system [UG] 
 The integration of perceptual/visuomotor strategies on the eye/head-arm UJI robot platform. 

 
A specific experimental framework has been devised to capture the bilateral interaction between motor and 
perceptual processes. In particular, we validated the benefit of coordinated execution/planning of binocular 
saccades and reaching actions (see Fig. 2) when a system is engaged in gazing and/or reaching foveated/not-
foveated targets that are selected among multiple alternatives in the robot’s peripersonal space. 
 

 

 

 

Figure 2: (Left) The multi-object experimental setup used with the UJI humanoid robot Tombatossals. 
(Right) Concurrent gaze and reaching actions used to test the bilateral interaction between binocular 
oculomotor coordination and reaching tasks: saccades and reaching actions alternate sequentially both in 
the execution or planning phases. The robot employs the egocentric representation of peripersonal space it 
has gained, to interact with surrounding objects, recognize them and perform custom visuomotor and arm-
motor actions, such as: foveate on the hand; reach the gazing point; show memory; foveate on a given object 
(either inside or outside the field of view); reach a given object (either foveated or not); execute a sequence 
of saccades by employing either covert or overt attention.. 
 
Together with these integration activities, the ongoing development of models, as well the analysis of the 
data collected in neurophysiological and psychophysical experiments yielded significant results on the 
neuronal mechanisms used to link different fragments by the use of visual, attentional, oculomotor, and arm-
movement related cues. Focusing on the action-oriented dorsal stream, neurophysiological findings from 
UNIBO show that a large majority of cells in area V6A are modulated by ocular and/or reaching movements 
in 3D. These results have contributed to the definition of an integrated representation of visual, arm and eye 
sensorimotor information on which to base the 3D location of potential visual targets with respect to the 
body. The advantages from such representation, based on a Radial Basis Function framework, have been 
analyzed in theory, and have allowed us to implement advanced behaviors on the UJI humanoid robot setup. 
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Concerning the motor influence of visual perception, the analysis of the experimental data collected in the 
previous periods on saccadic adaptation by WWU is now completed. The analysis has yielded remarkable 
evidences of the oculomotor components of visual target localization, which have been included in the final 
model. Saccadic adaptation experiments were performed in simulation on the UJI model and on the real 
robot, providing interesting practical and theoretical insights. 

The final status of the project is depicted in the diagram of Figure 3 evidencing the different project’s 
components and their integration. The large greyed box represents the EYESHOTS’ Agent engaged in the 
perception action cycle: The information flows circularly from the environment to sensory structures, to 
motor structures, back again to the environment, to sensory structures, and so on, during the 
processing/accomplishment of goal-directed behaviour. Robot perception is flexibly integrated with its own 
actions, both oculomotor and arm-related. The stereo vision platform integrated in the final system could be 
potentially substituted by the anthropomorphic mechatronic system that emulates eye kinematics and 
actuation of the human eye. Though, further functional testing should be necessary in that case. 
 

Figure 3: The EYESHOTS project components and their integration. 

 
 

In summary, the project achieved all the objectives of the period with the concerted work of all partners. 
The up-to-date results on the project work are available on the project web-site www.eyeshots.it  
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2. Project objectives for the period 
  

2.1 Overview 
 

The Work Program consists of 8 Work-packages (WPs). There will be five scientific and technological WPs 
(WP1-5), and three WPs, planned for: training (WP8), dissemination and exploitation of the project’s results 
(WP7), and for general project coordination and management (WP6).  
 
The workplan is organized to allow the concurrent development of these activities.  
For each Workpackage we provide, from the Annex I of the GA, a synthesis of the objectives of the related 
tasks for the 3rd reporting period. 
 
WP1: Eye movements for exploration of the 3D space  

(1) Study of the geometric and kinematic effects of eye movements on image flow for supporting the 
estimation of 3D information. 

(2) Development of a bio-inspired stereoscopic robot system capable of emulating the ocular motions. 

Task 1.2: Perceptual influences of non-visual cues – Analyse the relationships between the version and 
vergence angles and the resulting disparity patterns. Introduce specific mechanisms to modulate the 
responses of the disparity detectors on the basis of the vergence and version signals. These modulations are 
expected to influence perception at a more global level, being integrated across the whole image. The 
results will be taken into consideration in the design flow of WP2. 
Task 1.3: Control of voluntary eye movements – Study of the interplay existing between the mechanics of 
the eye plant and the strategies implemented by the brain to drive typical biological ocular motions. The 
goal is to understand the control mechanisms adopted by the brain to coordinate the action of the extra-
ocular muscles for the single eye and for conjugate ocular movements. 
Task 1.4: Bioinspired stereovision robot system – Design of a human-sized and bio-inspired binocular 
robot system capable of emulating basic ocular movements. Experimental validation of the models 
investigated in Task 1.3. Development of an integrated head-eye-arm platform. 

 
WP2: Active stereopsis  

(1) To learn a vergence motor strategy that optimizes the quality and efficiency of the feature-extraction 
for the specific task to be accomplished. 

(2) To develop scanning strategies that accurately describe the head-centric disparity of a visual fragment 
so that it can be processed by precise, near-tuned disparity detectors. 

Task 2.1: Network paradigm for intelligent vergence control (reflex-like) – To test the vergence networks 
developed in the previous prediods in the robot eye system and assess its performance. The networks are 
trained off-line, using a set of binocular images acquired from the real scene.  
Task 2.2: Interactive depth perception – To develop a mechanism that renders the disparity-to-depth 
transformation robust to small vergence/version errors due to the limited accuracy of the motor system. 
The full disparity vector (i.e., both horizontal and vertical components) will be exploited to obtain accurate 
eye position information. 

 
WP3: Selecting and binding visual fragments  

(1) To derive information about object identity from a hierarchical representation of learned features. 
(2) To learn distributed representations that actively bind and represent visual fragments for the task at 

hand. Reward-based learning approaches will be adopted. 

Task 3.2: Selecting visual fragment – Development of dynamic goal-directed attentional selection to bind 
object properties, on the basis of the momentarily existing task. The final model should be able to localize 
a particular target object in a visual scene. 
Task 3.3: Selecting between behavioral alternatives – We address the problem of learning the cognitive 
control of visual perception, in forms of visual-visual and visual-reward associations. A model of working 
memory that allows us to activate context information for the task at hand based on the association of 
previous events will be developed and tested. 
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WP4: Sensorimotor integration  
(1) Generation of an action-perception integrated representation of objects in the peripersonal space 

through the interaction of the robotic system with the environment. 
(2) Achievement of an egocentric 3D visuomotor map of the peripersonal space to demonstrate binding 

capabilities in reaching and visual spaces. 

Task 4.2: Generating visuo-motor descriptors of reachable objects – Generate an integrated representation 
of the peripersonal workspace in a dynamic way, through the practical interaction of the robotic system 
with the environment. Visuomotor descriptors that combine visual and proprioceptive information 
concerning eye and arm movement will be based on modelling of cortical functions, mainly from the 
parietal cortex. 
Task 4.3: Constructing a global awareness of the peripersonal space – The agent will simultaneously 
learn to reach towards different visual targets, achieve binding capabilities through active exploration and 
build an egocentric, 3D visuomotor map of the environment. 
 

WP5: Human behaviour and neural correlates of multisensory 3D representation  
Definition and execution of specifically-designed psychophysical and neurophysiological experiments. 
The experiments are intended to provide architectural guidelines for the organization of perceptual 
interactions and will guide the production of artificial systems able to explore and interact with the 3D 
world.  The psychophysical experiments will provide behavioral patterns (I/O specifications), while in-
vivo experiments will provide architectural solutions (I/O + internal structural data). 

Task 5.1: Role of visual and oculomotor cues in the perception of 3D space – To verify the role of non-
visual and visual cues in the perception of the 3D peripersonal space in the medial parieto-occipital cortex. 
Task 5.2: Link across fragments – To experimentally determine neural correlates of multisensory 
representation of 3D space obtained through active ocular and arm movements. 
Task 5.3: Motor description of fragment location – To experimentally determine motor contributions of 
eye movements to fragment location via saccade adaptation. 
Task 5.4: Predicting behavior and cooperation in shared workspace – To study specific aspects of human 
behavior in the combination of allocation of attention and direction of gaze that can be used for prediction 
in human-robot interaction. 
 

WP6: Project coordination and management  
To implement and maintain an effective administrative and management infrastructure of the project, 
including: 

(1) Continuous maintenance and update of the EYESHOTS project web-site (both the public section and 
the private section with restricted access to the consortium’s members). 

(2) Continuous maintenance of e-Services and repositories for broadcasting and sharing documents and 
data. 

 
WP7: Knowledge management, dissemination and use, synergies with other projects  

To make the project results known to the Community of interested researchers and automation industry as 
one of the potential developers of next-generation robotic systems. 

Task 7.1: Regular publication of research news, events, research results, and demos on the project website. 
Task 7.3: Journal publications, participation to workshops, conferences, and other forum and events. 
Managing the mailing-list to disseminate results to interested parties. 
 

WP8: Training, education and mobility  
(1) To make local education, training activities and knowledge of the partners accessible for the entire 

consortium. 
(2) To foster the exchange of personnel and to promote collaboration at every level of the consortium. 

Task 8.1: To update the bibliography list and source/access information of the basic and recent literature 
relevant for the project. 
Task 8.2: Student’s half-yearly seminars. 
Task 8.3: Medium- and long-term visiting periods by young researchers and short-term visits of principal 
investigators. 

 



 10

Summarizing, for what concerns the main S&T issues, the project’s objectives for the 3rd reporting period 
were: 

1. Actual development of  integrated demonstrators. 
2. Physical realization of the tendon-driven mechatronic binocular eye system. 
3. Analysis and  model validation of the paradigmatic aspects of concurrent and heterogeneous 

representation of 3D space evidenced in the neurophysiological and psychophysical experiments. 
4. Investigate human-robot interaction through action co-representation tasks in shared workspaces. 

 
For what concerns the other, management, issues the main project’s objective was: 

1. The continuous update of the project website. 
2. Dissemination activity through the participation to international conferences and workshops, and 

publication of  the results of the research activity in peer-reviewed journals or as contributions to 
edited books. 

 
All of these objectives have been achieved. 
 
Concerning the detail of the individual objectives, they are well documented in the individual workpackages 
sections and summarized in section 3.2.  
  

Note: a “code” and a “number” label the publications of the Consortium in the reporting period: the codes 
‘P’ and ‘C’ refer to journal paper and conference contribution, respectively. For the full list of publications 
please see section 5.2.  
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2.2 Follow-up of previous review 
 
There were two main recommendations, the Consortium was asked to take care of.  
These are reported here below in the greyed boxes from the second Technical Review Report.  
 
Recommendation no. 1 
 
 
 
 
 
The mechanical design of the bio-inspired robot-eye has been completed. An integrated version has been 
implemented and experimental preliminary functional and performance tests have been completed.  
The system features the principal theoretic constraints leading to the hardware implementation of Listing’s 
Law, furthermore it has been designed to allow for extended experiments based on recently developed 
control models as part of WP1, (Cannata & Trabucco, 2011 [C17]). 
In order to speed up the development time and making possible the conclusion of the integration of the 
prototype in due time, a rapid prototyping technology has been adopted for the construction of the most 
critical (complex and expensive) parts, to speed-up construction time, reduce costs, and simplify design 
updates and variants. The drawings and CAD models will be made publicly available through the project 
website after the system design material will have been accepted for publication. 
 
Recommendation no. 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

According to the request, on July 5th 2010 the Coordinator submitted to the Project Officer the “Roadmap for 
the integration of WP1, WP2 and WP3 modules and algorithms on the UJI humanoid robot setup” compiled 
by partner UJI. Before submission, the Roadmap was discussed with the different groups that developed the 
relevant software components, as well as with the Coordinator and endorsed by the Consortium.  
 

The Roadmap comprises five different integration phases (0-4) specified with expected timings, to which 
there correspond as many experimental set-ups. 
 
 

For the sake of clarity the integral version of the Roadmap is reported in Box 1. 
 

Complete the non-conventional eye system (Partner UG). The mechanical system offers very 
interesting perspectives, e.g. exploring the so-called ‘structural consequences’ of the design to 
address what is usually considered a ‘control problem’. And there may be an interesting use for such 
a platform in the study of eye pathologies, e.g. strabism. 
 

Integration of the existing modules (especially the WP1-WP2-WP3 complex) in the UJI 
demonstrator: Partner UJI, which is the only partner with access to a complete system (head/eye, 
torso, arm, hand), needs to develop a demonstrator integrating the novel perceptual and visuomotor 
processes developed by Partners UG, K.U.Leuven and WWU. Given the short time frame remaining in 
the project, Partner UJI is to submit a roadmap document outlining how this recommendation is to be 
implemented. This roadmap should outline a list of tasks by which the different algorithms from the 
workpackages will be integrated one by one in an order that minimises delays. In sum, the roadmap 
should include: 

I. A list of tasks with a timeline prioritising in which order the different results from WP1 – 
WP3 are to be integrated into a coherent hard/software system so that delays are 
minimised. (1 page) 
II. A description of the nature of the planned demonstrator, including a scenario. No 
prescription is made regarding the nature of this scenario but a requirement is that it 
demonstrates that the developed algorithms work well with real world images and that they 
are actually running in a concerted manner on a hardware platform. (1 page) 

Recommendation 2) is particularly important. Please communicate to the EC Project Officer at latest 
on 5th July 2010 the requested roadmap. 
 
The reviewers believe that the actual development of an integrated demonstrator would enhance the 
impact of the project: a successful implementation of the processes developed in a VR environment 
would demonstrate the validity and scalability of the proposed method to real-world therefore 
enhancing its impact in a community that is simulation-wary as well as possibly making it an 
attractive proposition to the industry. Negative results, by which we mean that use in the real world 
of the developed techniques makes it possible to identify particular scenarios or conditions under 
which the proposed methods are not as effective as in VR, would open new lines of scientific 
investigation for partners UG, K.U.Leuven and WWU therefore furthering the scientific impact of this 
project. 
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Box 1 
Castellón de la Plana, July 05, 2010

E. Chinellato, M. Antonelli, B. J. Grzyb, A. P. del Pobil 
Robotic Intelligence Laboratory 

Universitat Jaume I, Castellón de la Plana, Spain 
 
 

Roadmap for the integration of WP1, WP2 and WP3 modules and algorithms on the UJI humanoid robot setup 
 
This  document  describes  the  integration  between  the modules  of WPs  1,  2  and  3  of  project  Eyeshots,  and  the  robotic  system
implemented  for WP4. Reference point of  the  integration process  is  the humanoid  robot of UJI  Intelligence Robotic Lab and  the
behavior  implemented on  it by UJI partner. According to the workplan  in Annex  I, at month 30 the model developed by UJI using
data and  insights from partners UNIBO and WWU (WP5) will be fully functional on the robot platform. Employing the Radial Basis
Function  framework developed  in the model,  the robot will be able to achieve open  loop gazing and reaching capabilities toward
visual  targets, according  to  the goals of Task 4.2. Contextual coding of a  target  in different  reference  frames  (visual, oculomotor,
arm‐motor) will allow the system to perform also peripheral reaching actions (without foveating the target). As for the model, the
robotic  implementation  should  also  emulate  some  psychophysical  effect  related  to  deceptive  feedback,  such  as  in  the  saccadic
adaptation  paradigm. Modules  from WPs  1,  2  and  3  are  expected  to  improve  and  complement  such  abilities,  and  the  robotic
implementation should serve as a further validation for the modeled functionalities and neural and physiological mechanisms. 
The integration process described below is organized in a number of subsequent steps, starting from the modules belonging to the
Vergence Version Control model with Attention effects (VVCA), developed by partners UG, K.U.Leuven and WWU/Chemnitz, which
are  either  already  available  or  in  debugging  phase,  and  possibly  continuing with modules  that  are  at  the moment  still  under
development. 
We are  currently performing, with  the aid of partner UG, a preliminary  study  for  setting up utilities  for  interfacing  the different
additional modules, in order to solve the problem of compatibility between Simulink (VVCA model) and C++ (robot) platforms. The
possibility of having to fully recode some of the modules might delay the development of the plan as scheduled below, and could be
subject  to  the availability of extra human  resources by UJI. The  reviewers understanding about UJI having already committed  to
adding such resources, probably based upon the participation to the review meeting of a PhD student who has not been hired using
Eyeshots’ funds, is not exactly correct. Although we expressed at the meeting our willingness to use external human resources, we
cannot guarantee them, since they are bound to other projects with different and specific goals and review procedures. 
 
Phase 0, to be achieved by August, 31, 2010 (month 30), 4PMs 
During this phase, the model for building an integrated sensorimotor knowledge of the environment developed in Task 4.2 will be
applied on the UJI humanoid robot setup. The robotic implementation of such model includes: 1) a module for visual acquisition and
visual  processing  that  generates  disparity  information  regarding  simple  visual  stimuli,  such  as  point‐like  features  on  plain
backgrounds; 2) the RBF structure described  in Deliverable 4.2b  for the contextual representation of stimuli  in multiple reference
frames;  3)  modules  for  controlling  the  execution  of  saccadic  eye  movements  by  the  robot  stereo  head  and  arm  reaching
movements.  At  the  end  of  this  phase,  basic  functionalities  such  as  concurrent  or  decoupled  gazing  and  reaching movements
toward simple visual stimuli will be available  to  the  robot. Each of  the  following steps will build on  this  framework  to obtain an
integrated system with more advanced visual and visuomotor capabilities. 
 
Phase 1, to be achieved by September, 30, 2010 (month 31), 2PMs 
In this first  integration phase, partner UG’s method —for computing binocular disparity  inspired on the functionality of area V1—
will  be  adapted  to  be  employed  by  the  robot,  and  its  output will  be  used  by  the  saccadic  control  developed  in  Phase  0.  The
integration of  this module will  allow  the  system  to operate  in more  complex  visual environments, with  relatively  complex 3D
objects and patterned backgrounds. 
 
Phase 2, to be achieved by October, 31, 2010 (month 32), 2PMs 
The open‐loop saccadic control of gaze shifts in 3D obtained in phase 0 will be improved in this stage with the addition of a closed‐
loop vergence control, that will allow for finer gazing movements upon object surfaces after the initial saccadic movement has been
performed. Two alternative modules are available to  implement such functionality, the Convolutional Vergence Control of partner
K.U.Leuven and the Dual‐Mode Vergence Control of partner UG. Although the first method requires an extensive learning phase, this
can be executed off‐line on a  simulated environment, and  the  resulting parameters can be  transferred  to  the  robot  system. The
consortium  thus  agrees  in  starting  the  integration with  the  inclusion of K.U.Leuven’s Convolutional  vergence  control, whilst not
excluding the possibility of implementing on the robot both methods for a further comparison between them. 
 
Phase 3, to be achieved by November, 30, 2010 (month 33), 2PMs 
This  phase  is  aimed  at  endowing  the  system with  higher  level  cognitive  abilities.  A  bio‐inspired module  for  object  recognition
developed by partner WWU/Chemnitz which  takes  in  input  the  responses of  the V1 module of Phase 1 will be  integrated  in  the
framework, together with the Frontal Eye Field (FEF) movement map it provides in output in order to direct the system attention on
the selected visual  feature. The  inclusion of such modules will allow the robot to work with multi‐object setups, and the system
could be required to contextually foveate and reach toward different visual targets. 
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Box 1 (cont’d) 
 
Phase 4, to be achieved by December, 31, 2010 (month 34), 2PMs 
The version control technique developed by partner KUL employs the FEF movement map described in Phase 3 to achieve a precise
closed loop control of eye movements around the visual environment. With the inclusion of this module, which will substitute the
open loop control of Phase 0, the full integration of the Vergence Version Control model with Attention effects (VVCA) onto the
robotic platform will be achieved. 
 
 
Demonstrators and experimental setups 
 
The  advancement  of  the  integration  process  according  to  the  above  roadmap  can  be monitored  through  the  realization  of  a
sequence of tasks in similar but slightly changing and increasingly demanding scenarios. 
 
Phase 0 
As a  first experimental  task,  the system can be  required  to show  its visuomotor capabilities by performing an oculomotor action
toward a simple, even point‐like, target placed in its visual environment, or toward the location where its hand lies (its identification
would  also be  simplified, e.g. with markers). Complementarily,  it  should  also be  able  to perform  arm  reaching movements  to  a
similar  visual  target,  either with  or without  gazing  at  it.  The  latter  is  a  case  of  peripheral  reaching,  in which  an  intermediate
transformation from visual to oculomotor space is performed, but the corresponding motor signal is not released. 
 
Phase 1 
In this phase, more demanding visual targets, such as real 3D objects, can be shown to the system, which has to be able to perform
with  them  the  same  tasks  as  in  Phase  0.  In  general,  restrictions  to  the  visual  conditions  should  be  relaxed  in  this  phase  (e.g.
requirements on the background, lightning, and similar). 
 
Phase 2 
The introduction of fine vergence control requires a further complication of the visual task, in which the system has not only to be
able to gaze at objects in the visual space, but also to perform precise, closed‐loop vergence movements to focus more exactly on
their visible surface. 
 
Phase 3 
The next experimental setup will see  the  inclusion of multiple objects within  the peripersonal space of  the system, which can be
asked to perform any of the actions of Phase 0 to any visual target, for example in a given sequence or on demand, searching for the
goal object by using the Visual Attention module. 
 
Phase 4 
The  final  experimental  setup  will  include  all  of  the  above  and  should  allow  to  enrich  the  general  visuomotor  abilities  of  the
humanoid  robot,  through an  improved control of eye movements and advanced visual skills.  Ideally, this  integrated configuration
should be in charge of performing the final experiments on human‐robot interaction tasks, to fulfill the last and most comprehensive
goal of the Eyeshots project. 
 

 
Here we summarize (1) how the Roadmap has been followed and implemented (progress with respect to the 
planned timings and final status), as well as (2) the results achieved or the tests performed. A more detailed 
description of the implementation steps of the Roadmap is reported in Section 3.1. 
 
The development of Phase 0 of the above Roadmap, describing the fundamental skills of the robotic system 
as implemented by UJI according to the objectives of WP4, has been presented in deliverable D4.3b and will 
be further detailed in Section 3.2 of this report. 
Phases 1-3 of the integration plan have been also fully achieved, as computational modules from the VVCA 
model of WP1, WP2 and WP3 have been integrated in the UJI sensorimotor robotic framework. The 
corresponding experimental tests have all been executed following the guidelines of the Roadmap. Full 
integration has nevertheless been achieved only at the end of the project, and no extra time could be 
dedicated to the development of Phase 4, which revealed to be especially problematic. Still, the use of the 
version signal provided in terms of final position calculated by UJI neural networks allowed us to perform in 
a fully functional manner all behavioral goals of EYESHOTS and of the Roadmap. 
Regarding software development issues, for efficiency and homogeneity issues we favored a software 
integration solution in which all modules are implemented in C++ and installed directly on the robot PC. 
Despite the additional initial effort required for porting the modules into the robot platform, this choice 
revealed to be very appropriate for the final integration, as the external modules were finally integrated with 
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relative ease into the Yarp robot architecture. In this way, we are now able to recruit either the external or the 
UJI modules to test each possible configuration of the system on a suitable setup. 
Another important issue in the integration of all modules has been the large interocular distance of the robot 
eyes, which can generate very large disparities that are difficult to manage by the computational modules of 
the VVCA architecture. This problem has been solved by a careful control of the robot behavior that allows 
us to maintain disparity within a tractable range, at least for the central image region. 
Summarizing, the experiments of the final setup, as described in deliverable D4.3b, will be executed on a 
relatively complex visual environment with real objects, using biologically-inspired computational solutions 
deriving from the theoretical studies of partners in WP1, WP2 and WP3. The achievement of the desired 
robot's behavior close to the project's end prevented us from the use of its full abilities in the human-robot 
experiments. Hence, results on human-robot interactions have been obtained in a different setting and within 
a simplified interaction paradigm, as described in Section 3.1 (p. 31) and in Section 3.2 (p.87). 
 

----- o ----- 
 
 
In general, the recommendations have been followed in order to demonstrate in real-world conditions the 
validity and the scalability of the solutions proposed in the different WPs. That spirit has marked most of the 
activities conducted in the third period, as detailed in the following section. 
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3. Work progress and achievements during the period 

The work conducted in the 3rd period had a strong technological and engineering emphasis and concentrated 
on the integration of the different modules on the robot platforms, in order to validate the approach in real-
world conditions. Together with these integration activities, the ongoing development of models, as well the 
analysis of the data collected in neurophysiological and psychophysical experiments yielded significant 
results on the neuronal mechanisms used to link different fragments by the use of visual, attentional, 
oculomotor, and arm-movement related cues. 
In the following, we will provide (see Parts 1,2,3,4) an overall system framework for the integration and 
validation activities, specifically focussing on the steps specified in the Roadmap for embedding the novel 
perceptual and visuomotor processes developed by Partners UG, K.U.Leuven and WWU in the complete UJI 
humanoid robot setup. Highlights on the major scientific achievements will be presented as well (see Part 5), 
though referring to the specific Workpackage sections (see the page numbers indicated in the text) for a more 
detailed description. 

3.1 Progress overview and contribution to the research field 
 
Part1: Working modules for stereopsis and oculomotor control across visual fragments 
A great effort has been devoted by partners K.U.Leuven, WWU and UG to build an integrated model for 
Vergence-Version Control with Attention effect (VVCA). The purpose of the VVCA model is to simulate 
vergence and version control in the presence of an attention signal. As shown in Fig.4, the model consists of: 

1. Environment simulator that generates the image stereo pair. 
2. Robotic head model, a kinematic model of the eye movement for a pan-tilt and a tendon-

driven binocular head. 
3. Disparity representation, a model of area V1 for obtaining a distributed representation of 

retinal disparity. 
4. Object-recognition system (ORS) that generates a saliency map (FEFmovement) to drive the 

version on an object. 
5. Eye movement system (EMS) that generates the control signals for the robotic head in order 

to produce version (based on saliency) and vergence (based on disparity information) eye 
movements.  

The work, started at the end of the 2nd period, has been completed in the third year by finalizing a set of 
working modules to be integrated in the eye/head-arm  robot system of partner UJI. These modules have 
enriched, as they became available, the sensorimotor representation of the 3D reaching space developed in 
WP4. In the following, a descriptive overview of the functionalities of these modules is provided, in the form 
they have been optimized/designed for the integration. For a detailed description of the VVCA model please 
refer to Deliverable D2.1(update) and to Section 3.2-WP2. 

 

 Distributed disparity energy model [V1] – UG. 

