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Abstract: 
 
The problem of binocular eye coordination in stereovision is tackled from a computational point 
of view. Specifically, this deliverable focuses on the problem of controlling the vergence over the 
surface of an object assumed within the peri-personal workspace of a robot. Built upon this 
control module, a control scheme to make possible arbitrary motion of the vergence point is 
proposed. We conjecture that small and smooth sliding motions around local salient features 
might have a role to improve the perception of the 3D object properties. Biologically related 
constraints on torsional ocular postures are also considered as additional degrees of freedom on 
the eyes/cameras movements. 
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1 Executive Summary

This document is a Technical Report which constitutes the Deliverable D1.1
entitled Binocular Eye Coordination and its Role in Depth Vision of the EU
Project EYESHOTS. Deliverable D1.1 is part of the workpackage WP1: Eye
Movements for Exploration of the 3D Space. In particular D1.1 is the outcome
of the activities of the worktask Task 1.1 Eye Movements for Exploration
of the 3D Space. The goal of Task 1.1 is the investigation of ocular motion
strategies and the analysis of how they influence on perception and estimation
of of 3D information (depth). This activity is mostly related to geometric and
kinematics analysis of the vision system, while vision and image processing
methods represent, depending on the case, inputs or outputs to/from the
modules analyzed throughout this document.

The rationale adopted during Task 1.1 has been the following. We have
given for granted that large range ocular movements between discrete salient
features (in a quasi static environment) obey to high speed transient ocular
motion strategies (saccades) where motion dynamics strongly dominate, thus
(probably) limiting the effects of visual feedback to the perception of depth.
On the other hand, we have conjectured that between saccades small range
and low speed smooth ocular motions might occur (or be implemented at least
in the case of an artificial robotic vision system) with the goal of improving
locally the depth perception.

To this aim, we have first analysed the ideal problem of moving the ver-
gence point over a smooth surface in space (sections 5 and 6). This task has
been tackled mostly from the kinematic control point of view to understand
the requirements for its implementation (in particular in term of feedback re-
quirements from vision modules). Furthermore, although the analysis refers
to motions of large amplitude it should be interpreted as an idealization of
small controlled motions enabling the enhancement of depth perception.

As a limit case, we have eventually considered the static conditions of
the cameras when fixating an object within the peri-personal space1 This
investigation has led to a critic study of the relative posture of two cameras
with respect to the perceived disparity information. In particular, the study
aimed, on one hand to provide a perceptual interpretation of the extended
Listing’s Law, and on the other to analyze how different types of kinematic
models (e.g. pan-tilt etc.) affect or limit its implementation.

The major results of this Report have strong connection with the remain-
ing worktasks of WP1 as well as with WP2, which will provide at further

1Roughly speaking the intersection of the working envelope of the human/robot arm
with the field of view. Within the EYESHOTS project we always assume the robot head
fixed, so that the peripersonal space is a stationary 3D volume.
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stage of the project the main visual feedback information required for the
actual control of the robot eyes planned in Task 1.4, which represents the
final output of WP1.

2 Introduction

This reports will first address a class of co-ordinated motions of a couple
of stereo cameras, and secondly, it will analyse the properties of a partic-
ular class of static geometric postures that are known in the literature as
Generalized Listing’s Law configurations.

The first goal is to specify a control model that allows us to coordinate
the rotation of the cameras so that the vergence point is maintained most
of the time (i.e. except for possible finite transient time intervals) over the
surface of an object assumed within the peri-personal space of the robot.

Built upon this control module we shall investigate a control scheme that
makes possible to move the vergence point so that it could slide over the
object’s surface. This kind of task is addressed within this report for arbitrary
motions. We conjecture that small and smooth sliding motions around a
nominal salient feature might have a role to improve the depth perception of
the scene locally, and eventually provide the awareness of the local 3D object
properties.

The second major goal of the report is instead related to the analysis of
the effects of the relative torsion of the stereo cameras under the assumption
of static configurations. Roughly speaking, for a given vergence point the
cameras have in general two more degrees of freedom. It is known that in
biological systems for short distance fixations a particular relative torsional
component exists among the eyes, which is specified by a principle known
as Generalized Listing’s Law. We shall show which is the effect of torsion in
terms of the perceived disparity and how different ocular kinematic models
approximate Generalized Listing’s Law. The structure of the report is the
following. In section 4 the general statement of the vergence and vergence
tracking control is given; then, in section 5 a vergence control law is proposed,
including simulation results. The general model for vergence tracking is
discussed in section 6, including simulation results. Finally in section 7 an
interpretation of the Generalized Listing’s Law is provided as long as its
approximation by different ocular kinematic models.
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3 Notations

In this document the following notations and conventions will be adopted:

• Scalar are described by lower case letters (with sub/super-scripts if
needed), e.g. x, d.

