Eyeshots Tutorial Eye movements in space perception

Markus Lappe

Psychol. Inst. II, Westf. Wilhelms-Universität, Münster, Germany

Workparts

- Motor descriptors of space
- Predicting attention / hand movement from gaze
- Shared attention

Change blindness

Workparts

- Motor descriptors of space
- Predicting attention / hand movement from gaze
- Shared attention

Eyeshots Tutorial Eye movements in space perception

- Eye movements in natural tasks
- Eye movements in human interaction
- The problem of spatial stability
- Visual and extraretinal cues for localization
- Saccadic adapation and localization
- Motor descriptors of spatial location

Scene Understanding

Eye movements in natural tasks

Eye movements in natural tasks

Land & Hayhoe, Vis.Rs., 2001

The world as external memory

Here blocks may transiently disappear in one condition

Ballard et al., J. Cog. Neurosci., 1995 Karn & Hayhoe, Visual Cognition, 2000

The world as external memory

A reviewer of the project

Eye movments in memory retrieval

Bubject:

Description: perception

Dete:

Viewing Imagining

Subject: KS (Free Vision) Dete: 11/22/99 Description: imagery

Richardson & Spivey, Cognition, 2000

Eye-hand coordination

Flanagan et al., Nature, 2003

Action observation

Block stacking

- subject performs
 actor performs
 "blocks just move" (actors hand hidden)

Johansson et al. J. Neurosci. 2001

Attention cuing by gaze

Driver et al., Visual Cognition, 1999

Incongruent Congruent

(2.8%)

(1.6%)

-

700

Workparts

- Motor descriptors of space
- Predicting attention / hand movement from gaze
- Shared attention

Stability of space

- A. Use eye position or efference copy to compensate
- B. Use the image, the world is stable
- C. Forget about the problem: do everything fresh after each saccade

Saccadic mislocalization

- Shift
- Compression
- Adaptation-induced shift

Way to study motor descriptors for spatial location

Mislocalization for normal and adapted saccades

Mislocalization for normal and adapted saccades

Mislocalization for adapted saccades

- Perisaccadic compression obtained with normal saccades also occurs with adapted saccades.
- In the adapted state, mislocalizations of flashed objects occur not only perisaccadically but also long before the saccade.
- These mislocalisations are position dependent: they occur mainly near the adapted space.
- The center of compression is influenced by the adaptation: absolute perceived positions fall near the landing point of the eye. When the baseline shift induced by the adaptation is subtracted, the compression is similar to the normal state.

The adaptation-induced shift

- occurs long before the saccade
- ends at saccade end
- is independent of contrast

The adaptation-induced shift

transfers to reaching

Bruno & Morrone, J.Vis. 2007

The saccade adaptation field

Four conditions:

- I. Saccade
- 2. Step-back
- 3. No-step
- 4. Fixation

Collins, Dore-Mazars, & Lappe, Brain. Res. 2007

The saccade adaptation field

Four conditions:

- I. Saccade
- 2. Step-back
- 3. No-step
- 4. Fixation

The adaptation-induced shift

- Is related to the saccadic adaptation field
 - Without post-saccadic visual references, the localization is based on the metrics of the saccade that would be required to attain it
 - Localization is in alignment with post-saccadic visual references when they are available

How can saccadic adaptation influence position judgements ?

- A. Eye position signal
- B. Efference copy signal (adapted)
- C. Efference copy signal (unadapted)
- D. Post-saccadic visual references
- E. Combination of references and efference copy
- F. Adaptation of space

A. Eye position signal

predicts no error a all because eye position always follows the true eye movement

B. Efference copy signal (adapted)

predicts no errors a all because efference copy signal always follows the true eye movement

C. Efference copy signal (unadapted)

predicts errors in adaptation direction because efference copy does not match the final eye position

predicts errors proportional to amount of adaptation

predicts errors uniform over the visual field

D. Post-saccadic visual references

predicts errors in adaptation direction proportional to target back-step

predicts spatially uniform errors

no prediction when post-saccadic references are not available (as in no-step trials)

E. Combination of references and efference copy

predicts errors proportional to target backstep with references and to amount of adaptation in no-step trials

may predict spatially non-uniform errors as distance from target reference increases

predicts spatially uniform errors in no-step condition

- F. Adaptation of space
- a. Adaptation in visual map
- b. Adaptation of attention shifting
- c. Space coding via saccade vectors

F.a. Adaptation in visual map

predicts spatially non-uniform errors congruent with adaptation field

predicts errors also during fixation

appears inconsistent with physiology, common sense, and saccade adaptation literature

F.b. Adaptation of attention shifting predicts spatially non-uniform errors congruent with adaptation field predicts errors also during fixation appears inconsistent with physiology

F.c. Space coding via saccade vectors predicts spatially non-uniform errors congruent with adaptation field

no predictions for fixation

Objects are perceived at the location where a saccade towards the object would land

Current work

- Time course of shift during adaptation
- Re-evaluation of shift during fixation
- Reactive vs. scanning saccades

Planned work

• Model of adapatation and induced shift