The distributed architecture is characterized by two layers of binocular cells (simple and complex 
cells). The spatial receptive field of each population unit is described by a two-dimensional (2D) 
Gabor filter. The processing functionality of the simple cells' layer is implemented through separable 
convolutions. Twenty-four one-dimensional (1D) convolutions for the left and the right images are 
necessary to build a set of 8 filters to uniformly sample the orientation space from 0 to π.  
From a computational point of view, the use of separable convolution allows us to obtain an 
improvement of a factor K/3 with respect to the use of the 2D convolutions, where KäK is the spatial 
support of the filter. 
It is worthy to note that, to avoid the introduction of a loss of balance between the convolutions with 
the even and odd Gabor filters, the contribution of the DC component is removed. The sensitivity to 
binocular disparity is then obtained by considering the phase-shift model, that has been implemented 
trough simple algebraic operations (multiplications and sums) instead of filtering the images with the 
shifted filters. 
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Figure 4: The block-diagram of the proposed VVCA model. The stereo image generated by the 
simulator is processed by the disparity detector population, to produce the population response. 
Depending on which vergence control network is used, the population response is then directed to 
either the population response post-processing block, which is producing the post-processed 
population response (the linear VC-net case), or directly to the vergence control network module 
(the convolutional VC-net case). The (raw/post-processed) population response, together with the 
actual values of the gaze direction and the vergence angle, are fed into the vergence control network 
module, the main module of the model. The goal of the VC-net is to produce a new vergence angle, 
to get the fixation point onto the surface of the object of interest, without changing the gaze 
direction. 

 
This approach further improves the performances by a factor of (2äKäP)/(P+2äK) , where P is the 
number of phase shifts. The performances of the developed solution, as a whole, improve by a factor 
16, when considering typical values K=11 and P=7, and by a factor 70 for K=41 and P=7. The 
response of each complex cell (binocular energy) is then obtained by combining the outputs of the 
simple cells' layer, through sums and squaring operations. 
From a stereo image pair in input, the architecture can be used both for the computation of the 
binocular disparity and for the exploitation of  the distributed representation without an explicit 
decoding of the cells’ responses. 
To decode the distributed population response an estimation of the disparity  along each of the 
orientation channels  is obtained by a weighted sum, then the full disparity (i.e., horizontal and the 
vertical components) are obtained from the combination of the information extracted for every 
spatial orientation channel, by solving the stereo-aperture problem. 
The range of the disparity that the model is able to compute depends on the spatial support of the 
filters. A coarse-to-fine approach can be used in order to increase the range of disparity values.  
The model has been developed in MATLAB, then a fast implementation in C++, by using the Intel 
IPP libraries, has been released.  
Given a stereo image pair in input  640ä480 pixels, the performances of the algorithm (with 8 
oriented filters and 7 phase shifts for each filter), running on an Intel Core i7 2.8 GHz, are: 

- 1.4 s to compute the twodimensional disparity map with filters 11ä11 pixel, bandwidth 
0.833 and radial peak frequency 1/4,  6 spatial scales; 

- 0.9 s to compute the twodimensional disparity map with filters 41ä41 pixel, bandwidth 
0.208 and radial peak frequency 1/16,  1 spatial scales; 

- 0.5 s to compute the responses of the complex cells with filters 41ä41 pixel, bandwidth 
0.208 and radial peak frequency 1/16. 

 
The quantitative evaluation of the algorithm is performed by comparing the results with standard test 
sequences, for which the ground truth data are available (Scharstein & Szeliski, 2002). It is worth 
noting that these test beds contain horizontal disparities, only. To benchmark the 2D disparities we 
have used the dataset described in (Chessa et al., 2011 [J1]). 
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 Binocular object detection (and FEF saliency map) [ORS] – WWU. 

The developed module of object detection has been first tested with the VVCA system and then 
ported to the robot system of partner UJI. The object detection system (see D3.2 or Beuth et al., 
2010 [C12]) uses learned object representations based on the output of a binoccular Gabor energy 
model as used in other works. Invariance against disparity and distance while being at the same time 
selective for different objects is achieved by learning the connections from the energy model to cells 
of a higher visual order area (HVA), which can be compared to the visual area V4. The learning rule 
is based on previous work (Wiltschut & Hamker, 2009) and in addition uses a trace rule for learning 
view-invariant representations of objects (like in Földiak, 1991). We used a weight sharing approach 
to analyze the whole visual scene in parallel, i.e. the detection of objects is independent from the 
location of the object in the visual scene on a 2D plane. A top-down “attention signal” can bias HVA 
cells for finding a particular object in a visual scene. An oculomotor loop via the frontal eye field 
(FEF) can select the location of a particular object for a saccadic eye movement and also provides a 
spatially selective attention signal that ensures a preferred processing of the target object already 
before fixation.  

The model fully achieves the goal of stereoscopic object detection at the robot system of partner UJI 
(details in section WP3, Task 3.2). Together with the developed model of basal ganglia, the system 
could also discriminate objects that are determined by their relevance or function. 

The object recognition module has two interfaces: it receives input from the energy model and 
produces a saccade target as an output.  

The model combines several basic ideas (stereoscopy, biologic plausibility, object recognition, 
visual search in cluttered scenes) together. Each of them can be found in several models, but so far 
no model has combined all of them in a unifying approach. Saliency-based models typically do not 
integrate task relevance and thus they require an exhaustive search in the scene to detect the target 
object. Concerning stereoscopic object recognition, van Dijck (1999) achieves stereoscopic 
recognition by first unifying the views edge based and then matches the result against a 3D model of 
an object. In addition to the lack of biological plausibility, the early unification results in a high 
number of false responses, which probably decrease the robustness of the system. In comparison to 
monocular biologically motivated models of object recognition, other systems do not implement 
learning (e.g. HMAX from Serre et al., 2007 or Hamker, 2005) or they do not robustly recognize 
scenes cluttered with several objects (e.g. VisNet from Rolls and Stringer, 2001 or LeNet from 
LeCun, 1998). 

 

 Vergence control modules 

o Specializing dual-mode servos [Dual-mode] – UG. 

The Dual-Mode vergence control module implements a binocular coordination of the eyes in 
order to align the optical axes on the surface of the fixed object. The input parameters are: the 
baseline, the field of view, the focal length of the cameras, and resolution of the CCD. The 
module provides separately for each eye a vector control L/R for both the horizontal and the 
vertical alignment of the eyes, on the basis of the average population response to the stereo 
image flow in the foveal part of the image only (a circle of ~5° of radius). 
Depending on the implementation, the control can be used as a position control or as a velocity 
control for the rotation of the eyes. The final angular control signal depends on the disparity-
vergence linear servos that results from a weighted combination of the population response, and 
on the geometrical characteristics of the optical system. The weights are determined off-line to 
approximate desired disparity-vergence behaviors. 
Since the stimulus disparity is exploited as an error signal that decreases step by step during 
vergence movements, the module is able to provide an effective vergence control irrespective of 
the geometry of the real system. In fact, in a simulated environment, the module, yileds a proper 
control for different robotic head models: a tilt-pan model (common and fixed tilt axis for both 
eyes), a pan-tilt model (fixed vertical rotation axis), so as more complicated models like a 
tendon-driven head with spherical eyeballs, that follows the Listing's Law (Biamino et al., 
2005). More precisely, the module, featuring a bifunctional behaviour (cf. the Dual-Mode theory 
(Hung et al., 1986)), provides a LONG control that produces wide movements for large 
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disparities, and a SHORT control that produces precise movements and stable fixations for small 
disparities.  
Resorting to a normalization stage of the population response (Fleet et al., 1996), the control 
results stable in any condition of natural illumination and effective regardless of the texture of 
the objects of interest, i.e., those located in the foveal part of the image. 

Range and performance: From an operative point of view, the module is able to trigger the 
correct vergence movement well beyond the theoretical size-disparity correlation limit, which 
bounds the correct disparity estimation inside a range defined by the angular size of the receptive 
fields. For instance, for an image of 120 ä 160 pixels, that corresponds to a field of view of 22.5° 
ä 30° (for a focal length of 4mm), if we use receptive fields of 43 ä 43 pixels (i.e., ~8° ä 8°), the 
correct disparity estimate is confined within ±1.5°, whereas vergence control is still effective in a 
range of ±6°. For a wider range of disparities the technique can be extended to include a multi-
scale and/or a space-variant approach (see also Section 3.2-WP2). 

Software implementation: The module was first developed in MATLAB/SIMULINK to be tested 
in a simulation environment, thus with no regard of the computational time. With an image of 
120 ä 160 pixel, and on a Pentium Dual Core 2, 2.41 GHz, the MATLAB/SIMULINK version is 
able to work at a speed of 1.4 frame per second. The source code was first released to partners 
on the project's website in February 2009 and then upgraded in March 2010. For real-time 
control the module was ported in C/C++, resorting to the Intel IPP libraries, in order to 
maximally exploit the computation capabilities of the CPU. Evaluation testing with images of 
the same size, and on the same CPU, the C/C++ version of the Dual-Mode module is able to 
work at a speed of 15 frames per second. 

Comparative assessment with the state of the art: The Dual-Mode module proposes a biological 
control to the problem of vergence, different from computer vision approaches, like the cepstral 
filtering (Taylor et al., 1994) or a hierarchical segmentation of the image (Marfil et al., 2003). 
Starting from a distributed approach, instead of extracting the disparity map (Theimer & Mallot, 
1994; Patel et al., 1996), the module derives the vergence control directly from the population 
response, without an explicit computation of the disparity maps (Gibaldi et al., 2010a), thus 
decreasing the computational load, and extending its range of effectiveness. Exploiting the 
responses of a set of differently oriented binocular energy cells, the model provides a control for 
both the horizontal and the vertical alignment of the eyes. Instead of decomposing the vector 
disparity estimate (Rambold & Miles, 2008) to obtain the horizontal (vertical) drive signals, the 
vergence controls are obtained concurrently by a different mapping of the same population 
response that take into account the different statistical ranges of horizontal and vertical 
disparities experienced by a fixating observer. In this way, the model is able to work in real time 
with natural textures stimuli, much more complicated than vertical bars (Tsang et al., 2008; 
Wang & Shi, 2010). 

 

o Learning vergence behaviors [VC-nets] – K.U.Leuven with UG. 

The goal of the vergence control module is to produce a control signal for the eyes to bring and 
keep the fixation point on the surface of the object of interest without changing the gaze 
direction. Since the task is to nullify the disparity in fovea, vergence control module has input 
from the disparity detector population response (V1) and converts it into the speed of each eye 
rotation around pan axis (LE/h, RE/h). In this model we adopted symmetrical (LE/h = - RE/h) 
strategy, which makes the vergence control independent of the gaze direction. Due to established 
(and fixed) interfaces with other modules (V1, Robotic Head Model), the vergence control 
module can be easily represented by different vergence models, i.e., Dual-Mode (provided by 
partner UG) or Convolutional network based (provided by partner K.U.Leuven). 

For the real-world robotic setup (at UJI) the vergence control has been implemented as a closed-
loop position control: VC module has the same input (V1 response) as in the VVCA 
architecture, but the output is the vergence error Δδ (the difference between the desired (δ) and 
the actual (α) vergence angle). The estimated vergence error is then transformed into updates of 
the left and right eye pan angles: ΔpRE/h = –ΔpLE/h = Δδ/2. 
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As the accuracy of the vergence control depends on the quality of the V1 response, the VC-net 
can reliably operate in a certain range of target disparities (for which the V1 responses are 
adequate). In the VVCA model with the baseline 70 mm, the filters of size 43×43, and image 
resolution 192×192 (40°×40°) the single scale V1 can provide reliable information about 
disparities in the range ±2.5°. At this disparity range the VC module can produce relatively 
accurate control. At larger disparity range (up to ≈ ±8°) the VC can also be used, but in this case 
vergence might take several iterations. The real robot setup (UJI) has much larger baseline 
(270 mm instead of 70 mm), larger view angle (~90° instead of 40°), smaller V1 filter size 
(11×11 instead of 43×43) and higher resolution (320×240 instead of 192×192). This, in turn, 
significantly increases the disparity range for the objects in peripersonal space. To overcome this 
problem, we allowed the VC module to use all five scales of V1 population response. 

The vergence control module for VVCA simulator has been developed in 
MATLAB/SIMULINK. For the demonstrator its simplified version of position-based control has 
been ported into C++. The training of VC-networks has been done in MATLAB using the 
Neural Networks Toolbox.  

Most of the classic vergence control models (Westheimer & Mitchell, 1956;  Rashbass & Wes-
theimer, 1961; Krishnan & Stark, 1977; Schor, 1979; Hung et al., 1986; Pobuda & 
Erkelens, 1993, Theimer & Mallot, 1994; Patel et al., 1996; Horng, 1998), use as input the target 
disparity, which is defined as the difference between the desired and the actual vergence angles. 
In the proposed model, we do not use the target disparity, but the foveal images of the eyes as 
input to the vergence control model. Theimer & Mallot (1994) use a multiscale phase-based 
approach to compute dense disparity maps. The vergence is adapted in order to minimize the 
global disparity, albeit that the system fixates at the “average” depth of the scene. Hansen & 
Sommer (1996) follow a similar multiscale approach to estimate the horizontal disparity map. 
The median disparity of the central area of the disparity map is then used for an asymmetrical 
vergence control. Stürzl and colleagues (2002) also compute the full disparity map, using 
responses of complex (position-shift type) horizontal disparity-tuned neurons, for a symmetrical 
vergence control. In (Marfil et al., 2003), a hierarchical segmentation of the stereo image is 
computed prior to the estimation of the disparity map, which is then used for a combined 
vergence/version control. The object nearest to the head is selected as an object of interest 
(disparity of which is to be nullified). 

 

Part 2: Validation of interactive stereopsis behaviour in real-world situations   

 Dual-mode vergence control on iCub platform [UG] 
Many are the advantages of working with a simulated environment. First it is possible to have a 
complete knowledge of the geometry of the environment, without any possible source of error, 
except for perturbations intentionally introduced by the programmer. In a simulation, the position of 
the objects in the scene, the position of the cameras and their orientation in space, are specified with 
an absolute precision. Hence, it is possible to compute the projections of the scene on the left and the 
right retinas/cameras, and obtain the ground truth disparity maps. Second, we do not need the control 
algorithm to work in real time, in fact, since the time line is simulated, we can afford any 
computational load between two successive frames. 
In order to test and validate our approach on a real robot stereo head, it is necessary to face two 
problems: the inaccuracies of the motor systems and the real-time processing demand. In a real robot 
head the geometry of the system is not as precise as in simulated one, the motors’ backlash prevent 
the repeatability of an experiment and the same control will move the robot in slightly different 
positions. Moreover, since the algorithm must be able to control the robot in real time, it is necessary 
to decrease the computational time for the single frame, to make the system work faster, while 
keeping the same performance and stability. 
Having this in mind, we evaluated the efficacy of the dual-mode vergence control on the iCub stereo 
platform, which, being designed to mimic a human head, is an ideal platform for the validation of the 
algorithm. The iCub head is equipped with two DragonFly cameras (Point-Grey-Research) with a 
focal length of 6mm, and a resolution of 1024 × 768 pixels, which are able to work at a frame rate up 
to 30fps. The baseline of 70mm well approximates the average interpupillary distance of humans. 
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The dual-mode vergence control is computed by the C/C++ version of the algorithm previously 
tested in the simulated environment.  
 

Experimental setup 
Three tasks were considered to validate system performance: (1) reach a stable fixation of the 
surface of the foreground stimulus, presented along the binocular line of sight, (2) shift the fixation 
point on the background stimulus when the foreground is removed, and (3) follow the foreground 
stimulus when it is moving in depth (see Fig 5A). When the robot is fixating correctly, the binocular 
image is characterized by zero disparity in the fovea and the optical axes intersect on the same point 
on the surface. Since the foreground stimulus is positioned and moved manually, it is not 
straightforward to measure the depth of the stimulus. To make this data available, and quantitatively 
assess the experiment results, we used a Kinect sensor device (http://www.xbox.com/en-US/kinect/), 
which is endowed with a range camera, developed by PrimeSense that interprets the 3D scene 
information from a continuously-projected infrared structured light. The device is able to work as a 
3D scanner system, and thus to produce a ground truth of the depth of the scene with good precision 
and at a frame rate up to 30fps.  
 

The hardware components that constitutes the system are: 
o iCub stereo head 

- 2 DragonFly cameras. 
- Motorola Freescale DSP 56F807. 
- ESD - USB to CAN Interface. 
- 3 Faulhaber DC motors 1319T012SR. 

o Kinect sensor device. 
o Standard PC with an Intel Core2 CPU 6600 @2.40GHz, and 4Gb of RAM. 

 
The software tools integrated to make the system work in real time are: 

o Microsoft Visual Studio 2008 Professional Edition. 
o Integrated Performance Primitives (Intel IPP): multi-threaded library of functions for 

multimedia and data processing applications, used for image filtering and elaboration. 
o NTCan.net library: library supporting the Windows .NET framework, for the 

communication  with the iCub head motors via CAN. 
o OpenCV library: Open Source Computer Vision library of programming functions for real 

time computer vision, used for image visualization and saving. 
o OpenNi library: library of interface for physical devices and for middleware components, 

used to interface with Kinect device sensor. 
 

Results 
In the first experiment, we tested the capability of the system to provide a stable fixation on a steady 
stimulus, and to shift the fixation point. The foreground stimulus is presented at different depths 
starts that vary, from trial to trial, from 600mm  to 1000mm, while the background is at a fixed depth 
of 1400 mm3. Analyzing a single trial, in particular when the foreground stimulus starts at a depth of 
600 mm (see Fig. 5B), it is possible to evaluate the behavior of the model. At time 0 the fixation 
point is supposed to be on the target foreground object, and at the instant when the object is 
removed, the fixation point is still at the depth of 600 mm, while the background stimulus, which 
now is covering the entire field of view, is at a disparity that is far outside the detectability range. 
This implies that, as expected, the depth of the plane is not perceived correctly, and the estimation of 
disparity would not be able to guide a correct vergence movement. Besides, the vergence control is 
able to produce a movement, in a rather short response time, toward vergence angle suitable for 
perceiving correctly the stimulus, and when the cameras are again steady, the fixation point is at the 
correct depth. 
Both at the start and at the end of the trial the fixation is precise and stable, and the error given by the 
backlash on the motors does not affect the efficacy of vergence. Indeed, working in a visually-based 
closed loop, the control stops when the disparity in the fovea is reduced to a value proximal to zero, 
regardless to the real depth of the object, and to the position of the motors, and thus of the cameras. 
The results show that, even if respect to the simulated environment the precision is lower, the 

                                                 
3 Depth is measured from the middle point of the baseline of the iCub head. 
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vergence control, in case of a step of depth is able to discriminate properly the necessity for small 
movements of the fixation point, in presence of small disparities, so as to produce wider and fast 
movements in case of large disparities (see Fig. 5B). Moreover it is able to keep the fixation point on 
a steady stimulus, no matter what is its depth.  
 

 

In the second experiment, we tested the capability of the system to follow in depth a moving object, 
the foreground target oscillates around a depth of 800 mm, with an amplitude of 200 mm. From trial 
to trial, the frequency of the oscillation is increased from 30 Hz to 70 Hz. The results are shown in 
Fig. 5C. When the stimulus is moving slowly (bottom row, f = 30 Hz) the fixation point follows its 
depth with a small delay, while for a higher speed (top row, f = 70 Hz) the control attempts to 
achieve the correct movement, but with a minor precision with respect to the previous cases. The 
trajectories of the fixation point produced by the control for both the step in depth, and for the 
oscillating stimulus, resemble those that are observed in humans (Hung et al. 1986).  
To verify that the module is sensitive to the disparity only, the experiments were repeated with 
foreground stimuli characterized by different textures whose power spectra cover different frequency 
bandwidths,  and in different lighting conditions. Since the model is based on receptive fields tuned 
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Figure 5:  (A) The experimental setup used to test the Dual-Mode vergence module on the iCub 
head. Trajectories of the fixation point (blue solid line) respect to the depth of the stimulus (black 
dashed line), in case of a step in depth (B), and of an oscillating stimulus (C). The depth of the 
stimulus in computed from the middle point of the baseline of the iCub head. 
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to different orientations, the control is able to cope with more complicated textures than the vertical 
bars used in (Wang & Shi, 2010), showing an effective texture invariance and an insensitivity to the 
illumination conditions. Tests conducted for different azimuths and elevations confirmed that the 
control is able to yield the correct fixation behavior both on a steady and a moving stimulus, 
regardless of the gaze direction. 
 
 

 Disparity and gaze estimation on iCub platform [K.U.Leuven and UG] 
The iCub robotic platform contains a pair of cameras that can pan individually and have a common 
tilt. The platform used here has a significant tilt offset between the cameras, and we demonstrate 
here how our autocalibration algorithm can correct this. 
Figure 6 contains three example stereo pairs shown as anaglyphs. The vertical offset is clearly 
visible and very large 2D disparities occur in the image. We compare the performance of the 
autocalibration algorithm to a standard two-frame optical flow algorithm (Sabatini et al., 2010) that 
operates on the same multiscale, multi-orientation filterbank responses. For each trial, the 
autocalibration algorithm was initialized with a (highly erroneous) rectified configuration. The 
horizontal component of the estimated vector disparity is shown in row B for the autocalibration 
algorithm, and in row C for the optical flow algorithm. Note that the autocalibration algorithm 
achieves a much higher density on each occasion. The estimates are also of a much higher precision, 
as they can be seen by comparing rows D and E. Here, the vertical component of the estimated 
disparity is shown, and a much more regular pattern is observed in the autocalibration estimates.  
To further demonstrate the correctness of the proposed method, we also show the recovered epipolar 
geometry in Fig. 7. The red epipolar lines in the right image (B) correspond to the blue keypoints in 
the left image (A) and vice-versa. It is worth noting that the estimated geometry is very precise 
everywhere in the image, and also largely different from a rectified configuration. 
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Figure 6: Disparity estimation results on stereo images obtained with the iCub platform. Rows B 
and D contain the estimates obtained with autocalibration, and rows C and E contain the estimates 
obtained with a standard vector disparity algorithm (cf. optical flow). 
 
 

 
 

Figure 7: Recovered epipolar geometry for the scenario of Fig. 4 (center column). Red epipolar 
lines in the right image (B) correspond to the blue keypoints in the left image (A) and vice-versa. 
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Part 3: Realization of the anthropomorphic mechatronic binocular system 
The starting point of the project was to complete the understanding of the biomechanics of the ocular 
motions in humans and primates and to transfer these results into guidelines for the design of robotic eyes 
which could provide different solutions for the implementation of humanoid robots.  
Beside the specific robotic applications it is assumed that the implementation of a bio-inspired robot eye (or 
robot head) is also the starting point for the analysis and the assessment of the motion control strategies 
implemented by the brain to drive the very high dynamics of ocular rotation. 
In this sense it was, and it is still considered, a key feature of EYESHOTS the target of developing a 
prototype of robot eye featuring bio-inspired concept and design which are strongly different than the 
conventional stiff pan-tilt platforms. The basic idea is that emulating [ocular motions] is different than 
simulating [them]. In other terms is possible with a conventional robot system to obtain a desired target 
behavior by constraining it at control level, it is however, in general, not possible to achieve the same 
behavior as an emerging one due to the implicit characteristics of the plant. 
It is then reasonable to assess, from a pure engineering point of view that state-of-the-art conventional stiff 
robot can guarantee high accuracy and (reasonably) high speed, but they cannot allow to perform 
experiments where the motion characteristics arise from the intimate nature of the mechanics of the plant. 
The rationale adopted throughout the project has been the following. 
There exist the evidence of particular types of ocular motions (typically saccades and smooth pursuit) which 
obey to a basic geometric principle known as Listing’s Law. Listing’s law specify that the amount of torsion 
during saccades and smooth pursuit) is zero. This property cannot be achieved by conventional pan-tilt 
mechanisms unless torsion is properly and actively controlled. However, as the kinematics supporting 
Listing’s Law is not straightforward it emerges the basic question: how Listing compatible motions could 
arise on a generic kinematic structure unless very complex control circuits (in a neuro-control framework) or 
control models (in a robot control framework), possibly based on sophisticated sensing, are used? 
We have proved that the origin of the characteristics of Listing compatible motions can be grounded on the 
geometric and mechanical characteristics of the oculo-motor plant. As a matter of fact a reasonably simple 
model can be defined to achieve Listing’s compatible motions independently from the control actions 
generated by the actuators. This means that by implementing a non conventional robot following the 
guidelines specified by the models investigated throughout the project is possible to naturally achieve ocular 
behaviours approximating to a large extent the motion of a real eye.  
Therefore we have pursued a strong bio-inspired approach trying to emulate in the mechanical 
implementation all the major features arising from the analytical models developed. Despite the simplicity of 
the model, its implementation on a robot testbed has not been straightforward, and anyway subject to various 
engineering and technological trade-offs. 
The starting point has been that of adopting a tendon driven actuation: ocular motions are generated by 
distributed forces generated by the actions of the muscolo-tendon system formed by the extra-ocular 
muscles. We have adopted direct drive brushless motors to emulate the force generators.  
The second major step has been that of formulating a complete 3D model of the eye plant compliant with 
Listings Law. This model allowed to exploit the role of the soft tissue surrounding the globe as a visco-
elastic element capable of restoring the rest position of the system. An attempt to implement this effect, has 
been made in the current prototype by including a network of elastic springs.  
Finally the last step has been that of miniaturizing the whole system in order to make it appealing for a bio-
inspired system fitting into a humanoid platform. The limit here has been the availability of (good quality) 
miniature commercial cameras and optics. The final eye-ball diameter is in the current prototype is 28 mm 
(i.e. approx. 4 mm larger than the average human size). 
In order to reduce the time and the cost of the final system we have adopted a rapid prototyping 
manufacturing procedure for the non critical parts (which can be manufactured in about 72 hours of machine 
time).  
Recently published papers have proposed designs trying at different level to use a bio-inspired design. Only 
the conceptual design proposed in (Mehmood et al., 2008) aims implementing Listings Law, on the basis of 
our concepts. The others (Villgrattner & Ulbrich, 2011) and (Lenz, 2009) do not have kinematics compatible 
with Listing’s Law. It is anyway worth mentioning the impressive dynamic performances and compact 
design of the system presented in (Villgrattner & Ulbrich, 2010); this robot features 3dof allowing in 
principle to simulate Listings’ Law. Both (Villgrattner & Ulbrich, 2010) and (Villgrattner & Ulbrich, 2011) 
feature very high speed piezo-electric motor. Despite their very high cost and complex (and large) control 
electronics seem the most promising solution for implementing compact tendon driven actuation systems. 
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Figure 8: Picture of the first robot prototype.  