• Angles are described by greek letters: e.g. θ, α.

• Points in 3D space are represented by capital letters (with sub/super-
scripts if needed), e.g. P0, FL

• 3D geometric vectors are represented by bold lower case variables (with
sub/super-scripts if needed), e.g. v, kL. Geometric vectors are not
expressed with respect to any reference frame.

• 3D algebraic vectors are represented as bold lower case letters (with
sub/super-scripts if needed)of the form: ax , where the superscript
letter defines the reference frame used to represent the vector.

• Generic n−dimensional vectors are represented by capital letters: e.g.
a, b. The dimension of the vector will specified or self-evident from
the context. Algebraic vectors of any dimension are always intended as
column vectors.

• Vectors with a bar on top are normalized, e.g. ā = a/ |a| .

• Reference frames will be represented as letters within brackets, e.g.
〈L〉, 〈R〉.

• Matrices are represented by capital bold letters, e.g. Q, A. The dimen-
sions of the matrix will be specified or self-evident from the context.

• Rotation matrices are expressed as capital bold letters as: a

b
R where

〈b〉 and 〈a〉 are the origin and target reference frames respectively.

4 Vergence and Vergence Tracking Control

The major goal of the next two sections is to analyze the mathematical
conditions required to ensure the fulfillment of a particular visuo-motor task
where vergence is achieved on a given surface S, and vergence point is moved
over the surface. To this aim consider a locally smooth surface in 3D space
described by the implicit equation:
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S

<L>

<R>

FL

FR

Figure 1: Transient phase: the vergence point (if any) x∗ /∈ S, rotation
control of the SCS should make the fixation points to be coincident on S.

S(x) = 0 (4.1)

Let x∗ be the vergence point of a robot Stereo Camera System (SCS).
The goal is to move the fixation points of both the cameras, by proper co-
ordinated control of the rotation of the SCS, along the surface S, so that they
are coincident most of the time2 which might lead to discontinuities in the
3D position of the fixation points. Most of the time in this sense refers to
the requirement that transients required to regain vergence over S are short
with respect to the duration of the task.

Consider the figures 1 and 2, from a control point of view this task has
two sub-goals:

(i) taking x∗ on S;

(ii) moving x∗ over S;

2We clearly expect that in practice, beyond the possible obvious control inaccuracies,
the vergence conditions could not be ensured for any visually bounded a-priori unknown
surface.
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.

Figure 2: Tracking phase: co-ordinated rotation of the SCS makes x∗ slide
over S.
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Figure 3: The general SCS configuration.

These two control tasks will in practice operate in parallel, assuming within
this framework that vergence control has higher priority than tracking.

In the next two sections we shall first discuss how to address the vergence
control problem, and then we will analyse the conditions required to move
the vergence point over an a-priori unknown surface within the field of view
of the SCS.

In the following we shall assume that both cameras rotate about axes
passing through their optic centers, and also that the SCS is calibrated. In
particular, with reference to figure 3, the geometry of the SCS is defined by
the left and right camera reference frames 〈L〉 and 〈R〉 defined as:

〈L〉 = {iL, jL, kL} (4.2)

〈R〉 = {iR, jR, kR} (4.3)

where the vectors kL and kR are the fixation axes of the two cameras, while
the other axes are specified in the most convenient way3 We shall also make
reference to a third arbitrary head fixed reference frame 〈C〉 defined as:

〈C〉 = {iC, jC, kC} (4.4)

3For the sake of clarity, we assume that when the cameras have parallel optic axes then
jL nd jL are parallel and point upward, while iL and iR are coincident and point to left.
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The frames 〈L〉 and 〈R〉 are located at points PL and PR corresponding
to the rotation centers (and optic centers) of the cameras, while frame 〈C〉
is placed at a generic point 0. Then, the geometric vector b defined as:

b = (PR − PL) (4.5)

defines the baseline of the SCS ; furthermore, the displacement of the cameras
with respect to 〈C〉 is expressed by the following vectors:

bL = (PL − 0) (4.6)

bR = (PR − 0) (4.7)

which are constant in 〈C〉, as well as b. According to the above assumption
all the points belonging to the optic axes of the cameras will be expressed in
the following way:

xL = bL + zL kL (4.8)

xR = bR + zR kR (4.9)

where zL > 0 and zR > 0 are the distances of the fixation points from PL

and PR.

