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Object recognition in primates
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Models of
object recognition

¢ Fukushima, K (1980) Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position, Biol. Cybern. 36:193-
202.

¢ Riesenhuber, M & Poggio, T (1999) Hierarchical models of object recognition in cortex,
Nat. Neurosci. 2:1019-1025.

Position invariant recognition in the
Neocognitron (Fukushima 1980)
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Several processing layers, comprising simple (S) and complex (C) cells.
S-cells in one layer respond to conjunctions of C-cells in previous layer.
C-cells in one layer are excited by small neighborhoods of S-cells.



HMAX (Riesenhuber and Poggio, 1999)
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When is a stimulus recognized ?
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Two paper clips - Results
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Hierarchical Template Matching for
Object Recognition

Image passed through layers of units with progressively more
complex features at progressively less specific locations.

Hierarchical in that features at one stage are built from features at
earlier stages.

Processing hierarchy yields activation of view-tuned units.
A collection of view-tuned units is associated with one object.
Object recognition is severely impaired in the presence of clutter

At present, no learning algorithm for tuning the weights has been
developed (but see Wersing and Kérner 2003 and LeChun, 1998).



The saliency map model
of attention

e [tti, L., Koch, C., Niebur, E. (1998) A model of saliency-based visual attention for rapid
scene analysis. |IEEE Transactions on Pattern Analysis and Machine Intelligence,
20:1254-1259.

e [tti, L., Koch, C. (2000) A saliency-based search mechanism for overt and covert shifts of
visual attention. Vision Res., 40:1489-1506.
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Discussion

The saliency model offers a fast algorithm for guiding vision
to potentially meaningful parts of a scene.

It selects only a point in space, as compared to an object or
region. Region selection has to be added by a separate
mechanism.

Saliency is restricted to simple features.

Attention is defined solely as the selection in space (no, or
only indirect feature-based selection).

The advantage of this mechanism for object recognition is
limited, since a selection in space does not necessarily
promote object-recognition.

Combining the saliency map
with hierarchical models of
object recognition

e Walther, Itti, Riesenhuber, Poggio, Koch (2002) Attentional Selection for Object

Recognition - a Gentle Way. In: Biologically Motivated Computer Vision. Lecture Notes in
Computer Science. Berlin, Heidelberg, New York: Springer Verlag, 472-479.



saliency Attentional modulation
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Towards attention and object

recognition in natural scenes
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Towards attention and object
recognition in natural scenes

Original Image Sallency map Attended reglons Not attended reglons

Discussion

The combination of the Saliency-Map model with a spatially
selective focus and a hierarchical model for object
recognition appears to be a straightforward way to go.

Recognition depends on the quality of the focus.

The focus is not determined by the recognition task.

The model predicts that prior selection is necessary for
object recognition, which appears to be a contradiction to
the ability of category detection in dual-task situations.



Classical approach of visual attention
and object recognition
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The three phases of visual perception
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Search “without Target*
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Goal-directed perception

& 178 te 2o

EEFEFI I FERNFREFRNFEEEEEERE
7 2 3 4 5 3] - & & 13 i4 15 16 i7

2 ) 0 7i iz

||

|

|

FEFv,

- ~movernient

10R

PFdecision

FEFfixation \
/ PFmatch
V4 stimulus \

.. PFworking-
memory

){
s

ITstimulus=—

)

ITreentry

BY



Overt and covert attention
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Feature-based attention in natural scenes
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The model predicts that prior to any spatial selection, V4 contains
information about potential target objects - feature-based attention.

Hamker, F. H., BioSystems, 2006



Visual search examples

Hamker, FH (2005) Journal for Computer Vision and Image Understanding.

Visual search examples

Hamker, FH (2005) Journal for Computer Vision and Image Understanding.




How does attention facilitate
object recognition ?

Spotlight Metaphor




Problem of the Spotlight Metaphor

Attention tunes the RF properties
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Model RF dynamics compared to V4

Model

Macaque V4
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Effects of a saccade on the neural firing rate
of model V4 cells
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Hypotheses

Attention is a network property

It emerges since high level task descriptions have to be
connected to low level scene descriptions

The planning of an eye movement provides a reentry signal
which influences perception

Feature-specific feedback within the object recognition
pathway, gain control and competitive interactions directly
enhance the features of interest and guide spatial attention
to the object of interest.

| propose that the direction of attention and recognition
must be an iterative process to be effective.



Limitations of the present approach

The representation on which object detection is made does hardly
allow for real object recognition tasks and the guidance of vision
can only be based on simple color and orientation cues.

Extend the present approach by learning feedback and
feedforward transformations within the feature spaces of
different complexity considering image statistics.

The model does not know what too look for.

Develop a computational approach to learn the recall of target
features on the task at hand in a reward based scenario for
guiding visual perception.

Vision as an active, constructive process
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Ringach DL (2002) J Neurophysiol. 88:455-63.
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Hebbian learning of RFs
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Results of learning in model V1
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Image reconstruction

Original Reconstruction

Challenges and planned work in Eyeshots

e Learning of joint feature and disparity information in model V1
receptive fields, by training the model with stereo images (requires
images sequences).

¢ Expand approach to the next higher level to learn more complex
features (including disparity).

¢ Implement attentional dynamics within this network.
¢ Learn when to look for a particular object through reward.



Deliverables in Eyeshots

Deliverables

D3.1a: Demonstration of learning disparity-tuned feature selective cells. Software module. (Month 12).
D3.1b: Demonstration of object selective cells at intermediate complexity showing properties of disparity.
Technical report. (Month 24)

D3.2: Object-based top-down selection using learned bi-directional connections between feature detectors to
localize the object of interest in a cluttered 3D scene. Software module. (Month 36)

D3.3a: A model of working memory that allows to activate context information for the task at hand based on
the association of previous events leading to reward. We will use the learned feature responses (WP2) on real
world scenes if the feature-detectors are available, otherwise artificial representations will be used. Software
module. (Month 24).

D3.3b: Final, fully tested version of the Working Memory Model. Technical report. (Month 36).