 
 

 
Part 4: Integration of perceptual/visuomotor strategies (WP1-WP2-WP3) on the eye/head-arm UJI robot 
platform 
 
 
Basic visuomotor skills of the UJI humanoid robot 
 
The fundamental visuomotor abilities of the UJI robot Tobatossals at the end of the project are the subject of 
deliverable D4.3b. The theoretical aspects of the underlying computational framework and the conceptual 
development of the robotic implementation have been introduced instead in previous reports and 
publications. Here, we provide a brief description on the basic implementation schema that allows the robot 
to act in the experimental setups described in the Roadmap. According to the implementation schema 
depicted in Fig. 9, there are three sensory/actuation blocks: cameras refers to the gathering of visual 
information by the stereo visual system; head represents oculomotor functions, both as eye movements and 
corresponding proprioceptive information; arm deals with reaching movements by controlling the arm joint 
space. 
Transformation blocks Visual/Oculomotor (VO) and Oculomotor/Joint Space (OA, AO) refer to the 
radial basis function structures that implement the sensorimotor coordination of the whole system and make 
it adaptable to the environment and to its own body. The Visuomotor Memory maintains the record of 
previous visuomotor states that allow the robot to code for encountered objects in a way suitable for 
recognition, searching and for performing gazing and/or reaching actions toward memorized targets. The 
green blocks represent different visual processing utilities, required to properly interface the cameras with 
the red behavioral modules. 

Below, we explain how the computational visual modules of the EYESHOTS’ partners have been integrated 
in the described schema in order to validate them by realizing real-world experiments on a robotic platform, 
and contextually improve and extend the robot skills. 
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Figure 9: Implementation schema of the UJI humanoid robot visuomotor skills. 
 
 
Integration of the computational modules of partners UG/K.U.Leuven/WWU on the UJI robot. 
 
Three main computational modules developed in WP1, WP2 and WP3 have been integrated in the above 
framework. They derive from the Vergence-Version Control model with Attention effects (VVCA), 
developed by partners UG, K.U.Leuven and WWU. The way such modules change the robot visuomotor 
behavior implementation schema can be observed in Fig. 10. The three modules described in Part 1 of this 
Section that have been introduced in the schema are V1, VC-nets and ORS. 
 
A first fundmental choice in the integration process was to decide what programming language to use for the 
modules, as all components of the VVCA architecture are based on MATLAB/SIMULINK, whilst the robot 
components are all implemented in C++. Although a utility for integration across different platforms had 
been provided by partner UG, for efficiency and homogeneity issues we finally favored a software 
integration solution in which all modules are implemented in C++ and installed directly on the robot PC. 
The software platform on which all Tombatossals software modules are implemented is based on Yarp (Yet 
another robotic platform, http://eris.liralab.it/yarp/ ). Yarp provides a set of libraries that help to create the 
software framework as a collection of stand-alone applications that communicate between them through 
software ports, e.g. sockets. Each functional block of our framework (V1, VC, ORS, VO, ...) is thus 
implemented as a program that waits for signals on the input ports and sends data on the output ports. Every 
module has also a configuration port that can be used to change the parameters or the behavior of the module 
itself. Two synchronization blocks were included into system to manage the data flow between the functional 
blocks. The multiplexer block allows us to select which input signals have to be forwarded in output, the task 
manager block activates the data stream necessary to perform any required task, e.g. saccade to the visual 
stimulus or look at the reaching point. 
 
Another important issue in the integration of all modules has been the large interocular distance of the robot 
eyes, which can generate very large disparities that are difficult to manage by the computational modules of 
the VVCA architecture. This problem has been solved by a careful control of the robot behavior that allows 
us to maintain disparity within a tractable range, at least for the central image region. 
Some details on the integration of each of the three modules are described in the following paragraphs. 
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Figure 10: Implementation schema modified by the integration of modules V1, VC and ORS. 
 
 
Phase 1 
In this phase, a C++ version of UG V1 front-end module has been provided by partner UG and integrated by 
UJI on the robotic system. This module is inspired on the functionality of primate primary visual cortex and 
computes the binocular energies of a population of Gabor filters that are sensitive to different orientations 
and interocular phase differences. 
Module V1 receives in input the left and right images acquired from the cameras and rescaled at 320x240 
pixels.  Depending on the overall configuration of the software architecture, the output can be either the 
population energies or the disparity map. Before the implementation of the next Phases of the Roadmap, the 
disparity map was used by the UJI visual attention module to detect object location by segmenting the 
images (textured objects on dark background), and by the UJI open-loop saccadic control to gaze at targets. 
The centroid of the selected object, together with its disparity, was used as input of the visual to oculomotor 
transformation. For implementing Phases 2 and 3 the population energies are sent in input to VC and ORS, 
respectively. In general, the integration of this module allows the system to operate with real 3D objects. 
 
Phase 2 
A closed-loop vergence control module is added to the system in this phase. This module has also been 
implemented in C++ by K.U.Leuven, using a linear vergence control for simplicity. The weights of the 
network are derived by an off-line training phase, performed by the original MATLAB/SIMULINK version 
of the module on a training set of real images gathered by the robot. After the execution of a saccadic 
movement toward a target object, module VC receives in input the current position of the head and the 
output of V1 in the form of a set of energies extracted by the population of Gabor filters. VC makes use of 
such visual information in order to perform a finer oculomotor control upon the object surface that brings to 
zero the disparity in the fixation point. The output of VC is a new target position of the head, aimed at 
reducing the disparity of the foveated object. In this way, a closed-loop head-camera-V1-VC control is 
created and remains active until VC output in term of head movement is below a given threshold.     
 
Phase 3 
Phase 3 enriches the robot software library with a bio-inspired module for object recognition (ORS) fully 
developed in C++ by partner WWU. Module ORS receives in input the response of V1 and recognizes the 
object the system is gazing at, providing the Visuomotor memory with the exact object identity. The module 
is trained offline with object images taken by the robot from different distances and viewpoints. Module 
ORS employs the population energies provided by V1 to compute the location of a target stimulus in the left 
image. For the integration of the ORS in the UJI architecture, an input port for the disparity map has been 
added to themodule. So, once the target object is detected, its disparity is extracted and binocular information 
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of the stimulus is sent to the visual to oculomotor transformation for computing a potential saccadic 
movement toward the target. The selection of the target object to look for is given through the configuration 
port, and can be either random, sequential or arbitrarily decided by a human user. The robot own hand has 
been included in the set of objects to recognize, so that the robot is able to identify visually, without the aid 
of markers, its own limb. The inclusion of the ORS module allows the robot to work with real multi-object 
setups, such as in the example of Fig. 11. 
 
Phase 4 
The integration of the version control implemented by K.U.Leuven in MATLAB/SIMULINK on the robot 
system was not performed due to technical issues that could not be easily solved. In fact, the version control 
module should provide a velocity profile to be followed by the robot eyes to focus on the target. Though, the 
maximum control frequency of the robot head does not allow for the speed required by K.U.Leuven version 
control module. For this reason, the version signal is provided in terms of final position calculated by UJI 
neural networks. In any case, despite this last point, all the targeted skills have been attained by the 
integration of the above three modules on the architecture developed by UJI. 
 

 
 
Figure 11: The multi-object experimental setup used with the UJI humanoid robot platform Tombatossals. 
 
 
Summarizing, all but the last of the Roadmap integration phases have been successfully carried on, allowing 
to enrich the general visuomotor abilities of the humanoid robot, through an improved control of eye 
movements and advanced visual skills. 
On the basis of these results, the experiments of the final setup, as described in deliverable D4.3b, will be 
executed on a relatively complex visual environment with real objects, using biologically-inspired 
computational solutions deriving from the theoretical studies of partners in WP1, WP2 and WP3. 

Comparing our work with the state of the art, whilst the use of SOM networks in robotics sensorimotor 
transformations is relatively common (Fuke et al., 2009), the employment of biologically inspired Radial 
Basis Function (RBF) networks remains relatively unexplored. In fact, to the best of our knowledge, only 
two papers describe the use of RBF networks for visuomotor transformations. The system of Marjanovic et 
al. (1996) firstly learns the mapping between image coordinates and the pan/tilt encoder coordinates of the 
eye motors (the saccade map), and then the mapping of the eye position into arm position (the ballistic map). 
A similar learning strategy is employed by Sun and Scassellati (2005), which use the difference vector 
between the target and the hand position in the eye-centered coordinate system without any additional 
transformational stages. The main difference between these works and ours is that we employ stereo vision, 
realizing a coordinated control of vergence and version movements. Moreover, the saccade map in 
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(Marjanovic et al. 1996) is fixed and mainly used to provide visual feedback during the ballistic map 
learning. On the other hand, our sensorimotor transformations are bidirectional, so that our system learns to 
gaze towards its hand but also to reach where it is looking at. This skill is trained through a self-supervised 
learning framework, in which the different modalities supervise each other, and both improve contextually 
their mapping of the space. The distribution of the RBF centers also differs from the cited works, as we place 
the neural receptive fields according to findings from neurophysiological studies on monkeys. 

A few attempts to tackle the problem of coordinate control of gazing and arm movements by using neural 
networks, but not RBFs, have also been reported. Schenk et al. (2003) employ a feedforward neural network 
for learning to saccade toward targets, and a recurrent neural network is employed for executing the 
transformation carrying from the visual input to an appropriate arm posture, suitable for reaching and 
grasping a target object. The reaching model of Nori et al. (2007) consists in learning a motor-motor map to 
direct the hand close to the fixated object, and then activate a closed loop controller that using visual distance 
between the hand and the target improves reaching accuracy. Eye gazing control is not adaptive, and they do 
not consider the importance of contextually maintaining a series of representations in different body 
reference frames, as suggested by neuroscience findings, especially those regarding posterior parietal area 
V6A. 

Finally, the recent work from Hulse et al. (2010), which deals with strategies for coordinating gaze and arm 
movements, is not directly comparable to ours. The main difference is that they do not use stereo vision, 
which is at the core of our approach. Moreover, the configuration of their system does not allow for a clear 
definition of peripersonal space, as their robot is composed by a 2 d.o.f. gazing head and a decoupled 5 d.o.f. 
arm. Finally, their biological inspiration is developmental and does not include any connectionist modules 
inspired on neural data. 

 
 

Part 5: Highlights 

 Statistics of the disparity patterns in the peripersonal space [UG], see also p. 39. 
In natural viewing conditions, the disparity distributions critically depend on the 3D structure of the 
scene as well as on the relative orientation of the eyes. Experimental and theoretical work suggest 
that observers internalize these environmental statistics in the form of a prior for distance and base 
their distance judgments primarily on this information when faced with decreased or uncertain 
sensory information (e.g., Chown, 1999). In particular, we expect the relative orientation of the eyes 
greatly influence binocular disparity patterns for large vergence angles, as they occur during natural 
visuomotor interaction in the peripersonal space (<1m), whilst the effect is negligible in far viewing 
condition. Previous results on disparity statistics in natural scenes (Yang & Purves, 2003; Liu et al., 
2008; see also Hibbard, 2007) lack of systematic data in the peripersonal space and focus on the 
disparity distribution over the entire retinal image, rather than on statistical distributions as a 
function retinal position, and for different gaze directions. By exploiting a high precision 3D laser 
scanner, we constructed hundreds of registered VRML scenes, by combination of a large number of 
scanned natural objects, with an accuracy of 0.1mm. Using the available range maps and simulating 
distributions of binocular fixations through the Active Vision Simulator developed in the first year 
(Chessa et al., 2009a, 2011 [J1]), we computed the statistics of the disparity patterns for different 
fixation points and for different eye movements strategies: from the classical Helmholtz and Fick 
system, to the more biological Listing system and its binocular extension. The study characterizes 
the disparity patterns that are likely to be experienced by a binocular vergent system engaged in 
natural viewing in peripersonal workspace, and discusses the implications on possible optimal 
arrangements of cortical disparity detectors to compensate the predictable disparity components due 
to epipolar geometry. In particular, redistributing the coverage sensitivity of the cell's population on 
the basis of the known gaze direction, it is possible to exploit the information coming from the 
statistics, in order to allocate the resources in an optimal way to obtain a reliable disparity estimate 
with a minimal  number of binocular energy detectors. In addition, the analysis reveals that on 
average the modulus of the disparity increases linearly with the eccentricity. This is in well 
accordance with the space variance of the retinocortical log-polar mapping (Lindeberg & Florack, 
1994), since the linear increase of the receptive fields size with respect to the eccentricity is 
necessary to match the linear increase of the disparity. 
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 Working memory model [WWU], see also p. 61. 
We have demonstrated (see deliverable D3.3b) two novel improvements of our Working Memory 
(WM) model version reported in deliverable D3.3a. First, we have demonstrated the interaction with 
the object detection system (as described in D3.2). Second, we have developed a fully autonomous 
model for learning working memory by interacting on a task. One of the goals of the project 
EYESHOTS is to develop a perceptual agent for sharing a peripersonal workspace. This task 
requires to hold previously visible information in memory to allow the agent to be able to choose 
between behavioural alternatives (stimulus-reward-associations). Both requirements are addressed 
by the proposed WM model. To ensure that a task is general enough and also replicable, we decided 
to use a well known task from WM literature. In this 1-2-AX task (O'Reilly & Frank, 2006), 
decisions must be taken dependently on previously presented symbols and the agent must be able to 
deal with irrelevant objects for the current task. Only special combinations of symbols (e.g. '1', 
followed by '2' and by 'X') result in one certain decision, all other combinations result in another 
behavioural alternative. The number of possible combinations is very high and the agent does not 
know in advance if a symbol is important or irrelevant. This is also typical for real world tasks 
resulting in a higher difficulty.  

Secondly, we have proposed a biological meaningful foundation of WM. We focus here on the role 
of the looped architecture of cortex, basal ganglia (BG) and thalamus in controlling WM and motor 
selection (Haber, 2003; Voorn et al., 2004). Loops including the prefrontal cortex control WM by 
flexibly switching between maintenance and updating of information. Then, they bias a motor cortex 
loop to decide between a set of possible responses. The WM model learns to maximize the received 
reward for a task by the estimates of the expected reward for each symbol. If the model receives 
more reward than expected, the model reinforces (modulated by Dopamine) connections in a certain 
PFC loop, which in turn reinforces the memorization of a certain object. The idea is that if the object 
was helpful to solve the current task, it will also be useful in the future and therefore the model 
should remember it. Importantly, we have shown that both systems, working memory control and 
response selection can, develop on the top of the same cortico-BG-thalamic architecture by Hebbian- 
and Dopamine-based learning. 
A prominent account of the role of BG in WM is the Prefrontal Cortex Basal Ganglia Working 
Memory (PBWM) model (O'Reilly & Frank, 2006). We see two main differences between their BG 
model and ours: First, the WM in the PBWM model is prerouted and the BG acts like a gate for 
fixed memory slots. In contrast, we assume that the whole cortico-BG-thalamic loop maintains WM 
content and the loops are not fixed to represent a certain symbol. Second, the PBWM model 
randomly gates stimuli into WM, therefore the system tries out more or less randomly possible 
strategies of stimulus maintenance to find the correct solution. Our model in contrast is trained by 
splitting the task in several steps (shaping), which reduces the number of possible strategies. Hence, 
the PBWM model needs a much higher number of trials to learn the 1-2-AX task (about 30000 
compared to 1000 trials in our model).  
Brown et al., (2004) present an account of how cortico-BG-thalamic loops assist in deciding between 
reactive and planned behaviours. Their TELOS model manages to learn several saccadic tasks and 
explains single-cell data from various cortical and subcortical brain areas. Compared to other models 
of cortico-BG-thalamic loops, including ours, their account offers much anatomical detail. Their 
model contains most known connections between cortex, BG and thalamus and distinguishes 
between different cortical layers. Yet the WM is modelled as a hard-coded entity that is anatomically 
restricted to PFC: Visual representations are predetermined to be gated in WM when PFC activity 
surmounts a certain threshold and to be deleted from it when the next high active input appears. For 
further comparisons see Schroll et al., (2011) [J23]. 
 

 Modulation of ongoing neuronal activity in the medial parieto-occipital area V6A by covert attention 
shifts [UNIBO], see also p. 73. 
Link across single visual fragments can be obtained in many physiological situations. Commonly, in 
natural conditions, when we catch with vision a target of a potential reaching action, we move the 
eyes toward it and then the hand. Due to less inertia of the eyes, the eyes land on the target well 
before the hand starts to move. In area V6A of the medial parieto-occipital cortex, we have found 
neurons discharging in this interval, that is in the first 500 ms of fixation of a target in the dark. 
Interestingly, this kind of cells in V6A strongly prefer targets to be fixated in the peripersonal space, 
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that is in the reachable space (Hadjidimitrakis et al., 2010 [C3]). We interpreted this neural 
behaviour as the neuronal correlate of a calibration between the eye and the arm systems and we 
proposed in EYESHOTS that the strong preference for reachable targets in early fixation period 
could reflect the shift of the attentional spotlight for the purpose of highlighting the location of the 
target of eye and hand movements in reaching an object (see Hadjidimitrakis et al., 2010 [C3]). 
Actually, overt deployment of attention is seen in directing saccadic eye movements to salient or 
task-relevant parts of the scene, but attention can also be deployed covertly, without any visible 
motor activity. Covert orientation of attention is done by internally modulating the processing of 
information in visual cortical maps, and by selecting parts of the scene to receive increased 
processing resources. The selection of the part of the scene to receive attention, i.e. the control of the 
focus of attention, is driven by the saliency of the stimuli and by the requirements of the task that is 
currently performed. It is closely related to the motor actions that are to be performed on the selected 
targets, in particular to the preparation of eye movements. 
However, the link between attention and goal-directed motor actions is not confined to the eye 
movements. Also the preparation of reaching movements is paralleled by a shift of attention to the 
goal of the reach (Castiello, 1996; Deubel et al., 1998). It has also been demonstrated that attentional 
selection for simultaneous reaching and eye movements to different targets shows some degree of 
independence between the two, such that both goals can receive processing benefits (Jonikaitis & 
Deubel, 2009). Thus, one might expect that, similarly to oculomotor areas that provide signals for 
overt and covert shifts of attention, also cortical areas that are involved in the generation of arm 
movements may contribute to attentional shifts.  
Attention is important for providing the link across single visual fragments, attention is used to select 
targets in a visual scene for prioritized processing and for preparing appropriately directed actions, as 
manual reaching or grasping. Our study intended to measure the influence of covert attention toward 
different parts of the visual world in neurons of area V6A, a visuomotor area of the dorso-medial 
visual stream involved in coding reaching movements to targets in space (Galletti et al., 2003; 
Fattori et al., 2005). 
We induced in the monkey covert shifts of attention in absence of any effector movement, neither of 
the eyes nor of the arm. We performed single cell recording in V6A, while controlling the monkey 
focus of attention addressing it toward several positions in the workspace. In this way, we could 
study the influence of spatially directed attention on neurons in area V6A. 
It has been found that the neural modulation was present when the covert attention was shifted 
without any concurrent shift of the direction of gaze (Galletti et al., 2010 [J10]). It has been 
suggested that this attentional modulation is helpful in guiding the hand during reach-to-grasp 
movements, particularly when the movements are directed towards non-foveated objects. The covert 
attentional modulations could allow V6A cells to select the goal of reaching during movement 
preparation, as well as to maintain encoded, and possibly to update, the spatial coordinates of the 
object to be reached out during movement execution.  
 

 Social Simon effect [WWU], see also p. 87. 
In a new development in the final year we have begun to look into human-robot interaction from the 
perspective of cognitive science tools that allow to measure the quality of the interaction. This is not 
directly related to the successful completion of a joined task. Rather, it is related to the question of 
how acceptable and natural a robot can become as an interaction partner. In social interaction 
between humans, humans seem to co-represent their partner’s actions (Sebanz et al., 2003, 2005, 
2006). Action co-representation is typically investigated by using spatial compatibility tasks, like the 
Simon Task, in a cooperative setting. In the Simon task, participants carry out spatially defined 
responses to non-spatial stimulus attributes. Responses are usually faster when the stimulus location 
and the response location correspond (Simon & Rudell, 1967). This effect disappears when a 
participant responds to only one of the two stimuli, but reappears when another person takes care of 
the other response (Social Simon Task). This Social Simon Effect (SSE) has been considered to 
provide an index for action co-representation (Sebanz et al., 2003). 
We used the SSE as a marker to measure the co-representation between a human and a humanoid 
robot functioning in a human-like way. We aimed to test if the SSE can be used as a benchmark-tool 
for the perceived humanness of a robotic system. Experiments were conducted with the UJI 
humanoid robot Tombatossals. 
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When the robot was described as functioning in a human-like manner, e.g. being able to actively 
decide when to respond on the basis of a neural network, we observed a reliable and robust SSE. 
However, when the same robot was described as purely deterministic, e.g. being completely 
controlled by a computer program, the SSE was diminished.  
These findings suggest that action co-representation of non-biological agents (e.g. robots) can occur 
if an agent is perceived as human-like. Higher order cognitive processes seem to affect if we 
corepresent the actions of other agents be it humans or technical systems. Further, our results suggest 
that the SSE can be used as a benchmark-tool for the perceived humanness and acceptability of a 
technical system. 
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3.2 Workpackage progress 
 
Here we recall the objectives for the tasks of the third period. Quick statements concerning the status are 
attached; the actual work performed will be detailed for each work package in the WP descriptions below. 
 
WP1: Eye movements for exploration of the 3D space 

Task 1.2: Perceptual influences of non-visual cues 
The objective is to analyse the perceptual consequences of specific binocular eye coordination movements 
and their computational advantages on depth vision and interactive stereopsis. 
Scheduling: (month 6-30) 
Performed actions: Study of the functional implications for depth vision of the different eye movements 
strategies (Helmholtz, Listing, and L2) and of their impact on possible optimal arrangements of cortical 
disparity detectors. The analysis was based on the statistics of the binocural disparity patterns obtained by 
simulated active fixations in real-world peripersonal workspaces acquired by a laser scanner. 
Results: We have derived from a computational point of view (1) the identity of Helmholtz torsions (Tl = 
Tr), postulated by Tweed (Tweed, 1997), for different instances of the visual constraint; and (2) the 
proportionality relationship, represented by the factor μ, between the rotation of the Listing’s planes and the 
vergence angle. The analysis of the disparity patterns experienced by an active observer in the peripersonal 
space evidenced only  minor statistical varations among the different eye movement strategies. 
Status: The work has been completed as planned 
Documentation: Deliverable D1.2(update) 
Publications: Canessa et al., 2011a (submitted) [J18], Sabatini et al., 2011a (submitted) [J24], Canessa et al., 
2011b (submitted) [C16], Sabatini et al., 2011b (submitted) [C15]. 
Revised planning:  none 
 
Task 1.3: Control of voluntary eye movements in 3D.  
The goal of the task is to model the action of the extraocular muscles to achieve correct ocular motions.    
Scheduling: (month 6-30) 
Performed actions: 

- Modelling of the actuation system of the ocular system. Investigation of bio-inspired models of the 
EOMs and connective tissue surrounding the eye-ball. 

- Analysis of actuation techniques for regulating the eye orientation. 
Results: 

- Parameterization of eye plant for the design and control of a bio-inspired robot eye. 
- Derivation of an exact 3D model describing the dynamics of Listing’s Law based motions. The 

models takes into account the effects of viscoelastic orbital tissue and its role during ocular rotation 
control. 

- Definition of a 2D computational model for the definition of the EOM tension to regulate the eye 
orientation in 3D.  

Status:  
- Extended models developed and implemented in simulator (see task Task1.4).  
- Complete analysis of mapping EOM static action forces to 3D ocular orientation.  
- Simulation tests and numerical validation of the computational algorithm. 

Documentation: deliverable D1.3 
Publications: Cannata & Trabucco, 2011 (submitted) [C17]. 
Revised planning: none 
 
Task 1.4: Bioinspired Stereovision Robot System. 

This task is focused on the design of a human sized and bioinspired binocular robot system capable to 
emulate basic ocular movements. 
Scheduling: (month 13-36) 
Performed actions:  

- Development of a dynamic simulator for the comparative analysis of different control strategies and 
for version and vergence control implemented for difference typologies of robot eye-head systems.  
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- Study of the design solutions for the implementation of the a bio-inspired binocular head-eye robot. 
Concept design. Preliminary tests. 

Results: 
- Final release of a dynamic simulator for studing ocular mechanics and visual processing and control 

techniques (Deliverable D1.4a). The simulator is a Simulink Toolbox which will be made publicly 
available through the project website after the related system results will have been accepted for 
publication in journals/conf.proceedings. 

- Basic concept study of the bio-inspired robot eye. 
- Extended concept study of the bio-inspired robot eye (accounting for the last year achievements in 

Task 1.3) 
- Selection of main components for implementation of the eye prototype including: 

o Servo motors 
o Servo amplifiers 
o Embedded USB camera. 

- Development of a test rig for actuator and control tests in place. Experimental test to assess 
performance of commercial components required for the implementation of the robot eye. 

- Detailed design of the mechanical components. 
- Experimental manufacturing test using rapid prototyping to reduce production costs and time. 

Status:  
- Simulator tested and running (various users of the UG-MACLAB and within the Consortium have 

used or are using it for tests).  
- Preliminary tests for integrated image based closed loop control simulation performed. 
- Integration with VR simulator and control software modules. 
- Test rig for actuator and control tests in place.  
- Experiment for assessing actuation accuracy completed.  
- Complete mechanical design completed. Drawings and CAD models will be made publicly available 

through the project website after the system design material will have been accepted for publication 
in journals/conf.proceedings. 

- Complete bio-inspired tendon driven prototype implemented. 
- Preliminary functional tests performed. 

Documentation: deliverables D1.4a, and D1.4 (submitted in September 2010, and available also in a revised 
form, which includes the characterization of the final prototype).  
Publications: A manuscript is in preparation (G. Cannata & A. Trabucco) for the IEEE/ASME Transactions 
on Mechatronics, Focused Section on Bio-Inspired Mechatronics. 
Revised planning: Development of simulation environment for comparative analysis of bioinspired ocular 
motions with respect to standard robot eye-head systems (e.g. pan-tilt binocular systems). Development of 
the bioinspired robot eye delayed by approximatively one year. 
 
 
WP2: Active stereopsis  

Task 2.1: Network paradigm for intelligent vergence control  
The objective is to develop a convolutional network-based vergence control from a population of disparity-
based feature detectors (cooperation between K.U.Leuven and UG). The aim is to learn a vergence motor 
strategy that, combined with the disparity sparse detectors, optimizes the quality and efficiency of the 
feature-extraction for the specific tasks.  
Scheduling: (month 1-30) 
Performed actions: (1) Extend the dual-mode vergence control model to log-polar images to extend the range 
of the vergence control. (2) Test how proper disparity-vergence servos can be directly learned from examples 
of the desired vergence behavior in real-world conditions. (3) Validate the approach on robotic platforms. 
Results: By proper space-variant weighting of the population responses, it has been demonstrated that 
disparity-vergence responses can be steered to cope with the space-variant epipolar geometry in the 
transformed cortical domain. The vergence model has been profitably included and tested in the overall 
VVCA architecture. 
Status: The work was completed as planned. The deliverable D2.1(update) was submitted on time. 
Documentation: Deliverable D2.1(update). Technical meeting notes by Nikolay Chumerin and Frederik 
Beuth (Chemnitz,  2-9 January 2010) and by Nikolay Chumerin, Frederik Beuth, Agostino Gibaldi and 
Andrea Trabucco (Genoa, March 2010). 
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Publications: Chumerin et al., 2010 [J9], Solari et al., 2011 [J6], Sabatini et al., 2011 (submitted) [J24], 
Gibaldi et al., 2010 [C2], Gibaldi et al., 2011a [C1], Gibaldi et al., 2011b (submitted) [C14]. A manuscript is 
in preparation on the integrated model for vergence-version control with attention effect (VVCA) (N. 
Chumerin, F. Beuth, A. Gibaldi, A. Canessa, M. Van Hulle, S.P. Sabatini & F.H. Hamker). 
Revised planning:  none 
 
Task 2.2: Interactive depth perception 
This task is concerned with the extraction of depth (3D structure) by integrating disparity information across 
different eye movements. However, when transforming disparity from eye- to head-centric coordinates, the 
motor part of a robot head is not accurate enough, therefore, vision is used to improve upon this. 
Scheduling: (month 6-36) 
Performed actions: (1) Developed a biologically-inspired algorithm for the transformation of retinal disparity 
into a 3D scene description based on head-centric disparity; (2) enabled the algorithm to operate directly on 
the response of a population of binocular energy neurons, (3) applied a learning approach to determine the 
weights of the neural network that implements the algorithm, (4) applied the same approach to learn gaze 
estimation directly from the population response, (5) demonstrated the feasibility of the autocalibration 
procedure on real-world images obtained with the iCub-platform 
Status: The work progressed as planned and the deliverable D2.2b was delivered on time. 
Documentation: Deliverable D2.2b. 
Publications: -- 
Revised planning:  none 
 
 
WP3: Selecting and binding visual fragments 

Task 3.2: Selecting visual fragment 
Development of dynamic goal-directed attentional selection to bind object properties. 
Scheduling: (month 7-30) 
Performed actions: Application and refinement of the developed models to real world scenes taken from the 
robotic head system. 
Results: The performance has been demonstrated on real world scenes. It has been possible to learn slight 
view invariant representations of objects. In cluttered scenes that contain multiple objects, a selection of the 
task relevant object has been demonstrated.  
Status: Finished as planned. 
Documentation: Deliverable D3.2 
Publications: Zirnsak et al., 2010 [J17], Zirnsak & Hamker, 2010 [J16], Beuth et al, 2010 [C12]. 
Revised planning:  none 
 
Task 3.3: Selecting between behavioral alternatives 
Learning of the cognitive control of visual perception. 
Performed actions: The model of Basal Ganglia has been further refined and connected to the VR simulator. 
Results: It has been demonstrated that the model can operate using realistic inputs at the object level and 
allows us to learn a complex task (1-2-AX). 
Status: Finished as planned. 
Documentation: Deliverable D3.3b 
Publications: Vitay & Hamker, 2010 [J14], Schroll et al., 2011 (submitted) [J23].  
Revised planning:  none 
 
 
WP4: Sensorimotor integration 

Task 4.2: Generating visuo-motor descriptors of reachable objects 
The objective of this task was to implement a model of how to generate an integrated sensorimotor 
representation of objects in the peripersonal space through the physical interaction of an artificial agent with 
its environment, using visual input and proprioceptive data concerning eye and arm movements. 
Scheduling: (month 7-30) 
Performed actions: 
- Analysis of UNIBO data to orient model formulation and implementation. 
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- Implementation of visual/oculomotor and oculomotor/arm-motor basis function networks, which allow 
bidirectional transformations between retinotopic, head-centered and arm-centered reference frames. 

- Adapt the architecture and parameters of the networks to the findings of WP5 regarding V6A and the 
coding of space; reproduce psychophysiological effects. 

- Simulate the learning experiments and define the experimental setup for the real robot. 
- Implement the full 3D model on the humanoid robot platform, making the robot able to interact with its 

peripersonal space through vision, eye and arm movements. 
Results: 
- The system (simulation and robot) is able to accurately learn the transformation between visual, 

oculomotor and joint spaces. 
- The system (simulation and robot) adapts to altered perception and is able to reproduce some effects of 

saccadic adaptation. 
Status: Completed as planned. 
Documentation: Deliverable 4.2a, Deliverable 4.2b. 
Publications: Antonelli et al., 2011 [C9], Chinellato et al., 2011a [J2], Chinellato et al. 2011b [J3], Chinellato 
et al., 2011c [C10]. 
Revised planning:  none 
 
Task 4.3: Constructing a global awareness of the peripersonal space 
This task extends the skills of Task 4.2 to the exploration of visual stimuli in the surrounding space. The 
agent simultaneously learns to reach towards different visual targets, achieving binding capabilities through 
active exploration, and builds an egocentric “visuomotor map” of the environment. 
Scheduling: (month 19-36) 
Performed actions: 
- Define and implement on Tombatossals humanoid robot a global software architecture that allows us to 

integrate tasks of different level of complexity, either internal or developed by other partners. 
- Manage allocation of attention and visuomotor memory in order to perform both gazing and reaching 

actions and also object recognition by integrating space (dorsal) with identity (ventral) visual 
information; 

- Integrate biologically-inspired modules (on stereo vision, vergence control, object recognition) by other 
partners in order to validate the underlying theories and provide the robot with enriched visuomotor 
behavioral capabilities (advanced vergence control, real world objects, ...). 

- Perform comprehensive experiments in which the robot is able to operate in multi-object setups creating 
its own visuomotor awareness of the environment. 

Results: 
- The robot is able to interact with the objects in its environment, recognizing them and performing 

coupled or decoupled visuomotor and arm-motor actions; 
- The robot is able to create an egocentric representation of its peripersonal space, that allows it to perform 

custom, goal directed actions toward one of many available targets. 
Status: Completed as planned. 
Documentation: Deliverable 4.3a, Deliverable 4.3b, Deliverable 4.3c. 
Publications: Antonelli et al., 2011 [C9]. A manuscript (M. Antonelli et al.) is in preparation on the full 
integrated robotic system. 
Revised planning:  none. 
 
 
WP5: Human behavior and neural correlates of multisensory 3D representation 

Task 5.1: Role of visual and oculomotor cues in the perception of 3D space.  
The objective of this WP is to collect neurophysiological results to be used to implement computational 
models developed in other WPs, providing architectural guidelines for the organization of perceptual 
interactions and the production of artificial intelligent systems able to explore and interact with the 3D world. 
Scheduling: (month 1-36) 
Performed actions: UNIBO conducted 2 electrophysiologial  experiments. 
Results: Both studies are completed. Results have been published as papers of peer reviewed journals (2 in 
Journal Neuroscience). One additional manuscript is under revision. Results have been proposed to 
international meetings and shared with the other EYESHOTS’ partners. 
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Status: work concluded as planned. 
Documentation: deliverable D5.1(update) 
Publications: Bosco et al., 2010 [J8], Galletti et al., 2010 [J10], Gamberini et al., 2011 [J4], Hadjidimitrakis 
et al., 2011 (submitted) [J19], Hadjidimitrakis et al., 2010 [C3], Gamberini et al., 2010 [C4], Passarelli et al., 
2010 [C5], Bosco et al., 2010 [N1], Bosco et al., 2011 [C8] 
Revised planning:  none 
 
Task 5.2: Link across fragments.  
This task is aimed at studying neural correlates of multisensory representation of 3D space obtained through 
active ocular and arm movements. 
Scheduling: (months 1-36) 
Performed actions: UNIBO conducted monkey training and 1 electrophysiologial experiment composed of 
ocular and reaching components.  
Results: the data collection ended and the analyses have been performed. Results have been shared with the 
other EYESHOTS partners and have been used to implement computational models developed in other WPs. 
One joint paper has been published and another manuscript is in preparation. 
Status: work started and conducted as planned.  
Documentation: -- 
Publications: Chinellato et al., 2011a [J2]. A manuscript is in preparation (Breveglieri R, Hadjidimitrakis K, 
Bosco A, Sabatini S, Galletti C, Fattori P  Balanced sampling of visual fragments in the reachable space by 
parieto-occipital neurons). 
Revised planning:  none 
 
Task 5.3: Motor description of fragment location 
The objective of this task is to experimentally determine motor descriptions of eye movements via saccade 
adaptation to reveal descriptions of fragment locations. 
Scheduling: (month 1-36) 
Performed actions: In the third period WWU conducted four behavioural experiments. 
Results: Seven studies were completed and are published or in preparation for publication. 
Status: Work finished as planned. The cooperative effort between UNIBO and WWU on adaptation 
experiments on the monkey has been conducted in the third period (Wulff et al., 2011, in preparation). 
Documentation: -- 
Publications: Zimmermann & Lappe, 2011 [J7], Zimmermann & Lappe, 2010 [J15], Havermann et al., 2010 
[C6], Schnier et al., 2010 [J13], Schnier & Lappe, 2011 [J21], Galletti et al., 2010 [J10],  Havermann et al., 
2010 [J11], Havermann et al., 2011 [J20]. 
Revised planning: none 
 
Task 5.4: Predicting behaviour and cooperation in shared workspace.  
The objective of this task is to study specific aspects of human behaviour in the combination of allocation of 
attention and direction of gaze that can be used for action prediction in human-robot interaction. 
Scheduling: (month 12-36) 
Performed actions: WWU conducted three behavioural experiments, two in single-subject and one in two-
subjects settings. An additional behavioural experiment on a human-robot interaction was conducted in 
cooperation between WWU and UJI.  
Results: The studies were completed and are currently submitted or in preparation for scientific publications. 
Status: Work started and proceeded as planned. Milestone M9.ante (Experimental data in single actor …) 
was reached as planned on month 18. The human-robot interaction study was conducted on month 36.  
Documentation: deliverable D5.4 and D5.4(update) 
Publications: Volcic & Lappe (2011) [J22]. Three manuscripts are in preparations (R.Volcic & M. Lappe 
Gaze behavior in cooperative action, R. Volcic & M. Lappe Predictive eye movements in gaze and action 
observation, and A. Stenzel, E. Chinellato, M.A. Tirado Bou, A.P. del Pobil, M. Lappe, R. Liepelt How 
humanoid robots become human-like partners in joint actions). 
Revised planning: none 
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WP6: Project coordination and management 

Scheduling: ongoing 
Performed actions: See section 5.1 
Revised planning: None 
 
WP7: Knowledge management, dissemination and use, synergies with other projects 

Task 7.1: Regular publications of webpages 
Scheduling: ongoing 
Performed actions: See section 5.2. 
 
Task 7.3: External dissemination  
Scheduling: ongoing 
Performed actions: See section 5.2 
Results: We have by now published 39 conference contributions and 27 journal papers. 
 
 
WP8: Training, education and mobility 

Task 8.1: Literature database 
Scheduling: ongoing update of the database 
 
Task 8.2: Student’s seminars 
Performed actions: On the basis of the numerous occasions of exchange of knowledge between partners, 
each student has been asked to write a one-page retrospective of the work done by a cooperation partners. 
Documentation: Deliverable 8.2 
 
Task 8.3: Personnel exchange 
Scheduling: ongoing 
Performed actions: Several visits took place among partners in the reporting period to carry on collaborative 
research and for the preparation of coauthored manuscripts. 
 
 
 
In the following, we provide a detailed description of the progress of work for each work package –  except 
project management, which will be reported in section 5. 
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WP1: Eye movements for exploration of the 3D space 
Leader: Giorgio Cannata (UG) 
Contributors and planned/actual effort (PMs) per participant:  
UG (21/19.22) and UJI (2/4.54)  
Planned/actual Starting date: Month 1/1 
 
 
Workpackage objectives  

The major goals of the workpackage are the study of ocular mechanics and oculomotor control, for both 
single eye and conjugate movements, as well as the specification of ocular motion strategies which could 
improve the capabilities of vision to perceive depth information. In particular, the target is to investigate the 
role of the ocular mechanics with respect to the strategies implemented by the brain to drive typical 
biological ocular movements (including saccades and vergence). A second objective is the study of the 
geometric and kinematic effects of ocular motions on image flow, for supporting the estimation of 3D 
information from ocular motions. The final goal of WP1 is the development of a bio-inspired stereoscopic 
robot system capable to emulate the ocular motions to be used during the planned experimental tests.  
 
 
Progress towards objectives  

Task 1.2: Perceptual influences of non-visual cues 
In natural viewing conditions, the disparity distributions (horizontal and vertical) depend on the orientation 
of the eyes as well as on the structure of the scene. Previous attempts to analyse the statistical structure of 
natural scenes and how this structure could influence neural processing and visual percepts are dominated by 
studies of long-range environments characterized by distances greater than 2m. Yang and Purves (2003) first 
measured the distribution of distances in 74 scenes (23 fully natural scenes, and 51 scenes containing natural 
and constructed objects) using a laser range finding technique. Following, other researchers tried to predict 
the distribution of disparities by extending the model derived by Yang and Purves (cf., Hibbard, 2007) or by 
using their orginal range data and considering distributions of binocular fixations either measured or 
simulated (cf., Liu et al., 2008). Yet, the binocular disparity has great impact at close distance  (<1m), in the 
so called peripersonal space, considered as the reachable and graspable workspace, for which, to the best of 
our knowledge, (systematic) data analysis is still lacking. 
Moreover, (Hibbard, 2007) and (Liu et al., 2008), besides considering viewing distances far from the 
peripersonal space, focus their attention on the global disparity distribution over the entire retinal image, 
without considering the gaze direction. Differently, we focused on the disparity distributions that can occur 
in every retinal location for different gaze directions. From the analysis of the disparity patternsm we 
considered the implications on possible optimal distributions of the cortical disparity detectors. A priori 
information on disparity patterns turns out to be very important if we want to model the behaviour of the 
disparity detectors of primary visual area V1. Indeed, it is possible to exploit the information coming from 
the statistics, in order to allocate the resources in an optimal way. By redistributing the coverage sensitivity 
of the cell’s population on the basis of the known gaze direction, we expect to improve disparity detection 
with a reduced amount of resources (i.e., a reduced number of binocular energy units). 

Data acquisition – For the simulations shown in the following, we first captured 3D data from a real-world 
scene by using a 3D laser scanner (Konica Minolta Vivid 910), with the optimal 3D measurement operating 
range from 0.6m to 1.2m, which is appropriate for analyzing the disparity information experienced by an 
active observer in his/her peripersonal space. The system allows also capturing the color textures at a 
resolution of 640 × 480 pixels. Each scan contained up to 307,200 points within a variable field of view, 
which was adjusted with respect to the size of the object to be scanned. For this work we considered 
cluttered desks with a collection of hundred real-world objects. The whole scene, as well as the single objects 
were scanned, registered and merged together to obtain full models of more than 13,000,000 of points each 
(see Fig. 12A). Off-line registrations of data guarantee an accuracy of about 0.1 mm. A full 360-degree view 
of the scene is acquired to minimize the occlusion problems that occur when one simulates changes in the 
vantage point of the virtual observer. 
 

Simulated fixations in the acquired peripersonal scenes – The real-world environment, captured by the 3D 
laser scanner, is then “explored” through the active vision simulator developed by partner UG in the first 
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year of the project (Chessa et al., 2009a). Such simulator has been implemented in C++, using OpenGL 
libraries and the Coin3D toolkit (http://www.coin3d.org/) developed for effective 3D graphics rendering. 
This system is capable of handling the commonly used 3D modeling formats (e.g., VRML), and thus the data 
acquired by the 3D laser scanner. To obtain the toe-in stereoscopic visualization of the scene, useful to 
mimic an active stereo vision system rather than to make humans perceive depth, we have modified the 
SoCamera node of the Coin3D toolkit. Moreover, the developed tool allows us to access the buffers (see 
Fig.12B) used for the 3D rendering of the scenes. The 3D data and the textures are loaded in the active vision 
simulator, then the left and right projections, the horizontal and the vertical ground truth disparity maps, are 
obtained, for each possible fixation point. More details on the simulator are reported in (Chessa et al., 2011 
[J1]).  
The developed tool has been used to create a database of real-world range data and stereo image pairs for a 
variety of fixations (see Fig. 12C), in order to guide modeling and for algorithmic and behavioral 
benchmarks in real-world but fully measured environments. Benchmark images and sequences have been 
made available to the scientific Community (http://www.pspc.dibe.unige.it/Research/vr.html ). 
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Figure 12:  (A) An example of real-world scene acquired by the laser scanner. Together with the 3D data 
the system is able to attach the real color texture to the scanned objects. Two outputs of the active vision 
system simulator: the Z buffer (B) and the left and right image pairs (C). (D) The disparity  can be divided 
into two components: one, unpredictable, due to the scene, called residual disparity s, and one, predictable, 
due the geometry of the adopted vision system, called epipolar disparity e. (E) The mean vector disparity 
patterns and the standard ellipses, averaged over all the fixation, for a Helmholtz, a Listing and a L2 system. 
For the sake of clarity only a grid of 7x7 retinal points is shown. 
 
Statistical analysis – For a given eye posture we computed the distribution of the horizontal and vertical 
disparities for all the objects whose images fall within an angle of ±22.5° in both retinas. The other 
parameters used were: a resolution of 601 × 601 pixels, a focal length of 10mm, and an interocular distance 
of 6cm. We repeated the calculation for 100 different vantage points, corresponding to different positions 
and orientations of the cyclopean visual axis, and for a set of fixation points. The fixation points varied in the 
range of 0◦ ÷360° for the azimuth angle, and in the range of 0° ÷32° for the polar angle. More precisely, the 
fixation points were obtained by backprojecting a 11×11 grid of equally spaced points of the cyclopean 
retina on the closest visible surface of the scene. Under the same experimental conditions, the disparity 
patterns were calculated for three different eye movement paradigms (Tilt-Pan, Listing and its binocular 
extension L2). The mean vector disparity patterns, together with their standard ellipses (measuring the joint 
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dispersion of the bivariate distribution) are shown in Fig. 12E. It is worth noting that, although the mean 
disparity patterns calculated for each fixation are characterized – as expected – by significant differences, 
these differences are attenuated when averaging over all the fixations we considered (not shown). 
 
Empirical corresponding points and the reference surface – The horopter, as the locus of point in the 3D 
space whose projections fall on geometrically corresponding points in the two retinas, usually consists of two 
parts: the horizontal and the vertical horopter. The former lies in the horizontal plane of regard, and it is 
described by the Vieth-Müller circle, i.e., a circle through the nodal point of the the two eyes and the fixation 
point. The latter is a line through the Vieth-Müller circle, in the median plane of the head, and at right angle 
to the horizon plane. 
Together with the geometrically corresponding points it is possible to define a second type of 
correspondences on the basis of psychophysical or physiological criteria, such as singleness of vision or 
nonius alignment: the empirical corresponding points. Several researchers tried to measure the pattern of 
empirical corresponding points, and they all agree that these do not coincide with the geometric ones 
(Schreiber et al., 2008). More precisely, they claimed that empirical correspondences are not geometrically 
congruent along the horizontal meridian, and that points in the temporal hemiretinas are relatively 
compressed with respect to the corresponding points in the nasal hemiretinas. Relative to the geometric 
points, the empirical points have negative (i.e. uncrossed) disparities to the left and to the right of fixation. 
This compression causes the horizontal horopter to deviate from the Vieth-Müller circle. This difference is 
known as the Hering-Hillebrand deviation (Howard & Rogers, 2002). The horizontal horopter tends to be 
less concave than the Vieth-Müller circle at near distances and more convex at far distances. Moreover, 
empirical corresponding points are anisotropic. This anisotropy is illustrated by the fact that corresponding 
vertical meridians are sheared horizontally. This means that empirical correspondences are characterized by 
negative (i.e. uncrossed) disparities in the upper part of the retina, above the fovea, and by positive (i.e. 
crossed) disparities in the lower part, whose magnitude increases with the eccentricity. This anisotropy is 
called Helmholtz shear deviation, and it causes the vertical horopter to incline top away in the median plane 
(Schreiber et al., 2008). 
From this perspective, we can consider the mean disparity patterns, obtained friom the statistical analysis, as 
a pattern of empirical corresponding points. From this it is possible to derive a “minimum-disparity” 
horopter as the 3D surface whose projections have the minimum disparity angle with the pairs of empirical 
corresponding points. The resulting optimal surface is a tilted top away surface at a distance of 104cm, less 
concave than the Vieth-Müller circle, and its concavity decreases with the fixation distance, in agreement 
with the experimental observations, see Fig. 13.  
 
Task 1.3: Control of voluntary eye movements in 3D 
This Task is devoted to the study of ocular mechanics and oculomotor control, for both single eye and 
conjugate movements. The target is to investigate how eye plant mechanics affects the strategies 
implemented by the brain to drive typical biological ocular motions (including saccades and smooth pursuit). 
A second goal is the study of the geometric and kinematic effects of ocular motions on image flows, for 
supporting the estimation of 3D information from ocular motions. Finally, from the engineering point of 
view the major expected achievement is to provide the guidelines for the development of a bio-inspired 
stereoscopic robot system capable of emulating the ocular motions. 
In order to meet these objectives it has been necessary to develop a detailed model of the ocular mechanics 
and of the control strategy (at muscolar level) that realizes the human eye movements in the 3D space. A 
detailed mechanical model of the oculomotor system (i.e., eyeball and extraocular muscles) has been 
developed, and its geometrical and dynamical properties against Listing’s Law have been described. 
The major outcome of this activity has been a complete 3D dynamic model describing the Listing’s Law 
dynamics featuring a (simplified) model of the visco-elastic featured of the orbital tissue surrounding the 
eyeball. However, even though the proposed model is compatible with Listing’s Law, so that for any action 
force generated by the rectii extra ocular muscles (EOMs) the eye orientation has zero torsion (Listing’s  
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Law), still remains the problem of computing the appropriate action forces required to rotate the eye to a 
given target direction.  
As a matter of fact the high dynamic response characteristics of the saccadic motions pose a significant 
challenge for implementing a closed loop control strategy. Furthermore, in a bio-inspired framework, long 
latencies featuring the vision system and the lack of evidence of mechano receptors dedicated to measure the 
posture of the eye, make the design of high performance closed loop strategies an issue. As a matter of fact, 
open loop time optimal control strategies have been proposed in the literature to explain how the actual 
control EOMs’ control actions could be computed to generate saccadic motions (Clark & Stark, 1975; 
Enderle, 1984). Experiments (Wang et al., 2007) have shown that in monkeys there exists a neural 
representation of the eye orientation that could be based on muscular stretch receptors. Although these 
signals are not suitable for high bandwidth feedback control, they can be used for fine adjustment of eye 
position or recalibration of the proprioceptive system (Wang et al., 2007).  
To tackle this control problem we have addressed two basic issues that play a relevant role in the problem of 
controlling the eye orientation. The first one is how to compute the steady state action forces generated by 
the EOMs to keep the fixation in a given target direction. The second one is instead related to the problem to 
compute, at steady state, for a given set of EOMs’ actions the eye orientation. These two problems 
correspond to static inverse and direct problems and play a complementary role. We will assume that some 
sort of force feedback from the EOMs is available. 
The Static Direct Problem (SDP) correspond to a computational procedure for estimating the eye orientation 
given the actual action forces generated by the EOMs and could be used a low bandwidth signal, and 
provides a map associating the EOMs’ actions to the eye orientation.  
The Static Inverse Problem (SIP) is instead required to compute the action forces of the EOMs to be 
generated at steady state in order to keep the orientation of the eye to some target value. This is an ill-posed 
problem as there are four the three rotational degrees of freedom of the eye are controlled by four EOMs, so 
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Figure 13: The empirical horopter for different fixation distances. (A) The optimal surface. For a fixation 
distance near 104cm we found the surface that minimizes the disparity between the stimulated points on the 
retinas and the empirical corresponding points. The heavy black lines represent the horizontal and the 
vertical components of the horopter. (B) The horizontal component of the optimal surface depicted in (A) 
(thick black line) compared with the Vieth-M¨uller circle (red line). The fixation distance acts on the 
empirical horopter changing its concavity and its tilting. At 30cm (C) the horopter is more concave than in 
(A), whereas it becomes flatter at 200cm (D). 
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there are infinitely values of the motor commands that correspond to a unique eye position. For example, in 
static condition, the tensions of the muscles could be proportionally increased, so that the total torque does 
not change, thus leaving the eye position unchanged. 
 

The SDP problem 
The Static Direct Problem is the procedure required to compute the steady state eye orientation given a 
constant set of action forces generated by the EOMs. To solve this problem we have proposed an iterative 
procedure (Cannata & Trabucco, 2011 [C17]), validated using the Simulink based simulator developed in 
Task 1.4.  
 

The SIP problem 
Here, we investigate the problem of associating the action forces of the EOMs required to mantain the 
eyeball in a given orientation. Figures 14-15-16-17 highlight the controlled rotations of 20o about the vertical 
axis (α = 90o) and about a vector oriented at α = 60o with respect to the horizontal line (and belonging to the 
Listing’s Plane). As it is apparent, the resulting motion is accurate and respects all the motion constraints. 
 

 
Figure 14: Simulated eye rotation with constant forces computed using the SIP algorithm (case α = 90o). 
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Figure 15: The eye position trajectory with constant forces computed using the SIP algorithm (case α = 
90o). 
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Figure 16: Simulated eye rotation with constant forces computed using the SIP algorithm (case α = 60°). 
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Figure 17: The eye position trajectory with constant forces computed using the SIP algorithm (case α = 
60°). 

 
Task 1.4: Bioinspired Stereovision Robot System 
Many eye-head robots have been developed in the past few years, and several of these are common pan-tilt 
systems, where a camera rotates about pan-tilt axes. The main goals of this work have been to provide the 
guidelines for the implementation of a tendon driven robot and to emulate the different types of human eye 
movements for binocular vision experiments. 
The geometry of the robot prototype is based on the model described in Task 1.3 and a solution to emulate 
the mechanical properties (viscosity and elasticity) of the eye orbital soft tissues have been considered. 
Relevant features are also the dimensions of the robot, which are very close to the human eye. The final 
dimensions have been the result of a careful condiseration of the various trade-offs during the selection of the 
components available on-the-shelf (e.g. the eyeball, motors, on board camera etc). 
The relevant subsystems are: the eyeball and the vision system; the support structure; the actuation system.  
 
Robot Eye Design 
This prototype of a robot eye must emulate the mechanical structure and the movements of a human eye with 
a comparable working range. This robot eye has approximately the shape of a truncated cone where the 
larger diameter and the smaller one are 34 and 45 mm, respectively, with an overall length of 120 mm. The 
robot is designed on the assumptions that the eyeball is a sphere with three degrees of freedom about its 
center and the actuation system that drives the eyeball is a combination of linear motors, springs and tendons. 
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Each linear motor has two springs in parallel, the motor and the springs are connected to the eyeball through 
the tendons. Figures 18 and 19 show the three dimensional CAD model and a detailed view of the system. 
 

 
Figure 18: 3D sketch of the robot eye prototype. 

 
 

 
Figure 19: Lateral view of the eye robot prototype and its modules: 1) Eyeball, 2) Front flange, 3) Frame, 
4) Spring, 5) Rear flange, 6) Linear motor, 7) Position sensor, 8) Eyeball support. 

 
The Eyeball 
The eyeball is a precision machined (in house) PTFE sphere with a diameter of 28 mm. The sphere has been 
machined to host the vision system (a commercial CMOS microcamera with miniature optics) and to route 
the video signal cables to the external electronics.  
 
Supporting structure 
The structure designed to support the eyeball, the motors and the springs is composed of four distinct 
components (shown in Fig. 20 and described below): 

 eyeball support: a low friction support designed to hold the eyeball and to implement the pointwise 
pulleys, 

 frame: a structure cross, attached to the eyeball support, to hold the motors and the springs, 
 front flange: an anterior flange to lock the eyeball on the eyeball support, 
 rear flange: a posterior flange to lock the motors and the springs on the frame. 
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Figure 20: CAD model of the supporting structure: 1) Eyeball support, 2) Frame, 3) Front flange, 4) Rear 
flange. 

 
The eyeball support module holds the eyeball and is the most critical part of the system. It is made of 
TEFLON and it has the major function of implementing the pointwise pulleys (responsible to guarantee 
mechanical implementation of Listing’s Law). The pulleys route the actuation tendons and they ensure the 
correct mechanical implementation of Listing’s Law. 
The position of the pointwise pulleys is symmetrical with respect to the position of the insertion points on the 
eyeball. On the eyeball support there are four groups of three pulleys: the central for the tendon attached to 
the linear motor and the two lateral for the tendons attached to the springs.  
Figure 21 shows a sketch of the posterior and two different lateral views of the eyeball support.  
 

 
Figure 21: CAD model of the eyeball support: posterior and two lateral views (A,B): 1 Pointwise pulley 
holes, 2 Screw holes. 

 
Actuation System 
The actuation system is composed of four tendons, four force generators (DC brushless linear motors) and 
eight springs. The tendons are thin stiff wires, connected to the rods of the motors and to the springs. The 
actuators pull the tendons and drive the movements of the eyeball. There are two springs in parallel to each 
motor that pull the tendons in the opposite direction with respect to the motor one. The main function of the 
springs is to emulate the elasticity of the orbit of the human eye and to restore the zero position (primary 
position) of the eyeball when the system is not actuated. Different views of the current version of the robot 
prototype are shown in Fig. 22. 
 
Deviations from the project workprogramme  

The development of the simulator, planned after the First Review Meeting (April 2009) has delayed by 
almost one year the development of the robot prototype. In order to keep the development of the robot eye 
prototype within the project life span non-conventional manufacturing solutions have been adopted (plastic 
rapid prototyping). The risks of this approach are high (due to the lower accuracy and limited resistance of 
the prototypes), however, careful redesign of the critical mechanical parts has led to a satisfactory working 
prototype. 
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Front view 

  
 

Side view 
 

 
 

Top view 

 

Figure 22: Pictures of the first  prototype of the tendon-drive binocular robot head. 
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WP2: Active stereopsis 
Leader: Marc Van Hulle (K.U.Leuven) 
Contributors and planned/actual effort (PMs) per participant:  
UG (7/4.55) and K.U.Leuven (17/18)  
Planned/actual Starting date: Month 1/1 
 
 
Workpackage objectives  

This Workpackage is devoted to the specialization of disparity detectors at different levels in a hierarchical 
network architecture to see the effect of learning (higher-order disparity detectors) in the extraction of the 
binocular features stereo and stereomotion. A vergence motor strategy is learned that, combined with the 
sparse detectors, optimizes the quality and efficiency of the feature-extraction for the specific tasks (guided 
by the attention signal). The second task is concerned with the extraction of depth (3D structure) by 
integrating disparity information across different eye movements. However, transforming disparity from eye- 
to head-centric coordinates, but also estimating disparity (and controlling vergence), relies on accurate 
calibration information (in terms of the relative orientation of the eyes), which is not feasible with real 
robotic heads, due to the limited accuracy of their motor system. Therefore, vision is used to improve upon 
this. In the previous period we had developed, and provided software, for autocalibration methods that can 
operate in the retinal as well as in the cortical domain. Certain aspects of these methods are difficult to align 
with the experimental evidences reported in various neurophysiological studies. Therefore, we have now 
applied these same principles to develop a biologically plausible architecture. 
 
 
Progress towards objectives  

Specific progress on the tasks worked is reported as follows. 
 
Task 2.1: Network paradigm for intelligent vergence control. 
As a starting point, the research activities on (1) the functional specialization of cortical-like disparity 
detectors to implement a dual-mode vergence control, and (2) the design of convolutional (linear/non-linear) 
networks to learn  proper disparity-vergence servos directly from examples of the desired vergence behavior. 
In the third period, we have extended our simulation efforts and spend more attention on getting statistically 
quantifiable results (mean values and variances) on the performance of the proposed control. Different 
vergence maintenance experimental tests have been carried out distinguishing arbitrary fixations on smooth 
surfaces and arbitrary fixations in presence of depth discontinuities. On this basis, we improved the 
networks’ performance in order make them properly work in real-world scenarios on robotic platforms. In 
addition, limited to the dual-mode vergence control model, we demonstrated that the disparity-vergence 
responses can be steered to cope with the distortions of the epipolar geometry that occur in space-variant 
image sensing schemes, with the advantage of extending the working range of the control without requiring 
additional computational resources.  

Step 1: Linear/non-linear convolutional networks for learning vergence control 

For the vergence control paradigm modeling, we have used the framework shown in Fig. 23. This setup 
consists of the vergence simulator module, the disparity detector population module, the population response 
post-processing module and the vergence control network (VC-net) module. 
The main goal of the vergence simulator is to generate a stereo image (left and right eye views) based on the 
actual state of the robotic head: the vergence angle and the gaze direction, and information about the 3D 
environment. 

Vergence database – For training the VC-net, we have prepared a vergence database. The database consists 
of two tables: a table of synthetic scenes and a table of vergence samples (see Fig. 24). For efficient memory 
usage, the scenes were allowed to be reused in several vergence samples. There are two types of synthetic 
scenes in the vergence database, which correspond to the simplified- and general case scenarios, 
respectively. The simplified case scenes contain only one type of object-stimulus, a fronto-parallel 
rectangular patch perpendicular to the gaze direction in the primary position. The stimulus in this case is 
large enough to completely cover the field of view of both cameras. 
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Figure 23: The block diagram of the framework used in vergence control model training and testing. The 
stereo image generated by the simulator is processed by the disparity detector population, to produce the 
population response. Depending on which vergence control network is used, the population response is then 
directed to either the population response post-processing block, which is producing the post-processed 
population response (the linear VC-net case), or directly to the vergence control network module (the 
convolutional VC-net case). The (raw/post-processed) population response, together with the actual values 
of the gaze direction and the vergence angle, are fed into the vergence control network module, the main 
module of the model. The goal of the VC-net is to produce a new vergence angle, to get the fixation point 
onto the surface of the object of interest, without changing the gaze direction. 
 
The general case scenes consist of several simple textured objects, randomly placed into a room-like virtual 
environment with several light sources. The object sizes are chosen randomly allowing for depth 
discontinuities. Vergence samples consist of the gaze direction, the actual vergence angle, the stereo pair 
(left and right eyes' images), the population response for the stereo pair and the desired vergence angle. The 
actual vergence angle is a perturbed (with Gaussian noise) version of the desired one. The actual vergence 
angle is expected to become as close to the desired vergence angle as possible, when running the control 
model. Each vergence sample in the database can be considered as a training pair. The input part is 
constructed from the post-processed (or raw) population response, the gaze direction and the actual vergence 
angle; the output consists of only one scalar parameter (the desired vergence angle). The vergence database 
used for the VC-net training consists of 1000 synthetic scenes and 5000 samples. The balance between 
general and simplified scenes (as well as for the samples) has been set to 50/50%. Real-world images were 
used as textures for the objects. To reduce the influence of a possible overfitting to particular textures on the 
results of the evaluation, we have used non-overlapping sets of textures for the training- and test 
experiments. An early stopping technique (with 10% of the training data for validation) was used to prevent 
overfitting during training. To achieve a fair comparison, both VC-nets were trained using the same training 
data. 

Vergence simulator – The vergence simulator module consists of the renderer and the ideal robotic head 
model (RHM) with fixed neck. In this model, the robotic head is assumed to be fixed and the eyes to rotate 
around their nodal points. We selected this model because it is easy to implement, and eventually to replace 
by a real tilt-pan stereo setup. 
 

Figure 24:  Schematic structure of the vergence database. 
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The renderer, in turn, produces the stereo image, observed by the left and right eyes, using the 
position/orientation of the eyes, and the geometric description of the scene, provided by the scene 3D data 
block. To make sure that the disparities are not too large and can be properly handled by the disparity 
detectors, we decided to render the retinal projections with low resolution i.e., we obtain images of 41×41 
pixels for a field of view of 20°. Note that the resolution could be higher, but consequently to allow the 
population to cope with the same range of disparities, the receptive fields of the disparity detectors should be 
larger, which would significantly increase the computational cost and, thus, slow down the simulations. 

Disparity detectors population module – Disparity information is extracted from a stereo image pair through 
a distributed cortical architecture discussed in great detail in previous reports. We considered only a single-
scale disparity detector population, but the population can be readily extended to the multiscale mode, 
without conceptually changing our framework, but which will be computationally much more expensive. 

Post-processing module – The post-processing of the population response is used only for the linear VC-net, 
and comprises a two-dimensional convolution over the first two (spatial) dimensions of the population 
response, using a two-dimensional Gaussian kernel Gσ: 

, 
where rc

ij is the population response map for the i-th orientation and the j-th phase shift. The kernel Gσ has 
the same size nr×nc as the size of a population response map rc

ij, so the result of the convolution is a scalar 
value Pij. On the one hand, this step drastically reduces the amount of data to further process. Indeed, after 
pooling, the network has to process only a 2D (No×Np) pooled population response instead of a 4D 
(nr×nc×No×Np) array, where Np is the number of phase shifts, and No the number of orientations. But, on the 
other hand, the pooling has a major drawback as it discards the spatial information about the disparity 
encoded in the population response. The results of simulations revealed that, in the general case scenario, this 
discarding could lead to degraded vergence accuracy. The convolutional network works directly on the 
population response, and the post-processing is done in the first two layers of the convolutional network. 

Vergence control module – This module is the main module of the model. The purpose of it is to convert the 
post-processed population response together with the actual vergence, and the gaze direction, into a new 
vergence angle. Virtually, this module can be represented by any kind of paradigm, but in this workpackage 
we discuss only a linear network and a convolutional network. 
- Linear networks: the simplest possible solution consisting of only a single linear unit that collects the 

weighted sum of the population responses. The simulations revealed that even this simple network is 
able to produce accurate angular vergence control in some restricted situations (e.g., in the simplified 
case). The input vector for the linear VC-net was constructed as a concatenation of the pooled population 
response (56 values), the gaze direction (2 values) and the actual vergence (1 value), so its 
dimensionality is 59. The output is a prediction of the vergence angle, which is a scalar value (see Fig. 
25). Due to the linearity of the network, there was no reason to introduce any hidden layers, so the linear 
VC-net consisted of only one linear unit. This simplest possible vergence control network has only 
60 parameters (including bias), which can be learned either directly (using linear regression or its robust 
modification), or iteratively (using gradient descent), from the training database. 

Figure 25: Linear vergence control network and its inputs.  
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- Convolutional networks (CNs): A typical convolutional network is a feed-forward network of layers of 
three types: convolutional (C-layer), subsampling (S-layer) and fully-connected (F-layer). The C-layers 
and S-layers usually come in pairs and are interleaved, and F-layers come at the end. The output of a C-
layer is organized as a set of feature maps. Each feature map contains the output of a set of neurons with 
local receptive fields. All neurons in the feature map share the same weights, so the feature map is 
responsible for a particular local visual feature, encoded in the weights of these neurons. The 
computation of a feature map starts with a 2D convolution of the input with a fixed kernel defined by the 
neuron's weights. A feature map can have inputs from several feature maps of the previous layer. In 
order to condense the extracted features, and to make them more invariant with respect to spatial 
deformations, the C-layer is typically followed by an S-layer which performs a local averaging and 
subsampling. Each neuron in F-layer just adds a bias to the weighted sum of all inputs and then 
propagates the result through a nonlinear transfer function (RBF or sigmoid). 
The network is trained in a supervised manner using backpropagation. For the efficient training of large 
CNs, LeCun and colleagues proposed a modification of the Levenberg-Marquardt algorithm 
(LeCun, 1998). 
The architecture of the convolutional network, used for our experiments is shown in Fig. 26. The main 
challenge in this approach was the amount of data: the population response consists of 56 (8×7) maps of 
resolution 41×41 (rendered image resolution), so the input of the network has 94136 (41×41×8×7) 
components. In order to be able to train the network with such high dimensional input data, we had to 
reduce the number of training parameters. The first (convolutional) layer is a fixed set of (nontrainable) 
Gaussian kernels of size 19×19 with standard deviation 6. The second (subsampling) layer has also 
56 feature maps size of which was set to 3×3.  

 

Figure 26: Convolutional vergence control network and its inputs.  
 
Results – To evaluate both VC-nets a series of 100 vergence maintenance experiments have been carried out 
for both the simplified and a the general scenario. Each experiment consisted of 100 steps during which the 
randomly generated stimulus was moving along the gaze direction, changing its distance (from 400 mm to 
900 mm) to the head in a particular manner. We have considered three patterns of the stimulus motion-in-
depth: ramp, sinusoid and staircase. Pre-trained VC-nets were allowed to control the actual vergence angle to 
keep the fixation point as best as possible on the surface of the stimulus. During each experiment, the actual 
and the desired values of the vergence angle, and the distance to the stimulus were stored for each time step, 
for further analysis. 
The results of the evaluation of above mentioned experiments of both VC-networks in both considered 
scenarios are presented in Fig. 27, Fig. 28 and Table 1. Each panel of Figs. 27 and 28 contains: 1) the desired 
(ground truth) distance to the stimulus curve depicted by the solid green curve, 2) the mean (averaged across 
all experiments) actual distance to the stimulus curve depicted by the dashed red curve, and 3) the variance 
(standard deviation across all experiments) of the actual distance margins depicted by the dotted black curve. 
The performance of the VC-net can also be assessed using the ratio of the distance-based error variance to 
the corresponding desired distance. The smaller this ratio is, the lower the relative (distance) error is 
produced by the network. Table 1 contains the minimum, mean, median and maximum values of this ratio 
(in percent) for each experiment type and each stimulus. 
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From Fig. 27 and Table 1, it can be clearly seen that both networks perform relatively well in the simplified 
scenario: the mean actual distance curve almost coincides with the desired one, and the variance in both 
cases is relatively small. For the general case scenario, the situation is different. The linear VC-net (Fig. 27b) 
shows a much larger variance and a general tendency to over(under)shoot towards the “average” depth of the 
scene (at approximately 600 mm). The convolutional VC-net ( Fig. 28b) also shows a relatively larger 
variance, but the mean actual distance is closer to the ground truth than in the linear VC-net case. The effect 
of the anisotropy of the distance uncertainty, mentioned previously, is noticeable in Fig. 27 and Fig. 28: the 
further the stimulus is, the larger are the mistakes made by the VC-net. 

 

(a) Linear VC-net, simplified scenario. 

 

(b) Linear VC-net, general case scenario. 

Figure 27: Results of the depth-based performance plots for linear VC-net in both scenarios. 
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(a) Convolutional VC-net, simplified scenario. 

 

(b) Convolutional VC-net, general case scenario. 

Figure 28: Results of the depth-based performance plots for convolutional VC-net in both scenarios. 

 



 54

Table 1: Variance of distance-based error relatively to desired distance. 

Error variance ratio (%) 
VC-net 

Experiment 
scenario 

Stimulus type 
min mean median max 

Ramp 2.6828 3.8921 3.6172 6.2715 

Sinusoid 2.8904 5.2275 5.2840 7.5772 
Simplified 
case 

Staircase 2.6566 5.4345 5.2589 10.6765 

Ramp 6.4996 8.4466 8.1057 12.9288 

Sinusoid 6.2622 10.0322 9.9448 22.1558 

Linear 

General case 

Staircase 7.1387 10.6848 9.9420 31.9260 

Ramp 2.4841 3.7045 3.6237 5.8980 

Sinusoid 2.2913 4.8870 4.9034 8.6034 
Simplified 
case 

Staircase 2.1722 4.3578 3.6502 13.2121 

Ramp 4.0339 6.4378 5.7930 12.7739 

Sinusoid 4.8622 6.9828 6.8680 10.6242 

Convolutional 

General case 

Staircase 3.9617 6.5304 6.2880 13.7682 
 
 
Step 2: Impact of space-variant log-polar image sensing on the dual-mode vergence control 
In designing an active control for a robot stereo head, it is necessary to take into account the large amount of 
visual information that mus be processed in real time. According to the dual-mode vergence model 
developed by partner UG (Gibaldi et al., 2010a), the left and right images are processed by a population of 
disparity detectors, inspired by complex cells of area V1. The population provides a distributed 
representation of the retinal disparity, and through convolutions with weighting kernels it is decoded to 
obtain a family of vergence cells that can drive a direct vergence motor response, in accordance with the 
neurophysiological evidences in area MST. Since the task is to drive vergence eye movements so as to 
improve the fixation and thus the estimation of disparity, the necessary disparity information is gathered only 
from the central (perifoveal) portion of the visual field (see Fig 29A). 
Since a real-time behavior is necessary for a stable and effective control, specific design strategies must be 
considered to reduce the computational burden associated to image processing. Taking inspiration from the 
mammalian visual system, it is possible to implement a space-variant mapping of the stereo images in order 
to simplify the computational problem for active vision (Traver & Bernardino, 2010). Indeed, the retinal 
receptive fields show a high spatial resolution and a small extent in the central part of the retina, the fovea, 
and a larger extent that increases with the eccentricity (Schwartz, 1977). Such a transformation is well 
described by a log-polar mapping form the retinal (Cartesian) domain to the cortical one that preserves a high 
resolution in the area of interest, and a compression of the information in the periphery. We extended the 
dual-mode cortical model for the control of vergence to work with space-variant resolution images, arranging 
the resources according to a log-polar geometry. 
To “optimally” design the log-polar mapping for visual processing tasks, it is important to study the 
relationships between the usual processing in the retinal domain and the direct extraction of the features in 
the cortical domain, by characterizing the filters with respect to the different parameters of the log-polar 
mapping. To solve the problem of the singularity of the fovea, we used the “blind-spot” model (Traver and 
Pla, 2008). In order to allow the binocular energy model to work with log-polar images, we considered that 
the space-variant geometry, by compressing the information in the periphery, produces a distortion of the 
image, and consequently of the disparity information in the binocular image. Following (Solari et al., 2011 
[J6]), we designed the transformation in order to have a minimal distortion of the information, at least 
locally. 
Besides local distortions, the log-polar mapping introduces, at a global scale, deformations of the epipolar 
geometry that transforms horizontal disparity in the retinal domain (see Fig. 29C, left dashed blue lines), in 
space-variant oriented disparities the cortical domain (see Fig. 29C, right dashed blue lines). 
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Starting from the model of a population of disparity detectors tuned to different orientations (see Fig. 29B), 
we can design an horizontal vergence control based on the detection of properly oriented disparities in the 
corical domain. More precisely, it is possible to design a different set of weight w  to get disparity-vergence 
curves properly steered along the direction of the mapped cortical disparity (see Fig. 29D, right) from a 
space-variant combination of the same set of basis disparity tuning functions used in the retinal domain (see 
Fig. 29D, left). Since the decoding in the cortical domain implies an increase of the receptive field size, the 
log-polar vergence control produces a correct behavior for a wider disparity range than the retinal one (see 
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Figure 29: (A) Schematic modeling of the neural circuitry involved in the control of vergence in 
primate brain. (B) Tuning curves of the population of binocular energy cells. The stimulus disparity is 
varied along the direction orthogonal to the orientation of the receptive field in the range 
], where . is the maximum theoretical limit for disparity detection. The cell that are most 
modulated by the stimulus disparity, are those with the same orientation of the stimulus (gray area). 
(C) Receptive fields used in the model: a space variant sampling in the retinal domain with receptive 
fields of  non-uniform  size (left) corresponds to a uniform sampling in the cortical domain with 
constant size receptive fields (right). (D) Examples of different weightings of the population's tuning 
curves (left) depending on the desired orientation of the vergence control (right). (E) Comparison of 
the vergence control obtained by the same filters in the retinal domain (blue line), and in the cortical 
domain (red line). 
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Fig. 29E) with trajectories that resemble the psychophysical ones. In fact, it can produce a faster dynamic for 
large disparities, as they occur when the cells with larger receptive fields, centered in a perifoveal region are 
more stimulated. On the contrary for small disparities the model is able to provide a fine control and a stable 
fixation thanks to the smaller receptive fields, situated in a foveal region. Hence, the resulting control takes 
advantage of the elaboration in cortical domain since the compression of the information in the periphery 
reduces the computational cost, while leaving the precision of the control unaltered. Moreover, only the 
SHORT mode can be considered since the space-variant feature of the log-polar mapping guarantees a 
structural implementation of the dual-mode behavior. 
 
Task 2.2: Interactive depth perception.  
The computer vision principles developed in the previous period have now been applied in a biologically 
plausible architecture. Retinal disparity is no longer explicitly calculated and the methods instead operate 
directly on the response of a population of binocular energy neurons. Image warping operations have been 
omitted as well. Using a learning approach, a feedforward neural network has been developed that can 
directly transform this population response, together with the gaze angles, into a 3D scene description based 
on head-centric disparity. Furthermore, the same architecture enables the extraction of (a limited set of) gaze 
angles directly from these responses. Since the mechatronic system is not available to us for demonstration 
purposes, we have applied the autocalibration algorithm to real-world image streams obtained from the iCub-
platform (Nosengo, 2009). This same platform is also used to demonstrate the vergence mechanisms from 
Task 2.1. The methods proposed here can operate together with these vergence mechanisms in various ways. 
Improved calibration estimates can feed directly in the convolutional network for vergence control presented 
in Deliverable 2.1, but can also modulate the weights of the mechanism (also reported there) that integrates 
the population responses into the vergence control. 

In the remainder we give a brief overview of the network architectures and learning procedure, together with 
some results. More details can be found in Deliverable D2.2b. 
 
Network architectures and learning procedure 

The transformation from retinal to head-centric disparity requires compensating for the transformations 
induced by the (3D) rotations of the left and right eye. Since we operate on the responses of a population of 
binocular energy neurons, this transformation needs to be performed together with correspondence 
estimation. We have decided not to perform these steps separately, but to rather directly modulate the 
responses of a population of binocular energy neurons so as to solve both problems at the same time. The 
complexity of this modulation warrants a learning approach. 
Gain modulation using basis function networks (Pouget & Sejnowski, 1997) is not feasible here due to the 
large number of oculomotor signals that need to be combined with the population response. This leads to an 
explosion of dimensionality and a more efficient approach is required. We use a traditional black-box 
approach based on multi-layer perceptrons. Figure 30 provides an overview of the inputs and outputs and the 
network architecture used for head-centric disparity estimation. This network combines the population 
response (which implicitly codes for retinal disparity) with the oculomotor signals (the gaze angles) into the 
head-centric disparity. A similar network was used for gaze estimation, in which the oculomotor signal input 
was removed, and the output replaced by the gaze angles (see Deliverable D2.2b). 
Due to the complexity of the transformation that needs to be learned, a large number of examples are 
required. It is therefore not feasible to use real-world images, and we instead generated synthetic random 
textures, warped in different ways, for training the network. These textures are first processed by a 
population of simple and complex cells. The population response is of high dimensionality (8112 
dimensions), many of which are strongly correlated. We therefore applied principal components analysis 
(PCA) to reduce the dimensionality. The resulting components then serve as input to the network, together 
with the oculomotor signals.  
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Figure 30: Training procedure and network architecture employed for head-centric disparity estimation. 
 
Results: Head-centric Disparity Estimation 

We use a total of 3750 samples for training the network, which is randomly divided in training (70%), 
validation (15%), and test set (15%). We then evaluate the performance on a completely independent test set 
consisting of 1250 samples. To demonstrate that the network is able to correctly apply gaze information, and 
to show the importance of this information, we compare the performance of the network with gaze 
information shown in Figure 30, to a network that only has access to the population response (after PCA). 
The head-centric disparity map estimated with both networks is shown in Fig. 31(B,C) together with the 
ground truth head-centric disparity (Fig. 31A) for five typical samples from the test set. Note that the 
network without gaze input is able to predict the general magnitude of the disparity field, but cannot estimate 
its fine structure. The network with gaze input performs the transformation with a much higher precision. On 
the complete test set, the correlation coefficient between the estimates and ground-truth is equal to 0.9192 
without gaze input, and 0.9872 with gaze input. 
 

 
Figure 31: Ground-truth head-centric disparity (A) and head-centric disparity predicted by a network with 
(B) and without (C) gaze input. 
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Results: Gaze Estimation 

For gaze estimation, we remove the gaze input from the network, and replace the target head-centric 
disparity with the (at most) six gaze angles. The gaze information estimated in this way from the population 
responses can be used to correct the imprecise information available through proprioceptive feedback from 
the motor system, which enables better vergence/version control and more precise correspondence 
estimation. 
This problem is notoriously ambiguous, and only the essential matrix can be extracted from image data. 
Therefore, we have explored a set of problems with gradually increasing gaze complexity. The results are 
shown in Fig. 32. From this figure, we can see that the performance is quite good when only one eye is 
considered at a time. In the top row, a single gaze parameter is changed, while all the other remain zero. Both 
tilt (Fig. 32A) and torsional (Fig. 32C) rotations are easy to predict, because they introduce a strong vertical 
disparity pattern. Pan movements on the other hand are more difficult (Fig. 32B), because they are more 
easily confused with the disparity pattern. This however should not affect the precision of correspondence 
finding, and so is less relevant in this context. The network is also able to simultaneously estimate all gaze 
parameters of a single eye (Fig. 32D) with a performance similar to the worst single parameter performance. 
We also examined the degree to which all gaze angles for both eyes can be predicted together, but (as 
expected) this did not yield very good performance (Fig. 32E). 
 
 

 
 

Figure 32: Ground truth versus estimated gaze angle scatter plots for training scenarios of different 
complexity. In the top row, only a single gaze parameter of the left eye is changed: tilt (A), pan (B), or 
torsion (C). In the bottom row, all the left eye parameters are changed in (D), and both left and right gaze 
parameters are changed in (E). Only test set data is shown, and the correlation coefficient obtained on this 
set is indicated above each figure. 
 
 
The ability to estimate gaze in the presence of complex disparity patterns, appears to be quite feasible 
following this approach for each eye only. This means that also autocalibration is possible with this method, 
since in the computer vision approach we developed earlier, we used an alternating approach to correct the 
gaze estimate by considering one eye at a time.  
 
 

Deviations from the project workprogramme 

None. 
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WP3: Selecting and binding visual fragments 
Leader: Fred Hamker (WWU) 
Contributors and planned/actual effort (PMs) per participant:  
WWU (17/17), K.U.Leuven (3/3) and UG (1/1) 
Planned/actual Starting date: Month 1/1 
 
Workpackage objectives  

This workpackage is devoted to develop novel concepts of selecting and binding within a fragmented 3D 
scene representation. One of those fragments is object identity. Object identity will be obtained from a bi-
directional, hierarchical representation of learned feature detectors. The development of the appropriate 
learning rules will be an essential part of this project, since the learned connections will be used for the 
selection of a fragment. In the first period we aimed at learning V1-like feature detectors form stereo images. 
Beyond object identity, a distributed representation requires to actively bind and represent the relevant visual 
fragments for the task at hand. Thus, we study how attentional dynamics allow us to actively bind features 
and build task relevant representations. Moreover, we will develop a novel framework for the task relevant 
binding of fragments in a global workspace using reward-based learning.  
Starting point has been a revised model for learning V1 receptive fields (Wiltschut & Hamker, 2009) and 
models of attentional dynamics (Hamker, 2005, Hamker & Zirnsak, 2006, Hamker et al., 2008) and an 
overview paper about the role of the Basal Ganglia in cognitive control (Vitay et al., 2009). 
 
Progress towards objectives  

Task 3.2: Selecting visual fragment 
This task has the objective to investigate and develop mechanisms of attentional selection. In the previous, 
second period, we had shown that a concept of feature-based attention (Hamker, 2005) can be combined with 
a learned object descriptor for attentional selection at the object level. In this proof of concept we were able 
to select objects among several distractors in a virtual reality setup. We extended this concept in the third 
period to attentive stereoscopic object recognition (for details see deliverable D3.2, Beuth et al., 2010 [C12]) 
and investigated the applicability of this approach on natural scenes. Thus, the model used in the VVCA 
(Vergence-Version Control with Attention effect) has been refined and ported to the robot setup of partner 
UJI. This section summarizes the system designed for the robot. Concerning technical issues, the porting of 
the system was straight forward from MATLAB to C++. The module communicates via the Yarp framework 
and requires less than one minute to process one image. Real time processing was not desired, therefore no 
optimizations in this regard has been taken into consideration. 
 

 

Figure 33: Neuronal model of the stereoscopic object detection. The i and j indices correspond to the spatial 
x and y axis of the images. The index k refers to different Gabor responses and l to different learned features 



 60

in HVA. Adapted from Beuth et al., 2010. 

The model: the object recognition system (Fig. 33) uses learned object representations based on a V1 stereo 
energy model. This energy model (Chessa et al., 2009b; Sabatini et al., 2010) provides local information 
about disparity and frequences. Unlike as in deliverable D3.2, the energy model uses multiple-scale filters to 
deal with larger disparities and objects. The high level area (HVA) can be compared to brain areas such as 
V2/V4/IT, whose cells can be interpreted as representing multiple views of a single object. We achieved the 
object selectivity by learning the connections from the energy model to HVA with a biological motivated 
learning algorithm (Wiltschut & Hamker, 2009) and a trace rule using temporal continuity for the 
development of view-invariant representations of objects (like in Földiak, 1991; Rolls & Stringer, 2001; 
Wallis & Rolls, 1997). We used a weight sharing approach to analyze the whole visual scene in parallel, i.e. 
the detection of objects is independent of the location of the object in the visual scene. A top-down “attention 
signal”, which is simply stored for each object in memory, can bias a particular object selection. An 
oculomotor loop via the frontal eye field (FEF) can select the location of a particular object for a saccadic 
eye movement and also provides a spatially selective attention signal. The binding process to select a visual 
fragment operates continuously, but it can roughly be illustrated by two processes. One operates in parallel 
over all fragments and increases the conspicuity of those that are relevant for the task at hand, independent of 
their location in the visual scene. The attention signal stores the features representing the task relevant visual 
fragment and reinforces them in HVA. The other is linked to action plans, here the eye movement, and binds 
those fragments together, which are consistent with the action plan, typically by their location in the visual 
scene. The loop over the FEF visual and movement maps realizes this idea. Both processes use competition 
to decrease the activity of irrelevant features and locations in HVA. After successful recognition, the FEF 
movement map encodes the position of the searched object. 
 

Results – We have tested the recognition for four objects (the three ones in Fig. 34 and the grasping unit of 
the robot). The grasper of the robot is visible if the robot points to an object. We learned the grasper as a 
normal object which allows the partner UJI to ignore the grasper if necessary. Furthermore, UJI needs the 
position of the grasper to train the visuo-motor coordination (see WP4). Now, they could replace their 
marker using the object recognition system to localize the grasper position.  
We tested 25 scenes with those 4 objects using a task that requires the successful recognition of each object 
in every scene. 98% of the objects were correctly classified. Fig. 34 shows for one scene the maps after 
successful recognition and Fig. 35 shows the recognition process itself over time. 

 

Discussion – A known limitation of the energy model is that it can encode large disparities only at a scale 
with a low image resolution. However, at such low resolutions the shape of an object disappears and an 
object is mostly only represented by a broad blob of activity. Therefore, we suggest to add filters with larger 
disparities to the model, to use a space variant model, or to use learned filters in the energy model.  The 
limitation in disparities of the energy model is also the reason for 2% false recognitions. 

 

 

Figure 34:: Successful localization for each of the 3 objects in a single scene. The figure shows the layer 
activities during the object localization experiment for the robot. The responses of the population code (10 
cells encoding features) in HVA are computed as described in Fig.33.  Thus each box shows the activity of a 
single feature in image coordinates. The graphs also show the attention signal (population code on the x-
axis) and the two FEF maps. Normally, the x- and y-axis correspond to the spatial x and y axis of the 
images. A red cross marked a successful recognition and saccadic selection of the target object. 
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Figure 35: Temporal dynamics of the model illustrating the spatial binding process and competition. For 
description see Fig. 34. Initally, some HVA cells representing a non-target object (the box) are activated as 
well. However, due to the attentional top-down signal, the target (adhesive tape roll) becomes more active 
over time and finally only the cells at one area (the location of the target) remain active and the cells at the 
other location were suppressed.  

 

The object recognition system uses only unsupervised learning (spatial and temporal statistics) for learning 
to distinguish the objects. Objects which do not differ in their shape or in their temporal occurrence cannot 
be learned by this model. In this case, an interactive exploring of the environment and/or reward-based 
learning is necessary, which has been investigated in Task 3.2. Moreover, learning should probably take 
place across multiple layers to obtain more invariances and still a robust recognition. Here, we have learned 
only within a single layer. 

To summarize, we have shown how the attentive object recognition can be integrated into a robotic system 
and can select a particular visual object in a natural scene. The model combines stereoscopy, learned object 
descriptors and the concept of attention in a biologically plausible way. This still relatively simple system 
could be used in a wide range of applications in active vision. 

 
Task 3.3: Selecting between behavioral alternatives. 
In second year of the project, we have developed a basic model (see deliverable D3.3a) to select between 
behavioral alternatives. This has been extended in the third year in two ways: 1) we have combined this 
working memory model (deliverable D3.3a, Vitay & Hamker, 2010 [J14]) with the object recognition system 
from deliverable D3.2 (Beuth et al., 2010 [C12]). 2) We have expanded it with a biologically grounded 
model of working memory (Schroll et al., 2011 [C12]).  
 

Combined model 

The goal of the combined model (Fig. 36) is to maintain Working Memory (WM) and to select the correct 
response for the current task. The model learns from visual experience and from previous rewards by 
associating these rewards to specific visual stimuli. The central idea of maintenance of the working memory 
is that an agent has to remember objects that are useful or necessary for the task at hand. An object can be 
defined as very useful, if the agent can expect a high reward if it remembers this object and chooses a 
decision based on it. By this idea, the agent learns when it should store, hold or delete a specific stimulus 
from WM. 
We have built objects in a virtual reality (VR), each object representing a symbol for the task. First, the 
stereoscopic views from the VR are processed by the above described vision model. After recognizing the 
object, we pass the activations to the WM and motor response selection model. The working memory is 
organized in several cortical-basal-ganglia-thalamo-cortical loops (WM loop) which learn to maintain a 
certain symbol. The model learns to store the symbols associated with high reward and suppress the ones 
with low reward from WM content. The exact functionality will be discussed in the section “Biological 
architecture...”. From the current presented stimuli and the past sensations stored in WM, the model learns to 
associate a motor response. By learning, the model will choose behavioural responses associated with high 
reward. 
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Figure 36: Functional overview of the combined object recognition (stereoscopic edge detection and 
distributed object encoding) and working memory model (working memory loop and motor response 
selection). Dashed lines indicate Dopamine influence, therefore these weights are adapted according to the 
received reward. 

 

Biological architecture and function of the model 

 

 

Figure 37: The architecture of the working memory model consisting of prefrontal cortico-BG-thalamic 
loops (WM) and a motor loop (choosing between behavioural alternatives). Solid arrows denote hard-coded 
connections between or within layers, dashed arrows learnable ones. Pointed arrows symbolize excitatory 
connections, rounded arrows inhibitory ones. The gray arrows deriving from SNc represent the Dopamine 
influence on learning within BG afferents. GPe: globus pallidus external segment; GPi: globus pallidus 
internal segment; lPFC: lateral prefrontal cortex; MI: primary motor cortex; ITC: inferior temporal cortex; 
SNc: substantia nigra pars compacta; STN: subthalamic nucleus. 

 
Basal ganglia (BG) can be divided into multiple functional domains based on cortico-striatal afferents 
(Alexander et al., 1986). For modelling a WM task, the major ones are 1) the executive domain (associated 
to the caudate nucleus as another part of striatum) is mainly connected to lPFC. It is involved in goal-
directed learning, action-outcome associations and WM (Redgrave et al., 2010). 2) The sensorimotor domain 
is mainly associated to premotor and sensorimotor cortices and is involved in action selection and stimulus-
response associations (Horvitz, 2009); the corresponding striatal part is called putamen. These functional 
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domains interact through ascending cortico-cortical projections, thalamo-cortico-thalamic projections and 
through a spiraling pattern of connections between striatum and the dopaminergic areas of SNc (Haber, 
2003). 
The model (Fig. 37) consists of two prefrontal cortico-BG-thalamic loops (PFC-loops) and one motor loop 
that have the same general architecture and obey the same learning rules. PFC loops (left of Fig. 37) control 
WM by flexibly switching between maintenance and updating of information. Then, they bias a motor loop 
(right of Fig. 37) to decide between a set of possible responses. The loops' functional architecture works as 
follows. Activation in the cortex excites striatal and subthalamic neurons. Striatum (Putamen and caudate 
nuc.) inhibits tonically active neurons of GPi (direct BG pathway) which in turn excites thalamic neurons. In 
contrast, activation of STN causes a fast excitation of GPi and a slower inhibition via GPe (hyperdirect 
pathway). Therefore, the hyperdirect pathway gives a brief and global reset pulse to GPi, where the direct 
pathway allowing to maintain symbols in the loop.  
Most eminently for learning of behaviours, BG has an important role in reinforcement learning: BG receive 
dopaminergic afferents from SNc providing the BG with an error signal of reward prediction (Schultz et al., 
1997, Hollerman & Schultz, 1998, Schultz, 2002). This reward prediction error is encoded by Dopamine 
levels which have been shown to modulate long-term synaptic plasticity within BG (Reynolds et al., 2001; 
Surmeier et al., 2007; Shen et al., 2008). Functional, Dopamine encodes the difference between the expected 
and the currently received reward. Dopamine bursts (above a tonic baseline level) occur from unexpected 
rewards while dopamine depletions (under this baseline) follow omissions of expected rewards. The WM 
model learns to maximize the received reward for a task by estimates the expected reward for each symbol. 
If the model receives more reward than expected, the model reinforces Dopamine-modulated connections 
(marked by grey arrows in Fig. 37) which in turn reinforces the memorization of a certain symbol in a certain 
loop. The idea is that the object was helpful to solve the current task and it will also be useful in the future, 
thus the model should remember it. On the opposite, if the model receives less reward than expected, the 
model has remembered the wrong object resulting in an inhibition of Dopamine modulated weights and the 
model will less likely store the symbol in working memory in the future. For details like learning rules, 
please refer to D3.3b or (Schroll et al., 2011 [J23]). 

 

1-2-AX Task 
 
 

 

Figure 38: (A) The 1-2-AX conditional WM task: in each trial, a stimulus is presented and the model has to 
choose between a left- and a right-button press. Circles indicate correct responses. A response of 'right' is 
only correct for the two combinations 1-A-X and 2-B-Y of the symbols, otherwise 'left' is correct. (B) The 
combined model's performance in learning of the WM task 1-2-AX. Box plots show the number of trials 
needed until the last error occurs. The boxes' upper and lower borders represent upper and lower quartiles, 
respectively. Outliers are represented by asterisks. 

Sharing a peripersonal workspace is one of the goals of the project EYESHOTS, which requires to hold 
previously visible information in memory to allow the agent to be able to choose between behavioural 
alternatives. Both requirements are addressed by the working memory model. To ensure that the task is 
general enough and also replicable, we decided to use a well known task from literature of working memory. 
In this 1-2-AX task (O'Reilly & Frank, 2006), see Fig. 38A, decisions must be taken dependently on the 
previously presented symbols and the agent must be able to deal with distractors (distractors are irrelevant 
objects for the current task which should not be remembered). Only special combinations of the symbols 
(e.g. a '1', followed by '2' and by 'X') require a particular response (here, press the right button), all other 
combinations result in the other behavioural alternative (left button). The number of possible combinations is 



 64

very high and the agent does not know in advance if a symbol is important or irrelevant. This is also typical 
for real world tasks which make such tasks very challenging. Figure 38B shows the performance of the 
combined model of 20 randomly initialized networks successfully learning the 1-2-AX task. Networks not 
learned the task to criterion were removed from the data which occurs for approximate 25% of the networks. 

  
Summary 

We have extended the approach presented in deliverable D3.3a by proposing a biologically computational 
model that combines object recognition and reinforcement learning. Our model demonstrates that both 
flexible control of WM and adaptive stimulus-response mappings can develop within parallel, hierarchically 
interconnected cortico-BG-thalamic loops. Based on Hebbian- and Dopamine-like learning, prefrontal loops 
learn to flexibly control WM while a motor loop learns to decide between a set of possible responses. By 
teaching the 1-2-AX problem to the model, we have shown a formal task comparable to those that can occur 
in a shared workspace scenario. 
 
 
Deviations from the project workprogramme 

No deviations have been taken 
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WP4: Sensorimotor integration  
Leader: Angel del Pobil (UJI) 
Contributors and planned/actual effort (PMs) per participant: 
UJI (17.27/18.86), UNIBO (2/2.43) and UG (6/5.87) 
Planned/actual Starting date: Month 1/1 
 
 
Workpackage objectives  

During the third year, Task 4.2 was completed, achieving the goal of generating a sensorimotor 
representation of objects in the peripersonal space in a dynamical way, through the practical interaction of an 
artificial agent with the environment, and using both visual input and proprioceptive data concerning eye and 
arm movements. We fully implemented in 3D the visual/oculomotor and oculomotor/arm-motor basis 
function networks which allow bidirectional transformations between retinotopic, head-centered and arm-
centered reference frames. We ported the networks on the robot platform, enabling the UJI humanoid robot 
Tombatossals to accurately learn the transformations between visual, oculomotor and arm joint spaces by 
actively interacting with its surrounding environment. Adapting the architecture and parameters of the 
networks to the findings of WP5 regarding V6A and the coding of space (to which UJI directly participated, 
Bosco et al., 2010), we were able to reproduce some psychophysiological effects, such as those related to 
saccadic adaptation experiments, described with more detailed here below. 

Task 4.3 extends the skills of Task 4.2 to the exploration of visual stimuli in the surrounding space. The 
agent simultaneously learns to reach towards different visual targets, achieving binding capabilities through 
active exploration, and builds an egocentric “visuomotor map” of the environment. A tighter interaction with 
the partners in charge of developing WP1, WP2 and WP3, achieved also thanks to the advice of the 
reviewers, permitted us to implement more advanced visual and visuomotor skills that make the robot able to 
interact with multiple real objects in a simplified working-desk setup. The global abilities of the robot at the 
end of the project, according to the goals of Task 4.3, will be presented in a live demonstration during the 
final review meeting, as described in detail in deliverables D4.3b and D4.3c. 
 
 
Progress towards objectives  

Task 4.2: Generating visuo-motor descriptors of reachable objects 
A fundamental goal of Workpart 4 was to design and develop a model for representing the robot own 
movements and the nature of the surrounding environment by using eye and arm movements. The model, 
described in detail in deliverables D4.2 and D4.3a, and in Chinellato et al. (2011b) [J3], was fully 
implemented on the “Tombatossals”' humanoid robot setup (Antonelli et al., 2011 [C9]). 
Basic skills such as concurrent or decoupled gazing and reaching movements toward visual stimuli have 
been acquired by the robot. As planned, the robot is able to learn a visuomotor representation of nearby 
objects, and shows its capabilities by performing oculomotor actions toward visual targets placed in its 
peripersonal space, or toward the location where its hand lies. Moreover, it is also able to perform arm 
reaching movements to visible objects, either with or without gazing at them. This ability is achieved 
through a purposeful exploration of the environment, which allows the robot to build a visuomotor memory 
of surrounding objects, described in Task 4.3. 
The robot skills are attained by exploiting its sensorimotor coordination ability, provided by the 
transformations VisualOculomotor (VO) and Oculomotor Arm motor (OA), implemented within a 
radial basis function framework. To better highlight the system capabilities and their relation to the neural 
model based on neuroscience data and insights, two different experimental setups have been devised. 
The first scenario is a working-desk setup, with simple objects, and full 3D movements for both eyes and 
arm. This setup allows the robot to show its fundamental visuomotor skills in its interaction with visible and 
reachable objects. In any case, to be able to perform a complete visual exploration of the environment, the 
robot has to pass first through a learning stage designed to develop its own sensorimotor coordination. This 
is done by training the visual-oculomotor and the oculomotor-arm motor neural networks. It is important to 
remind that, to reduce the learning stage at a reasonable amount of steps, the networks are bootstrapped with 
the weights obtained by the model of the system trained in a similar fashion. Also, although the networks 
work and the robot is able to act with good precision in all the visible and reachable space, it is convenient to 
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perform a specific traning session of some dozen trials focused on the fraction of space the robot is most 
likely to work within. A typical result of training of the different transformations in 3D is provided in Table 
2, for a working desk-setup similar to the one of Fig. 11. In this case, the worsened performance of the 
OculomotorArm motor transformation is rather apparent. This is very likely due to an unbalanced 
overlapping of the RBF centers, traning and test ranges for that particular working configuration. It is worth 
reminding though that the displayed results are achieved only with 7x7x7 neural networks. Still, as a future 
work, we plan to adapt dynamically the centers of the RBFs in order to better adapt the system to different 
working conditions. 
 
Table 2:  Mean and standard deviation of the final error of all sensorimotor transformations after training 

with the robot. 

Transformation Error (mean) [deg] Error (std) [deg] 
VO 0.42 0.34 
OA 3.95 3.55 
AO 0.44 0.31 

 
The second setup is aimed at showing in more details the properties of the radial basis function model 
applied to the real robot. This scenario sees the robot interacting with a computer screen similarly to what is 
done in typical psychophysical experiments. More precisely, we employed this setup to emulate the saccadic 
adaptation paradigms studied by partner WWU. The analysis of the robot behavior constitutes in fact also a 
contribution to cognitive science research, as demonstrated by the experiments presented below. 
 
Saccadic adaptation experiments 

In order to check the underlying properties of the computational framework on which the robot behavioral 
abilities are built upon, a different experimental setup was established. We opted for a cognitive science 
setup similar to those used for the saccadic adaptation experiments performed by partner WWU (Collins et 
al., 2007, Schnier et al., 2010). This consists of a computer screen placed within reaching distance, on which 
different visual stimuli associated to action signals are visualized. It is worthwhile to clarify that, although 
vergence varies just slightly in this setup, all the transformations are fully three-dimensional, and the robot 
keeps acting as in the usual 3D configuration. The comparison between data available from the human 
subjects, and those obtained by the computational simulation and from the robot can provide theoretical 
insights on aspects of the visuomotor cognitive behavior, and contextually allows us to validate our 
approach. 
The exact experimental setup for simulating human saccadic adaptation experiments with the robot is the 
following. A computer monitor (1440ä900, 19'') is put in front of the robot at a distance of 720 cm, which 
allows us to obtain version angles similar to those occurring in human experiments without getting too close 
to the image periphery. The experiment program was designed to display at required positions small red 
squares (5ä5 pixels), unambiguously identified by the robot blob detector module.  
The task starts with the robot fixating a starting point stimulus (FP), placed exactly in front of the robot, so 
that it corresponds to a null version angle. A second visual stimulus is then displayed at the target position 
(TP), having the same vertical coordinate, but a displaced horizontal position by a certain amount x1, which 
is a parameter of the experiment. The robot is required to perform a saccade toward this new stimulus. When 
the saccade movement signal is released, the stimulus is displaced toward a third point (DP), either closer or 
further on the x axis with respect to TP (for inward and outward saccadic adaptation protocols, respectively). 
At the end of the saccadic movement, the robot thus perceives a visual error between its final position and 
the visual target, that should be at visual coordinates (0,0) if the saccade were correctly executed. Such 
residual visual difference is used to adapt the weights of the network performing the transformation from 
retinal to oculomotor coordinates. The starting stimulus is then displayed again and the robot saccades back 
toward it. The whole sequence is repeated 100 times. 
 
Simulated experiments 

Before performing the saccadic adaptation tests with the real robot, we simulated them using the robot model 
on a corresponding virtual setup. This simulation is useful for predicting the sort of experimental results that 
the real robot are expected to provide. On the one hand, this is done to avoid keeping the robot busy with the 
execution of irrelevant experiments. On the other hand, it allows us to assess the impact that real world tests 
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have on the purely theoretical insights provided by the simulation. For this reason, we offer a comparison 
between data from human experiments, from the simulation and from robot tests. 
 
The reference graphs for human experiments are reproduced in Fig.1, above for the inward protocol (Collins 
et al., 2007), below for the outward protocol (Schnier et al., 2010). For both cases three fundamental aspects 
are analyzed, the same that we will explore in our experiments. Fig. 39(a,d) shows the adaptation trend, i.e. 
the time course of the gradual shift of the subject response from the initial movement amplitude to the 
displaced target, for inward and outward adaptation respectively. Saccadic adaptation fields, displayed in 
Fig. 39(b,e), assesses how the mis-trained movement affects saccades directed towards different targets in 
space. Black dots represent movement average endpoint before adaptation, whereas the end of the segments 
represents the average endpoint after adaptation. Finally, adaptation transfer is visualized in Fig. 39(c,f), 
where the amount of adaptation is shown as a function of the x and y coordinates of the saccade amplitude. 
 
 
 

 
 
Figure 39: Saccadic adaptation; human results for inward (above, from Collins et al., 2007) and outward 
adaptation experiments (below, from Schnier et al., 2010). 
   
 
We tested each of the two experimental protocols, inward and outward adaptation, with two different 
configurations of the visual to oculomotor radial basis function network. The uniform configuration has the 
centers of the basis functions distributed evenly on the input space (x and y cyclopean coordinates and 
horizontal disparity). In the logarithmic distribution, neurons are placed closer to each other at the center of 
the visual field and for small disparities. While for the uniform distribution all neurons have the same spread, 
in the logarithmic case radii vary according to the distance of a neuron from its neighbors. For what concerns 
the parameters of the experimental setup, the target was fixed for all experiments at 11.89° on the right of the 
starting point, while the displaced point was set at 7.96° for inward displacements and at 15.73° for outward 
displacements. These values were set considering the robotic setup, in order to generate eye version 
movements comparable to those measured in psychophysical experiments with humans. The learning rate 
=0.001 was also the same in simulation as in real experiments. The results we obtained with our simulation 
are shown in Fig. 40. Adaptation trend, adaptation field and adaptation transfer (columns) are depicted for: 
uniform inward, uniform outward, logarithmic inward and logarithmic outward tests (rows). 
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Figure 40: Saccadic adaptation; simulated results with model. 
 
Adaptation trend graphs (Fig. 40(a,d,g,j)) show a plausible learning curve that reduces (in the inward case) or 
increases (in the outward case) the movement amplitude according to the deceiving feedback provided by the 
displaced target stimulus. In the uniform distribution tests, movement amplitude at trial 100 reaches to 8.79° 
in the inward protocol and to 14.92° in the outward protocol, from the initial 11.89°, for a final adaptation of 
79.5% and 77%, respectively. The average adaptation over all trials is of 2.1° in both cases, about 54% of the 
target step. Slightly higher values (faster adaptation) have been obtained in the logarithmic case. In general, 
average adaptation values for humans are smaller than what we found in our simulations. 
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For the inward case, only a 13% adaptation was observed (Collins et al., 2007), whilst 33-45% adaptations 
were registered for outward experiments (Schnier et al. 2010), depending on the initial saccade amplitude. 

Adaptation fields (Fig. 40(b,e,h,k)) have in all cases a perceptible radial trend, with a y component indicating 
wider movements toward the top or the bottom of the screen for both protocols and net configurations. This 
is rather consistent with Schnier and colleagues outward tests (see Fig. 39(e)), but much less apparent for 
what concerns inward experiments (Fig. 39(b)). 

The overall trend of the adaptation over the horizontal (x) component can be observed in the adaptation 
transfer graphs of Fig. 40(c,f,i,l). Human experiments suggest that, both for inward and outward adaptation 
(see Fig. 39(c,f)), the differences between pre- and post-adaptation movements peaks just after the abscissa 
of the target. Also, while transfer decreases with the distance from the peak, such decrease is slower for 
larger saccades than for shorter ones (gentler slopes on the right side of the peak). It seems that the uniform 
configuration captures the first of this phenomena, showing a peak in transfer for movement amplitudes 
slightly further than the target. Still, the transfer looks symmetrical with respect to the peak. The opposite 
occurs for the logarithmic distribution, which transfer peak appears slightly before the target abscissa. The 
transfer trend is though asymmetrical, showing a less pronounced decrease on the right of the peak. As 
observed in both inward and outward studies on humans, the adaptation vertical (y) component had a very 
small error rather homogeneous for different movement amplitudes, with no clear trend worth visualization. 
 
Robot experiments 

The same two configurations of the visual to oculomotor Radial Basis Function Network (RBFN) employed 
in the simulation were used also in the real robot experiments. The adopted configurations were chosen 
through a thorough search of center location and spread, because of their high precision in approximating the 
goal function. Their parameters are reported in Table 3. 
 

Table 3: Ranges and radii of the RBFN for the visual to oculomotor transformation in the saccadic 
adaptation task. 

 
 
The network weights found on the model, and used in the simulated saccadic adaptation experiments 
described above, were transferred to the real robot. A short training phase with on-screen visual stimuli was 
then executed in order to adapt the network to possible distortions and unavoidable differences between the 
model and the real robot setup. This was performed by randomly showing a sequence of points on the screen, 
which the robot had to saccade to. The possible residual error after each movement was employed to train the 
network. 
As in the simulation, four saccadic adaptation experiments were conducted with the robot, characterized by 
the basic structure of the visual to oculomotor network (uniform or logarithmic distribution of the centers) 
and by the direction of the displacement (inward or outward). Target and displaced point were the same as 
above: initial target 11.89°, inward displaced point 7.96°, outward displaced point 15.73°. Again, all 
experiments were performed with the learning rate set to =0.001. 

All results are depicted in Fig. 41, where the rows and the columns match the correspondent graphs of Fig. 
40, obtained in the simulation for the same conditions.  
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Figure 41:. Saccadic adaptation; experimental results with the robot. 
 
The adaptation trend, shown in Fig. 41(a,d,g,j) for the four different tests, is very similar to what observed 
for the model and in human experiments. The final and average movement amplitudes are 66.5% and 43.0% 
for inward and 60.5% and 40.7% for outward adaptation, respectively. These smaller values suggest that, 
employing the same learning rate, the robot achieves a better approximation of the human data with respect 
to the simulation. Again, the logarithmic network provides higher adaptation values. 

To study the adaptation transfer, an adaptation field was created by defining a 20x25 lattice on the screen, in 
order to evaluate the effects of adaptation on different potential fixation points. Starting from FP, all points 
on the lattice were shown one at time, and the robot was required to perform a saccade toward each stimulus. 
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At the end of the movement, the visual position of the stimulus and the oculomotor angles were compared. 
This process was performed before and after saccadic adaptation, but could be executed at any one of the 100 
steps of the experiment, in order to monitor the progress of adaptation transfer. It is important to clarify that, 
during this evaluation task, learning is suspended and the network is frozen in its current state. This solution 
allows us to monitor precisely the evolution of the saccadic adaptation learning process, and constitutes thus 
an advantage with respect to human experiments, where such freezing is clearly not possible. Adaptation 
field are shown in Fig. 41(b,e,h,k), in which, for clarity reasons, only a subset of the lattice points have been 
visualized. The radial effect, when present, is very light and not consistent across different position, showing 
a pattern more similar to the human data than to the simulation results. 

More interesting insights can be drawn by observing the horizontal (x) component of the movement change 
(Fig. 41(c,f,i,l). A late peak can be observed in both experiments for the uniform configuration (more 
pronounced than in the simulation) and also for the logarithmic distribution in the inward adaptation test. 
Moreover, practically all the cases exhibit an asymmetry of the transfer with curves descending more slowly 
for larger saccades, as in the human case. This effect is again stronger for the logarithmic network 
configuration. Once more, no relevant effects were observed for what concerns the vertical adaptation 
transfer component. 
As a general consideration, it can be observed that the robot results approximate the human data better than 
the simulated results. The reduced radial aspect of the adaptation field and the trend of the horizontal 
component in peak position and slope asymmetry are more consistent between human and robot than the 
correspondent simulated results. This is especially interesting considering that exactly the same parameters 
were employed in the two cases. This phenomenon might reflect implicit properties of the hardware that 
affect the way untrained movements are biased by learning processes applied to similar movements. 

Summarizing, different properties observed in the saccadic adaptation studies in human were captured by our 
tests. Both the simulation and the robot experiments showed plausible adaptation trends, slightly radial 
adaptation fields and typical features of the adaptation transfer on the horizontal component, such as 
asymmetry and late peak. 
 
 
Task 4.3: Constructing a global awareness of the peripersonal space. 
In order to allow the UJI humanoid robot Tombatossals to perform the relatively complex behaviors required 
by the goals of Task 4.3, we have defined a global software architecture that permits the integration of 
modules of different levels of complexity, either internal or developed by other partners. The general 
working framework has been depicted in Figs. 9 and 10, and has been implemented in Yarp, as described in 
Section 3. Apart for the aspects already described above, we managed the allocation of attention and 
implemented a visuomotor memory in order to perform both gazing and reaching actions and also object 
recognition by integrating space (dorsal) with identity (ventral) visual information. 
In fact, in addition to building a sensorimotor map of visual and motor targets in the nearby space, the 
construction of an integrated knowledge of the environment requires the identification of objects or targets 
and the use of memory of previously observed/reached objects. The behavioral schema in which object 
identity is associated to a particular sensorimotor configuration starts when the system is already able to 
accurately gaze, and possibly reach, toward a visual target. In this associative learning schema the robot is 
gazing at a given fixation point while two or more stimuli appear in its field of view. The robot is thus 
required to use its visuomotor skills, embedded in the neural networks that transform between visual and 
motor parameters, to estimate the eye motor movements required to fixate on each visible object, without 
actually executing the saccadic movement on the targets. The sums of the movement vectors with the actual 
gazing direction constitute an instance of the absolute positions of the visible objects. Next, the fixation point 
is changed; the robot gazes at the new one and estimates the new movements vectors required to fixate on the 
visual targets, creating new instances of the targets absolute position. The process is then repeated and at 
each step a slightly different absolute position is computed for each visual target. Ideally, all computed 
positions are the same, but due to unavoidable distortions and imprecisions we expect a range of variability, 
and the average of each estimated location is stored as the memory of the visual target position, for all 
targets. We employ a Kalman filter in order to maintain an average position that takes into account a certain 
number of instances while giving more credit to recent data. After the learning process has reached a 
minimum reliability threshold (usually in just a few steps), the system can be required to fixate and/or reach 
a target given its identity, using the visuomotor associations it has learned during the previous step. This can 
be done even on objects placed out of the field of view, if their location has been previously observed. 
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Deliverable D4.3b (Visual exploration of the environment) provides a description of the practical steps that 
compose this process of dorsal/ventral integration and creation of spatial awareness. 

The above behavior is available to the robot thanks to the integration of the biologically-inspired modules 
(on stereo vision, vergence control, and object recognition) of partners UG, K.U.Leuven and WWU in the 
UJI framework. Comprehensive experiments in which the robot operates in multi-object setups creating its 
own visuomotor awareness of the environment have been executed and will be demonstrated live during the 
final review meeting. We will show how Tombatossals employs the egocentric representation of peripersonal 
space it has gained, to interact with surrounding objects, recognize them and perform custom visuomotor and 
arm-motor actions, such as: foveate on the hand; reach the gazing point; show memory; foveate on a given 
object (either inside or outside the field of view); reach a given object (either foveated or not); execute a 
sequence of saccades by employing either covert or overt attention. 
 
 
Deviations from the project workprogramme 

None.  
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WP5: Human behaviour and neural correlates of multisensory 3D 
representation 
Leader: Patrizia Fattori (UNIBO) 
Contributors and planned/actual effort (PMs) per participant:  
UG (0.5/0.5), WWU (13/13), UNIBO (6/6.7) and UJI (1/1) 
Planned/actual Starting date: Month 1/1 
  
 
Workpackage objectives  

This Workpackage is devoted to the definition and the execution of specifically-designed neurophysiological 
and psychophysical experiments to study the human behavior of active perception and to find neural 
correlates of multisensory 3-D representation. Specific results of the different WP5 tasks will be used to 
implement computational models developed in other WPs, providing architectural guidelines for the 
organization of perceptual interactions, and for the design of artificial intelligent systems able to explore and 
interact with the 3D world. 
 
 
Progress towards objectives  

Neurophysiological experiments: 
We proceeded with single cell recordings from medial parieto-occipital cortex (area V6A). We found that 
neurons there encode the 3D space through a variety of information: visual cues, attentional cues, 
oculomotor cues, and active arm movements performed in depth. Based on these findings, we suggested that 
V6A is able to coordinate eye- and arm-actions in the 3D space as well as to link, in a more general way, 
perception to action. 

Psychophysical experiments: 
We finished the investigation of the interconnection of visual fragments and motor parameter adjustment. 
We examined the influence of motor and visual parameters on object localisation obtained from saccade 
adaptation data. Our hypothesis that saccade adaptation modifies perceived location of saccade goals was 
confirmed by the experiments. We extended the investigation of the multisensory representation by 
investigating the reference frame for  spatial eye movement control by demonstrating eye position effects in 
saccadic adaptation in both humans and monkeys. Or results show that saccadic adaptation takes place in 
supra-retinal references frames. 
We proceeded with the understanding of the sequence of allocation of attention, direction of gaze, and 
movement of the arm of a human cooperative partner. We collected and analyzed data both in a single actor 
setting and on human-human interaction. In addition we developed an experimental test for the social 
acceptability of a robot as an interaction partner via the social Simon effect. 
 
 
 
Task 5.1: Role of visual and oculomotor cues in the perception of 3D space. 

1) Covert attention: a link between fragments without any effector movement 

Attention is important for providing the link across single visual fragments, attention is used to select targets 
in a visual scene for prioritized processing and for preparing appropriately directed actions. In the third year 
of EYESHOTS, we measured the influence of covert attention toward different parts of the visual world in 
area V6A of the medial parieto-occipital cortex. We induced in the monkey covert shifts of attention in 
absence of any effector movement, neither of the eyes nor of the arm. We performed single cell recording in 
V6A, while controlling the monkey focus of attention addressing it toward several positions in the 
workspace. In this way, we found that neurons in V6A are influenced by the spatially directed attention 
(Galletti et al., 2010 [J10]). Figure 42 shows an example of a V6A neurons spatially modulated by the spatial 
shifts of attention toward peripheral locations, without concurrent shifts of the direction of gaze, a factor 
known to be powerful in modulating neural discharges in the medial parieto-occipital cortex (Galletti et al., 
1995). Figure 42 shows a cell with a typical outward attention response for cues presented in the lower 
space. The spatially-tuned outward attention activity had a very long latency, and in some trials, the response 
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lasted until target onset, that is 1 s or more later than the cue onset. Although we cannot rule out completely 
that what we call outward attention response was a visual response to the cue enhanced by attention, the 
observed discharge was very different from a typical V6A visual response. 
A neuron like the one reported in figure 1 may be particularly useful in the acquisition of peripheral visual 
information without shifting the gaze for the purpose of directing toward that location hand actions. This 
interpretatin is supported by recent findings on the involvement of area V6A in directing the hand toward 
targets located in different spatial locations (Fattori et al., 2005), especially to non-foveated targets 
(Marzocchi et al., 2008), in orienting the wrist and shaping the fingers to perform the appropriate grasp 
(Fattori et al., 2009; 2010). 

 
 
Figure 42: Example of spatially-tuned modulations of neural activity during outward attention epoch. The 
neuron shows a strong discharge during outward attention epoch preferring covert shifts of attention 
towards the bottom part of the space. Each inset (positioned in the same relative position as the cue on the 
panel) contains the peri-event time histogram, raster plots and eye position signals. In the central part of the 
figure, the spike density functions (SDFs) of the activity for each of the 8 cue positions are superimposed and 
aligned on the cue onset. The mean duration of epochs FIX and outward attention is indicated below the 
SDFs.  Neural activity and eye traces are aligned on the cue onset. Scalebar in peri-event time histograms, 
70 spikes⁄s. Binwidth, 40 ms. Eyetraces: scalebar, 60°. 
 
This hypothesis that these attentional modulations may be helpful in guiding the hand during reach-to-grasp 
movements, particularly when the movements are directed to non-foveated targets is supported by the 
observation that often attentionl modulations occur in the same cells that show motor-related activity. This is 
the case for the cell reported in Fig. 43. 
The example of Figure 43 shows that the effect of attention can modulate not only the ongoing activity but 
also the motor-related activity of single cells. The large majority of V6A cells are of this type. This is a cell 
whose activity was strongly modulated by the covert shift of attention towards the cue (outward attention 
epoch), but also by the action of button press, and by the bringing back of attention focus towards the 
fixation point (inward attention epoch). This last modulation was actually an inhibition. In addition, the cells 
shows also a transient visual response to the appearance of the peripheral cue. This example shows how V6A 
cells can be helpful in linking the fragment between vision and arm actions. 
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Figure 43: Example of a cell modulated during outward and inward attention epochs and during arm 
actions (button release). This cell was excited during outward attention epoch when attention was covertly 
directed towards bottom locations, and inhibited during inward attention epoch for all attended locations. 
Neural activity and eye traces are aligned three times: from left to right: with the cue onset, with the button 
release and with the change in color of the fixation point. Peri-event time histograms: binwidth, 40 ms; 
scalebars, 180 spikes/s. Eyetraces: scalebar, 60°. All conventions are as in Fig. 42. 
 
UNIBO, together with partner WWU, suggested that area V6A is able to link perception to action in the 3D 
space through displacing the spotlight of attention. This area of the medial parieto-occipital cortex has 
anatomical connections (Gamberini et al., 2009; Passarelli et al., 2010 [C5]) that, together with these 
functional data, lead us suggest that V6A can provide to dorsal stream areas this information for producing 
the link across fragments by coordinating eye- and arm-actions in the 3D space.  
Deliverable D5.2 reports more details on these data. 
 

2) Encoding of 3D space through ocular movements 

Link across single visual fragments can be obtained in many physiological situations. Commonly, in natural 
conditions, when we catch with vision a target of a potential reaching action, we move the eyes toward it and 
then the hand. Due to less inertia of the eyes, the eyes land on the target well before the hand starts to move. 
In area V6A of the medial parieto-occipital cortex, we have found neurons discharging in the epoch around 
the time of a saccade catching the visual target (perisaccadic epoch) and in the time of fixation, expecially 
the first 500 ms of fixation of a target in the dark. Interestingly, this kind of cells in V6A strongly prefer 
targets to be fixated in the peripersonal space, that is in the reachable space (Hadjidimitrakis et al., 2010 
[C3]).  
In the third year of EYESHOTS, we demonstrated that area V6A of the medial parieto-occipital cortex of the 
macaque elaborates information related to directing the eyes to a visual target in depth. We explored ocular 
movements performed to targets located near the body up to positions located far away from the body, well 
beyond the reachable space. We found strong neural modulations related to changes of the vergence angle, a 
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result never reported so far for this cortical sector.  Interestingly, neural discharges are stronger for 
oculomotor activity that brings fixation to targets located in the near space. 

A neuron like the one reported in Fig. 44 is an example of such early-fixation signal, with a strong preference 
for near space. Together with a minority of V6A cells (15-35%) that showed a preference for the 
extrapersonal space and occasional units preferring  intermediate distances, the large majority of V6A 
neurons (60-75%) preferred the peripersonal space, as also documented by the cell shown in Fig. 45. 
 

 
Figure 45: Example of a neuron with fixation activity modulated by depth. Top/Middle/Bottom: neural 
responses and eye traces to the five LEDs of the contralateral/central/ipsilateral space arranged from near 
(left) to far (right), aligned at the end of the saccade. Scale bars for spike histograms and version (upper 
trace) and vergence (bottom trace) traces were 50 sp/s, 100 deg and 20 deg. Cell discharge reflects a strong 
tuning by vergence that is influenced by version, so that the cell is activated maximally for fixations on the 
nearest targets, especially in the ipsilateral space. All conventions are as in Fig. 1 and 3. 
 

Figure 44: Example of a neuron modulated in depth in the early fixation epoch.  
From top to bottom: neural responses and eye traces (version, top trace; vergence, bottom trace) to the five 
LEDs located on a midsagittal row, arranged from near (left) to far (right). The eye movement traces are 
aligned at the saccade onset. Scale bars for spike histograms and version and vergence traces were 80sp/s, 
100 deg, and 20 deg, respectively. 
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The preference for near space at population level was also evident when we calculated the average 
normalized spike density function of each position in depth (Fig. 46). In each modulated cell, the activity of 
all LED positions were grouped together and averaged according to their distance from the animal (i.e. 
nearest, second near etc.), regardless of whether they were located in central or peripheral space. The 
cumulative activity of the cells modulated in perisaccadic epoch (left), aligned on saccade onset showed that 
the average responses were stronger for the nearest two targets (darkest lines). For the three farther LEDs 
neural activity was weaker and much less modulated. The same occurred for the cells modulated in the 
fixation period (right). 
The perisaccadic activity found in V6A encodes the saccadic event, and this signal could be used to 
modulate the activity of arm reaching neurons. It is worthwhile to note that the information about eye 
position during the period around saccade is critical for the motor centers that controls the hand, because the 
retinal coordinates of the target change with the saccade. In this context, early fixation activity could 
constitute a fixation-for-reaching signal that brings the new retinal coordinates of the target to be grasped to 
the arm reaching neurons. The fact that V6A neurons, in both these intervals, clearly discharge more strongly 
in the reachable space, supports firmly this hypothesis. 
We interpreted the neural encoding of V6A population as the neuronal correlate of a calibration between the 
eye and the arm systems and we proposed in the third year of the EYESHOTS project that the strong 
preference for reachable targets in early fixation period could reflect the shift of the attentional spotlight for 
the purpose of highlighting the location of the target of eye and hand movements in reaching an object (see 
Hadjidimitrakis et al., 2010 [C3]). 
 

 
Figure 46: Preference for near space at the population level. Population activity per each LED position 
(different tones of grey) of V6A cells modulated in (A) perisaccadic (N=132) and (B) fixation (N=193) 
considering all rows. Activity is expressed as averaged normalized SDF (thick lines) with variability bands 
(s.e.m., light lines) and is aligned at saccade onset in both (A) and (B). White rectangular boxes indicate the 
time intervals used at the permutation test (two nearest targets-the reachable ones- always different from the 
farthest ones, P<0.05, see text); vertical axis 10% of normalized activity per division and axis origin 
corresponds to 20% of normalized activity. By the time course of the population discharges it is evident that 
the 2 components (perisaccadic and fixation) are often coupled and that both of them preferentially encode 
the near space. 
 
 
UNIBO, together with UG, showed that many V6A neurons encode the spatial locations that the animal is 
going to gaze, or that it is actually fixating in 3D space, with a prevalence of cells prefering reachable 
locations. The abundance of strong tuning for near space could be a result of an adaptation process that 
balances the natural tendency for fixating far with the necessity to respond to behaviorally relevant stimuli 
appearing in the near space.  
Deliverable D5.2 reports more details on these data. 
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Task 5.2: Link across fragments. 

Reaching movements in the 3D space. 

The data collected in task 5.1 and summarized before suggest that V6A carries signals well suited to form a 
representation of the peripersonal/reachable space. This representation can be used to perform the sensori-to-
motor transformations needed to perform successful reaching movements in depth.  
 
The task designed for Task 5.2 and depicted in Fig. 47 is aimed at studying neural correlates of multisensory 
representation of 3D space obtained through active ocular and arm movements. 
In the third year UNIBO performed analysis of electrophysiological data from 111 neurons from area V6A of 
the medial parieto-occipital cortex. 
The task: The monkey sits in a primate chair in front of the reach-in-depth device. The monkey presses the 
start button placed near its belly, outside its field of view. After a delay, one of the target lights up green, and 
the monkey has to perform a saccadic eye movement towards the target and to adjust its vergence in order to 
see clearly the target light. After a variable fixation period, the fixation target turns red. This is the go signal 
for the monkey to release the start button and perform a reaching movement toward the fixated target 
(MOV). The monkey has to push the target (HOLD), and to keep its hand on it until the fixation light 
switches off. The monkey releases the target and performs a backward movement (RET) toward the start 
button to be rewarded.  
 
 
 

 
 
Figure 47: Lateral view (left) and top view (right) of the reach-in-depth apparatus. Each green dot 
represents the target of a reaching movement. Vergence: 18-13-8°; version: -15-0-15°. 
 
Data Analysis: The time epochs were defined as follows: FREE: from the beginning of the trial to the light 
up of the LED.  PERISACCADIC: from 50 ms before saccade onset to 50 ms after saccade offset. EARLY 
FIX: from 50 ms after saccade offset to 550 ms after saccade offset. LATE FIX: from 550 ms after saccade 
offset to the lit up of red LED. ALL FIX: from 50 ms after saccade offset to the light up of red LED. MOV: 
from 200 ms before reaching movement onset to end of movement. HOLD: from end of reaching movement 
to 200 ms before onset of return reach. RET: from 200 ms before onset of return movement to return end. 
Statistical tests: On this neural population, we performed a 2 ways ANOVA (factor 1 vergence, factor 2 
version) and we looked for significant effects on factor 1, and/or 2 and/or their interaction (p<0.05). We 
found that a large majority of cells were modulated by ocular and/or reaching movements in 3D. 
The study focused on the neural activity during arm movement/position-related epochs, that is during the 
execution of reaching movements toward and from targets located in a 3D space (MOV and RET) and during 
hand holding in these spatial locations (HOLD). 
Since the neuronal encoding of reaching has been intensively studied by many laboratories in 2D space 
(frontal plane at fixed distance from the animal), we focused the present analysis on the reach-related 
modulations occurring in depth. We found that 57% of V6A neurons were modulated by depth in the epoch 
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MOV (63/111), 51% in the epoch HOLD (57/111) and 44% in the epoch RET (49/111). This means that 
several cells were influenced by depth in more than one arm-related epoch, as shown in the example of 
Fig.48. This cell showed a strong influence of depth on most of the time epochs we analysed. It was 
modulated by the saccade that brought the object on the fovea, during the fixation period (FIX), and during 
arm reaching related epochs (MOV, HOLD, RET). The cell shown in Fig. 48 had a coherent tuning of 
activity during fixation, reaching, hold, and return with increasing discharges for targets located in the far, 
left part of the space. This is particularly evident by comparing the discharges during MOV to targets far 
away (upper row) and to targets near the monkey (lower row) in each iso-version line (for example, the top 
left with the bottom left responses during MOV, and also during HOLD). It is worthwhile to note that during 
fixation, where no arm activity occurred, the neural modulations must be ascribed to the changes of vergence 
and version, particularly to the vergence, with a clear preference for low vergence angles. During reaching 
execution, the modulations in depth can be due to vergence influence on arm-motor signals or to reach-
related signals influenced by arm-direction signals in the depth dimension. 
 
 

 
 
Figure 48: V6A neuron modulated by depth of target locations in all arm reaching related epochs. 
The cell shows a spatial tuning, with a clear preference for reaches toward the far targets, especially the left 
ones. Alignement: saccade onset and reaching onset. All conventions are as in Fig. 1 and 4. 
 
In some cases, the tuning in depth of the neural discharges were confined to one arm reaching-related epoch 
only. The cell of Fig. 8, for instance, was modulated by the arm movement in depth only during forward 
movements (epoch MOV). The cell showed a spatial tuning. Neural activity in this case is enhanced when 
the monkey performed the reach toward the farthest targets. During fixation epoch, neither vergence nor 
version significantly modulated this cell. 
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Figure 49: Example of a V6A cell spatially tuned only for forward reaches in depth. 
The spatial modulation is specific for the MOV epoch, when the arm reaches its target. Activity is aligned on 
the onset of the reaching movement. All conventions are as in Figs. 42, 44, and 48. 
 
The ability of the entire neural population to discriminate the spatial position of the targets is demonstrated 
by the population spike density functions (SDFs) shown in the left part of Fig. 50. When the ranking of SDFs 
was based on the strength of neural activity (from best to worst activities of  single cells), the curves were 
well apart one from another, with the worst discharge (blue curve) not different from the baseline activity, 
and the best discharge (violet curve) well above this level. This means that each cell strongly modulated its 
activity for different depths. In contrast, when the activity was ranked for all cells according to spatial 
location of the targets (Fig. 50, center) the 9 curves were superimposed, meaning that the cell population did 
not show a preference for a certain spatial position. This is also true when the targets were grouped according 
to their position in depth (Fig. 50, right): no preference for a given distance was observed. The ensemble of 
the plots shown in Fig. 50 demonstrates that, although the individual cells in V6A were tuned for reaching in 
depth (as shown in the examples reported in Fig. 49), the individual preferences compensated one another 
without a clear preference for a certain spatial location. In other words, the spatial fragments were sampled in 
the same way, with the same definition, across the entire reachable space. 
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Figure 50: Spatial tuning for reaches in depth at the population level. 
Population activity for each target position (different colors) of V6A cells modulated in the MOV epoch. 
Activity is expressed as averaged normalized SDF (thick colored lines) with variability bands (s.e.m., light 
lines) and is aligned at movement onset; vertical axis 100% of normalized activity. Rectangles labeled 
"Reach" indicate the mean duration of MOV epoch. More details are in the text. 
 
Figure 51 shows the population discharges of cells tuned by return reach movements. As observed for 
forward reach movements, when ranking was based on the strength of neural activity, the SDFs were well 
apart one from another (Fig. 51, left), whereas when the activity was ranked according to the spatial location 
of target (Fig. 51, center, right) the curves were almost superimposed. This means, again, that the single cells 
were able to encode spatial locations, and the whole cell population encoded quite uniformly the 3D 
extrapersonal space. 
 

 
Figure 51: Spatial tuning for return reaches in depth at the population level. 
Population activity for each target position (different colors) of V6A cells modulated in the RET epoch. 
Activity is expressed as averaged normalized SDF (thick colored lines) with variability bands (s.e.m., light 
lines) and is aligned at return movement onset; vertical axis 100% of normalized activity. White rectangles: 
mean duration of RET epoch. All conventions are as in Fig. 50. 
 
Fifty-one per cent of V6A neurons (57/111) were modulated by depth in holding time. In this epoch, the 
monkey was keeping the hand immobile on the targets located in different spatial positions, at different depth 
in the peripersonal space.  
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The population as a whole (Fig. 52) showed the capacity to encode different spatial locations in holding time 
(ranking on activity; Fig. 52, left), but only slight preferences for the farthest depth or some positions in the 
3D space (ranking on position; Fig. 52, center, right), similarly to what observed for reach-related epochs 
(Figs. 50 and 151). In other words, even for the static positions held on targets, the individual preferences of 
single neurons compensated one another without a clear preference for a certain spatial location. This means 
that  the spatial fragments were sampled in the same way across the entire reachable space not only during 
the reaching epochs, but also during the holding time. 
 

 

Figure 52: Spatial tuning for HOLD in depth at the population level. 
Population activity for each target position (different colors) of V6A cells modulated in the HOLD epoch. 
Activity is aligned at holding time onset; vertical axis 100% of normalized activity. White rectangles: mean 
duration of HOLD epoch. All conventions are as in Fig. 50. 
 
 
 
More analyses and details on these data are reported in deliverable D5.1(update). 
A manuscript is in preparation with the results of this analysis (Breveglieri R, Hadjidimitrakis K, Bosco A, 
Sabatini S, Galletti C, Fattori P: Balanced sampling of visual fragments in the reachable space by parieto-
occipital neurons, 2011). 
 
 
Conclusions 

All together, these functional data lead us to suggest that area V6A in the parieto-occipital cortex can provide 
to dorsal stream areas the necessary information for linking across visual fragments by coordinating eye- and 
arm-actions in the 3D space. 
The present study suggests a novel role for the medial posterior parietal area V6A in constructing a 3D 
representation of the visuomotor world. It is known that V6A contains reach-to-grasp neurons (Galletti et al., 
2003; Fattori et al., 2005; 2009; 2010) and cells that encode the two dimensional location of visual targets 
(Galletti et al., 1995), some of them in spatiotopic coordinates (Galletti et al., 1993). Here we show that 
many V6A neurons also encode the spatial locations that the animal is reaching out, or has just reached out 
in the peripersonal space. Taken together, the data of the present study give strong support to the view that 
V6A plays a key part in the sensory-to-motor transformations that control reach-to-grasp arm movements 
and in elaborating sensory inputs and motor-like signals that could represent the internal body state for the 
purpose of sensorimotor integration. 
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Task 5.3: Motor description of fragment location 
This task is concerned with the role of motor parameters in fragment location. The perceived fragments in 
the peripersonal space are located via information based on the interaction of motor and visual parameters. 
The properties and condition of this coupling as well as its mechanism and parameters can be studied using 
the saccadic adaptation paradigm. In this paradigm a modification of the motor parameters is evoked by the 
introduction of an artificial visual error after every saccade. In an experimental paradigm a subject is 
performing a saccade to a visual target, which is displaced during the eye movement of the subject. The 
retinal error experienced by the motor system hence consists of an externally controlled part and the endpoint 
error of the saccade. Systematically occurring errors evoke plastic changes of the saccadic gain. During the 
first two periods of EYESHOTS we focused on the examination of the transfer of motor parameter changes 
to fragment location, and thus showed the contribution of motor preparation in localization. The results of 
these studies yielded indications that the initial eye position of a saccade had an effect on the process of 
saccadic adaptation. Up to now it has been assumed that saccadic adaptation was coded in a purely retinal 
reference frame. In that case the parameter of the initial eye position would not affect the calculation of 
motor parameters for saccade execution or the localization of targets. To examine the effect of the initial eye 
position on the process of saccadic adaptation and thus to specify the reference frame three studies were 
finished in the last period. The first one was a study with macaques which was accomplished in cooperation 
between the partners UNIBO and WWU. The second and third were studies with human subjects conducted 
at WWU. In our experimental setup the amplitude of saccades of monkeys and humans was modified by 
saccadic adaptation and afterwards the gain change of saccades of the same direction and amplitude but 
started in different positions was tested.  
 
The first study with two participating monkeys was performed in the laboratory of UNIBO and a PhD 
student from WWU was participating in the stimulus presentation and data analysis. The experimental layout 
of the study is illustrated in Figure 53. 
 

 
Figure 53: Left panel: Sketches (a) – (e) show the experimental procedure for adaptation of reactive 
saccades. a) The green fixation point is presented and the monkey's gaze (circle) is directed towards it. (b) 
The fixation point is switched off and the green target appears. (c) At saccade onset  the target is shifted. (d) 
The monkey makes a second saccade to land on the target. (e) After a randomized time the target becomes 
red and the monkey releases the button to get its reward. f) There were 5 possible starting positions of the 
saccade with a 6 deg spacing between adjacent points. Right Panel: The landing points of the saccades 
during an example session. The colors indicate the starting position of the saccades as shown under (f) and 
the black circles represent adaptation and de-adaptation trials (trial > 800) at the position + 12 deg. 
 
The two participating monkeys completed 5 sessions, each session with a different adaptation position ( -12 
deg., -6 deg., 0 deg., 6 deg., 12 deg.). The mean gain change measured at all 5 positions is presented in 
Figure 54 in percent of the applied target back step. The results show an unambiguous dependency of the 
amount of gain change in the test positions on the distance to the adaptation position. Hence, this data cannot 
be explained with a pure retinal reference frame but instead the eye position parameter needs to be 
incorporated. The observed gain modulation can be well described with a Gaussian transfer profile. This 
study is now being prepared for publication and will be presented at the European Converence on Eye 
Movements in July 2011. 
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Figure 54:  Joined results of both participating monkeys. The circles show the mean gain change in each test 
position of every session. The error bars represent the standard error. The adaptation position of the 
displayed session is indicated by the filled circle. The data has been fitted with a Gaussian function (black 
line). 
 

 
Figure 55: Averaged amplitude changes for the horizontal arrangement of the different test positions. A-E) 
Each panel shows the amplitude changes for one adaptation session. The filled symbols show the adapted 
position in each session. A clear dependence of the amplitude change on the eye position is visible at the 
eccentric adaptation positions -10 deg, -5 deg, and 10 deg. 

 
The second study on the eye position effect in humans was performed with a very similar setup at WWU. 
Like in the study with monkeys there were 5 different initial eye positions of the saccades. The distance 
between two adjacent positions was 5 deg. from –10 deg. to +10 deg. In the first part of the study, the 
starting points were horizontally arranged. Figure 55 shows the group results of the 7 participating subjects. 
The mean amplitude change in a test position is affected by the location of the test position with respect to 
the adaptation position. These findings about a necessity of additional information beside the retinal 
reference frame are in line with the observations in the study with monkeys. But in contrast to the result of 
the monkey study, in humans a linear transfer profile well described the modulation of gain. The slopes of 
the linear fits are steep at the eccentric adaptation positions -10 deg, -5 deg, and 10 deg (Fig. 55A, B, and E), 
and shallow for positions 0 deg and 5 deg (Fig. 55C and D). The slopes at positions -10 deg, -5 deg and 10 
deg are also significantly different from zero. This shows an increased influence of eye position for more 
eccentric adaptation positions in humans, whereas in monkeys the influence of the eye position remains 
constant over the tested excentricity. The study with human subjects had a second part in which the starting 
positions were vertically arranged instead of horizontally. The distance between 2 points remained at 5 deg 
and the saccades had the same vector like in the first part of the experiment. Like for the horizontal 
arrangement of initial position, the dependence of adaptation transfer on eye positions was strong in the most 
eccentric adaptation positions and shallow for the more central adaptation positions. These observations lead 
to the question of why adaptation at a central position in humans does not show an eye position dependent 
transfer whereas adaptation at an eccentric eye position does show a strong eye position effect. When 
considering eye position in saccadic adaptation, most approaches expressed eye position as context. One 
possibility to include eye position contexts into the mechanism of saccadic adaptation is an eye position 
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dependent modulation in a retinocentric reference frame (Fig. 56). Consider that neurons in many parts of the 
saccade circuitry encode space in a retinocentric reference frame and that the activity of these neuron is 
modulated by eye position gain fields. Then, for a given saccade vector, different neuronal subpopulations 
exist that fire more strongly for left or for right eye positions, respectively. Figure 4 depicts at the target 
representation stage in light gray a neuron pool preferring left eye positions, and in dark gray a neuron pool 
preferring right eye positions. 
 

 
Figure 56: Sketch of a possible mechanism for the eye position dependent modulation of saccadic 
adaptation. 
 
Depending on the initial eye position during adaptation, the two populations contribute differently to the 
generation of the saccade. If the activity of neurons with stronger saccade-related responses weighs more on 
the effects of adaptation, then mostly the left-preferring subpopulation contributes to the adaptation as shown 
by the size of the arrows to the adaptation stage in Figure 56. Saccades starting at right initial eye positions 
are driven mostly by the neuron pool shown in light gray, which is not adapted because it contributed little to 
the saccades originating from the adapted location. Therefore the amount of amplitude change will depend 
on initial eye position. However, when adapting at a central position, both subpopulations fire at intermediate 
rates, and both contribute to the saccade generation. Therefore, all neurons contribute to the adaptation and 
the amplitude change is seen at all eye positions. This study is under revision with the Journal of 
Neurophysiology. 
 
The third study extended the investigation to the localisation of fragments. The transfer of gain change to the 
localisation of fragments was tested for reactive and scanning saccades.  Reactive saccades are elicited by 
suddenly appearing targets. Scanning saccades are executed within a group of targets which are constantly 
visible. Saccades of either type were adapted at one spatial location and gain change as well as 
mislocalisation of fragments was tested at that and three other spatial locations With this procedure we tested 
the reference frame of outward adaptation for reactive and scanning saccades and visual localization. For 
scanning saccades adaptation magnitude was drastically reduced at positions distant from the adapted eye 
position. Changes in visual localization showed a very similar modulation of eye position. These results 
suggest that scanning saccade adaptation is encoded in a non-retinotopic reference frame. Eye position 
effects for reactive saccade adaptation was smaller. No significant eye position specificity of mislocalization 
following reactive saccade adaptation was found. The findings reinforce earlier evidence that different 
reference frames are involved in reactive and scanning saccade adaptation and support the idea that 
oculomotor plasticity can occur at multiple sites in the brain. This study is now in press in the Journal of 
Neuroscience. 
   
Task 5.4: Predicting behaviour and cooperation in shared workspace 
This task focuses on the understanding of the sequence of allocation of attention, direction of gaze, and 
movement of the arm of a human cooperative partner. In the previous reporting periods we collected data 
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both in a single actor setting and on human-human interaction. In the current reporting period we conducted 
further data analysis and ran some control experiments. All results are reported in deliverable 5.4 and will be 
summarized below only briefly. After the planned experiments were finished, we added a new study that was 
concerned with human-robot interaction, specifically with the question how much the human accepts the 
robot as an interaction partner. Rather than asking the human subjects to rate the acceptability of the 
interaction we propose to use an unconscious behavioural measure, the Social Simon Effect. 
 

Single actor setting experiments  

The first two studies were single actor setting experiments conducted at the WWU in the first two reporting 
periods. For both experiments eye movements were measured with the Eyelink II eye tracker system (SR 
Research Ltd., Mississauga, Ontario, Canada). Study I investigated if gaze direction changes can be used to 
predict forthcoming pointing movements of another person. In sum, the results of Study I suggest that other’s 
gaze direction can be used advantageously as a predictive cue about the final location of a pointing 
movement and can be complemented by the kinematic cues provided by the hand movement. Study II further 
explored the relation between gaze behaviour and arm movements and its influence on the allocation of 
attention. The results indicated that humans have a strong tendency to follow the gaze direction of another 
person, when this person simultaneously executes gaze and hand movements. The strong coupling between 
eye and hand movements could be used as a heuristic to distinguish relevant from irrelevant shifts in other’s 
gaze direction. This study is currently under revision with Attention, Perception & Psychophysics 
 
Human-human interaction 

The human-human interaction experiment was conducted on the setup developed during the first reviewing 
period that is based on two ViewPoint eye tracker systems (Arrington Research Inc., Scottsdale, AZ). This 
setup allows the simultaneous recording of eye movements of two interacting participants. The two 
participants were facing each other and each of them had to move an object in the vertical plane around an 
obstacle and make contact with the object of the other participant. A stereotypical gaze behaviour was 
observed: (1) at the start of each trial a fixation was directed towards the own object; (2) fixation was kept on 
a central location of the setup; (3) saccades were then regularly directed towards the partner’s object in the 
terminal phase of the movement prior to the contact between objects; (4) the gaze followed the object until 
contact was made. In a second condition of the two participants had the freedom to determine the contact 
location between objects and the other participant had to comply with this behaviour. In this case, the partner 
had to fully adapt his/her own movement to the trajectory of the first participant, and his/her predictability of 
the contact location was low. In order to compare the normal predictability and the low predictability 
conditions we focused on the timing of object directed saccades. Usually, the moment in time at which a 
saccade is directed towards a specific location can be used as an indicator of the relevance of that location in 
the execution of a specific task at that specific moment in time.  
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Figure 57: (a) Distributions of the object directed saccade timings in the two conditions considered: 
‘normal’ and ‘low predictability’. (b) The difference in the object directed saccade timing between the 
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normal and the low predictability conditions for all individual subjects (thin lines) and their mean (thick 
line).  
 
Figure 57 shows distributions of the object directed saccade timings in the two conditions. The two 
distributions differ by a shift along the temporal axis. The timing of the object directed saccades was 
calculated with respect to the contact time between the two objects; therefore, it expresses how long before 
the contact a saccade was initiated towards the partner's object. The shift of the whole distribution of the low 
predictability condition thus indicates an earlier initiation of the saccades toward the partner's object. The 
difference in the object directed saccade timing between the normal and the low predictability conditions is 
represented in Figure 57(b) for all individual subjects and their mean.  
A paired t-test showed that the object directed saccades started significantly earlier in the low predictability 
condition than in the normal predictability condition (t(13)=2.505, P < 0.05). The object directed saccades 
were initiated on average 529 ms (SD: 76 ms) before contact in the low predictability condition, and 446 ms 
(SD: 96 ms) before contact in the normal predictability condition. The difference is thus quite substantial 
considering that the whole trial, from the start of the object movement to the contact with the partner's object, 
lasted on average slightly more than 800 ms. On average, thus, participants performed the object directed 
saccade shortly after the start of object's movement (417 ms after the start in the normal predictability 
condition and 323 ms after the start in the low predictability condition). The necessity of gazing on the 
partner's object after this very short time lapse prevented the execution of any other gazing behavior toward 
other objects in the environment. When both participants were adapting their own hand movements to the 
trajectory of the other participant, they could start monitoring their partner behavior later in time than when 
only one participant had to take care of the whole adjustment by him/herself.  
We further explored the relationship between the gaze behaviors of the two partners in the normal 
predictability condition by calculating the Pearson's product moment between the timings of the object 
directed saccades. The correlation coefficients ranged between 0.27 and 0.48. These correlations suggest that 
the partners were adjusting the timings of the object directed saccades with a certain degree of coordination, 
either both preceding of both delaying the moment in which they were performing the saccade toward the 
partner's object.  
Our results thus suggest that the stereotypical gaze behaviour is necessary to establish a closed loop between 
the two participants that allows a coordinated fine-tuning of the joint interaction. When both participants 
jointly adapt their behaviour for the achievement of the final goal, fewer resources are needed for a 
successful interaction. The expectations that a human actor has about the cooperation partner influence the 
deployment of attentional resources. 
The data of the human-human interaction experiment met the milestone M9 at month 27 as planned. 
Deliverable D5.4 was submitted as planned. The study is currently prepared for publication. 
 
 
Human-robot interaction 

Additionally, a study on human-robot interaction were performed by members of the WWU in cooperation 
with the UJI lab. In this study we investigated under which conditions humans represent the actions of robots 
in a similar way to the actions of other humans, and thus accept the robot as a human-like interaction partner. 
Rather than assessing questionaires or ratings from the human subjects, which can be compromised by 
cognitive biases, we decided to develop an implicit behavioral test.  
In human-human interactions, action co-representation plays a crucial role for successful joint action in 
shared workspace (Sebanz et al., 2006). Action co-representation is typically investigated by using spatial 
compatibility tasks, like the Simon Task, in an interactive context (e.g. Sebanz et al., 2003, 2005). In a Simon 
Task a person gives spatially defined manual responses to non-spatially stimulus attributes (e.g. the shape of 
a stimulus). Usually two stimuli are displayed on a monitor, either on the left or on the right side. The 
participant responds by pressing a key with either his/her left or right hand. Typically participants have to 
respond to the shape of a stimulus (the non-spatial stimulus attribute), but to ignore its location (the task-
irrelevant attribute). Responses are usually faster when stimulus location and response location correspond, 
which is called the Simon Effect (Simon & Rudell, 1967). When a person only responds to one of the two 
stimuli (Individual go/nogo task), the Simon Effect disappears (e.g. Sebanz et al., 2003). However, the 
Simon Effect is re-established in the same go/nogo task when another person jointly responds to the 
complementary target stimulus (Social Simon Task), which is called the Social Simon Effect (SSE). The SSE 
provides an index for action co-representation (e.g. Sebanz et al., 2003; Tsai et al., 2008).  



 88

Some studies seem to indicate that action co-representation is tuned to biological agents, hence facilitating 
human social interactions with conspecifics (e.g. Kilner, Paulignan, & Blakemore, 2003; Tsai & Brass, 2007; 
Tsai et al., 2008).  
Recent studies on action observation may suggest that action co-representation may be explained by top-
down attribution processes about the perceived animacy of the observed agent (Liepelt & Brass, 2010; 
Liepelt et al., 2010).  
Our study had two aims: First, we aimed to test if we can find evidence for action co-representation when 
interacting with a real robot that is perceived in a human-like way. Second, we aimed to test if the SSE can 
be used as a benchmark-tool for the perceived humanness of a robotic system. 
For human-robot interactions in shared workspace, we hypothesized, that if action co-representation is purely 
biologically tuned, no SSE should be observed in a human-robot Social Simon Task, even when the robot is 
perceived as human-like. However, if action co-representation is sensitive to the perceived animacy of any 
given stimulus, even of a technical system, we should observe a SSE when interacting with a robot that is 
perceived as human-like. 

We first investigated whether a SSE can be found when interacting with a real robot that is perceived as 
human-like. Therefore we developed an experimental setup in which a Social Simon Task was shared 
between a human and the UJI humanoid robot Tombatossals (see Figure 58a). 24 students of the UJI (12 
male), aged 18 to 24 (mean age = 19.92 years, SD = 2.17) participated in Study IV. 13 of them were enrolled 
in technical studies, 11 of them were enrolled in humanities. 
In the Social Simon Task, we used either a square or a diamond that was presented on the left or right side of 
the monitor. The human participant (seated to the left side of the monitor) responded to the square by 
pressing the left response key with the index finger of his/her right hand. The robot (seated to the right side 
of the monitor) responded to the diamond by pressing the right response key with the index finger of its left 
hand (see Figure 58b). The robot responded correctly on 98,4 % of trials, and performed errors in 1.6 % of 
trials. The experiment consisted of 512 trials in total. Prior to the experiment participants were told that the 
robot functions in a human-like manner. The robot’s cameras were described as functioning similar to the 
eyes of a human, allowing the robot to actively detect small differences of the visual stimuli. The robot’s 
behaviour was based on a biologically inspired neural network, thereby being able to decide when to 
respond. The robot was described as an active and intelligent agent. 
 

 
(a) 
 

(b) 

 
Figure 58: (a) The figure shows the humanoid robot “Tombatossals” that was used for the human-robot 
interaction task. (b) The figure shows the experimental setup. The participant, seated on the left side of the 
monitor, responded to the square by pressing a button with the right hand. The robot, seated on the right 
side, responded to the diamond by pressing a button with its left hand.  
 
The analyses of reaction times showed a highly significant main effect of compatibility (F(1,23) = 10.48, p = 
< .01, η2 = .31). Reaction times were significantly faster in compatible trials (340 ms) compared to 
incompatible trials (348 ms) (see Figure 59) clearly showing the Social Simon Effect in the order usually 
obtained for human-human interaction.  This finding suggests that co-representation of non-biological agents 
can occur if an agent is perceived as human-like. The findings further indicate that the SSE may be used as a 
benchmark-tool for the perceived humanness of a robotic system. However, if this is true one should find no 
SSE when a robot functions purely deterministic and is perceived as non-human. 
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Figure 59: Mean reaction times for compatible and incompatible trials in Study IV. Error bars represent 
the standard error of the mean. **: p < .01 

 

To test if it is actually the perceived humanness of the robotic system that induced the SSE, we conducted 
another experiment. We used the same Social Simon Task as before, but now we introduced the robot as 
functioning in a non-human, and purely deterministic manner. The robot was described as a mechatronic 
device, which movements were controlled by electrical motors. Participants were told that the robot’s 
behaviour was fully determined by the commands of a computer program, which sent an actuation signal to 
the motors of the robot hand every time it should respond. Like this, the robot was described as a purely 
deterministic agent, which passively executes external commands. 
A new group of 24 students of the University of Castellon (12 male), aged 18 to 38 (mean age = 20.37 years, 
SD = 4.31) participated in the study. 15 of them were enrolled in technical studies, 9 of them studied 
humanities. The reaction time analyses revealed no main effect of compatibility (F(1,23) = 1.48, p>0.05, 
η2=0.06). Reaction times in compatible trials (333 ms) did not differ statistically from the reaction times in 
incompatible trials (336 ms) (see Figure 60).  

 
                 
 

Figure 60: Mean reaction times for compatible and incompatible trials in Study V. Error bars represent the 
standard error of the mean. n.s.: p > .05 
 
Since no SSE occured in this experimment, we conclude that action co-representation as measured by the 
SSE does not seem to occur when interacting with a purely deterministic and non-human-like robot.  
Taken together, our results indicate that action co-representation is not exclusively tuned to biological 
agents. Instead, higher order cognitive processes, like the perceived humanness of a robot, seem to influence 
the amount of action co-representation in a top-down manner. Co-representation of robotic (non-biological) 
actions can occur if a robot is perceived as functioning in a human-like way.  
The presently developed experimental setup measuring the SSE in human-robot interactions seems to 
provide a good measurement to indicate the perceived humanness of a robotic system. The study is currently 
prepared for publication (Stenzel et al., 2011). 
 
Deviations from the project workprogramme 

None. 
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4 Deliverables and milestones tables  
 

Deliverables (excluding the periodic and final reports).  
 

              

 
TABLE 1. DELIVERABLES 

 

Del. no.  Deliverable name WP 
no. 

Lead  
beneficiary 

 
Nature Dissemination  

level 
 

Delivery date 
from Annex I 
(proj month) 

Delivered 
Yes/No 

Actual / 
Forecast 
delivery date 

Comments 

D4.2b Autonomous generation of object 
awareness 

WP4 UJI D PU 27 Yes 04-Jun-10 / 
31-May-10  

None 

D5.4 Report on cooperative behaviour in 
shared workspace 

WP5 WWU R PU(*) 27 Yes 07-Jun-10 / 
31-May-10 

None 

D1.2 
(update) 

Non-visual depth cues and their 
influence on perception 

WP1 UG R PU 30 Yes 07-Sep-10 / 
31-Aug-10  

None  

D1.3 Control of voluntary transfer of 
fixations to new depth planes 

WP1 UG O PU(*) 30 Yes 06-Oct-10 / 
31-Aug-10 

None 

D1.4  Bioinspired Stereovision Robot 
System 

WP1 UG P PP 30 Yes 

15-Sep-10 / 
31-Aug-10  

A revised 
version of the  
supporting 
documentation 
(April 2011) is 
available, 
which includes 
details on the 
final 
prototyping 
activity. 

D2.1 
(update) 

Convolutional network for vergence 
control 

WP2 K.U.Leuven R PU 30 Yes 15-Sep-10 / 
31-Aug-10  

None 

D3.2 Object-based top-down selection WP3 WWU O PU(*) 30 Yes 
03-Sep-10 / 
31-Aug-10  None  

D4.3a How to build a global awareness of 
the peripersonal space 

WP4 UJI R PU(*) 30 Yes 08-Sep-10 / 
31-Aug-10  

None 
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D5.2 Report on monkey eye movements 
and arm movements in the link 
across fragments 

WP5 UNIBO R PU(*) 30 Yes 07-Sep-10 / 
31-Aug-10  

None 

D5.3b Report on the respective influence of 
motor and visual parameters on 
fragment location obtained from 
saccade adaptation data on monkeys 

WP5 UNIBO R PU(*) 30 Yes 
15-Sep-10 / 
31-Aug-10  

None  

D2.2b Algorithm for 3D scene description 
through interactive visual stereopsis 
adaptation using the mechatronic 
system 

WP2 K.U.Leuven D,R PU(*) 36 Yes 
23-Feb-11 / 
28-Feb-11 

None 

D3.3b Final, fully tested version of the 
Working Memory Model 

WP3 WWU R PU(*) 36 Yes 25-Mar-11 / 
28-Feb-11 

None  

D4.3b An embodied agent which learns to 
situate itself in the environment 
through active exploration 

WP4 UJI D PU 36 Yes 21-Mar-11 / 
28-Feb-11 

None  

D4.3c Final robot head-eye/arm set-up 
featuring the robot eye system 
developed within WP1 

WP4 UJI D PU 36 Yes 21-Mar-11 / 
28-Feb-11 

None  

D5.1 
(update) 

Report on neural discharges in the 
medial parieto-occipital cortex 

WP5 UNIBO R PU(*) 36 Yes 24-Feb-11 / 
28-Feb-11 

None  

D5.4 
(update) 

Report on cooperative behaviour in 
shared workspace 

WP5 WWU R PU(*) 36 Yes 24-Feb-11 / 
28-Feb-11 

None  

D8.2 A collection of one page student 
reports about cooperation work 

WP8 UG R CO 36 Yes 21-Mar-11 / 
28-Feb-11 

None  

(*) According to Annex I these deliverables will be made publicly available after the corresponding material will have been accepted for publication in journals/conf.proceedings 
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Milestones 

 
TABLE 2. MILESTONES 

 

 

Milestone 
no. 

Milestone name Work 
package no. 

Lead 
beneficiary 

Delivery 
date  
from 

Annex I 

Achieved 
Yes/No 

Actual / 
Forecast 

achievement 
date 

Comments 

M9 Experimental data on human-
human interaction obtained 

WP5 WWU 27 Yes/No May 2010 We obtained and analyzed the data from the 
human-human interaction experiemnts. The 
results confirm our hypothesis that that gaze 
tracking can be used to predict cooperative 
behavior  

M10 Eye position gain fields WP1 UG 30 Yes/No August 2010 We have demonstrated that the responses of 
the population of disparity detectors can be 
profitably adapted according to the current 
position of the eyes. Gaze information can be 
used as a prior to reallocate the resources, e.g. 
by redistributing the cells of the population, or 
by 
modulating their responses. The milestone has 
been reached as planned. 

M11 Algorithm for robust head-
centric 3D description of visual 
fragments 

WP2 K.U.Leuven 30 

 

Yes/No August 2010 We have developed both computer vision and 
biologically plausible approaches that can 
directly transform the disparity detectors’ 
population response into a head-centric 
representation for accuracte 3D description of 
the fragment. Robustness to the limited 
accuracy of the motor system has been 
demonstrated as well. 
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M12 Arm reaching gain fields WP4 UJI 30 Yes/No August 2010 The robot system that implements the neural 
network model framework inspired by V6A 
data and concepts is 
able to build a perceptual 
awareness of objects in its peripersonal space 
and to perform concurrent or decoupled reach 
and gaze movements toward them. 

M13 Anthropomorphic eye system WP1 UG 30 Yes/No August 2010 First prototype released and experimentally 
tested. 
Ocular working range of 90o. Ocular angular 
speed in excess of 90o/sec (as of servo motor 
data sheet specifications) 
Eyeball diameter 28 mm. 
Embedded 5Mpixels USB camera. 
Experimentally tested closed loop bandwidth 
5Hz (unfortunately determined by the 
commercial servo amplifiers adopted). 
Accurated design to respect Listing’s Law 
(double inverted torus design for custom dry 
bearing used to support the Eyeball). 
 

M14 Interactive stereopsis system WP2 K.U.Leuven 36 Yes/No February 2011 We have demonstrated the effectiveness of the 
developed robust algorithms for obtaining 
head-centric 3D information by applying them 
on real-world images obtained with the iCub 
stereo head.  

M15 Construction of a global 
awareness of the peripersonal 
space 

WP4 UJI 36 Yes/No February 2011 As planned, the system is able to build a 
multisensor egocentric 3D representation of a 
simplified natural environment involving a set 
of everyday life objects, as the result of its 
multimodal interaction in its peripersonal 
space. 
On request it is able to change the gaze or 
reach towards a particular object while 
keeping a continuous visual exploration of the 
scene. 
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