5 Vergence Control over a Surface S
Consider the situation shown in figure 4. The two cameras are fixating two
distinct points belonging to a common smooth surface S and their optical
axes might not geometrically verge. The goal is to control the rotation of
the two cameras so that they verge on an a-priori unspecified point x∗ ∈ S.
In this sense the control strategy should be reactive i.e. the control signal
should be computed on the basis of visual and motor feedback, but without
high level specification of the target points or features in the images.

In particular, FL and FR are the fixation points associated to 〈L〉 and 〈R〉
respectively, while uR is the projection of FL in 〈R〉 and uL is the projection
of FR in 〈L〉.

Remark 1 From the previous definitions uR is the disparity of FL and uL

is the disparity of FR. Remind that we are idealizing as points small image
areas. Therefore, uR and uL could be intended as average disparities (in the
left and right cameras) of regions close to the fovea.
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Figure 4: 2D sketch of the initial conditions of a SCS during a vergence task.

5.1 Specification of task errors

From a geometrical point of view the geometrical description of the task is
to rotate 〈L〉 and 〈R〉 so that FL ≡ FR so that also uL ≡ uR. Therefore,
it is possible to define various error functions specifying the accomplishment
of the vergence task. In fact from figure 4 we might consider:

1. e = (FR − FL)

2. e =

[

eL

eR

]

where

eL = (FL − PL) × (FR − PL)

eR = (FR − PR) × (FL − PR)

3. e =

[

eL

eR

]

where

eL =
(FL − PL)

|FL − PL|
× (FR − PL)

|FR − PL|
(5.1)

eR =
(FR − PR)

|FR − PR|
× (FL − PR)

|FL − PR|
(5.2)
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The first two proposed error functions are strictly related to pure 3D
geometric information, while the third one can be directly expressed in term
of image based data. In fact:

eL = −kL × uL

|uL|
= sin θL (5.3)

eR = −kR × uR

|uR|
= sin θR (5.4)

where the angles θL and θR are defined as

θL = ̂FLPLFR (5.5)

θR = ̂FRPRFL (5.6)

In the following we shall only consider the task errors specified by expres-
sions (5.1) and (5.2) as they are the only computationally meaningful signals
directly related to image coordinates.

5.2 Vergence Control Signals

In the following we will assume that the motion of the cameras could be
controlled at kinematic level. Therefore, we will assume that the control
signals correspond to the angular velocities assigned to the left 〈L〉 and right
〈R〉 frames, respectively 4. In order to compute the control signals we adopt
a Task Function based approach [1]. To this aim let us define the following
Task Function:

V =
1

2
|eL|2 +

1

2
|eR|2 =

1

2
sin2 θL +

1

2
sin2 θR (5.7)

The time derivative of expression (5.7) can be expressed as:

V̇ = eL · ėL + eR · ėR (5.8)

then, by using the definitions (5.1) and (5.2) V̇ can be rewritten as:

V̇ = eL · d

dt

[

kL × (FR − PL)

|FR − PL|

]

+ eR · d

dt

[

kR × (FL − PR)

|FL − PR|

]

(5.9)

By using the assumptions made on the kinematics of the SCS and taking
into account the properties of the time derivatives of unit vectors (discussed
in Appendix C), we can compute the time derivatives in expression (5.9) as:

4This assumption is quite common in the analysis of robot systems behavior and sim-
plifies the analysis of the motion.
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d

dt

[

kL × (FR − PL)

|FR − PL|

]

=

= −(ωL × kL) × ūL +
1

|FR − PL|
kL × P⊥

ūL

d

dt
(FR − PL) (5.10)

d

dt

[

kR × (FL − PR)

|FL − PR|

]

=

= −(ωR × kR) × ūR +
1

|FL − PR|
kR ×P⊥

ūR

d

dt
(FL − PR) (5.11)

The control strategy required to achieve the condition of vergence onto
the surface S is to choose the control signals ωL and ωR such that V̇ < 0.

Remark 2 The equalities (5.10) and (5.11) still involve time derivatives.
As it will be shown in section 5.4, the time derivatives of (FL − PR) and
(FR − PL) are related in involved form to ωR and ωL, respectively. Which
means that ėL and ėR are both functions of ωL and ωR, i.e.

ėL = − [(ωL × kL) × ūL] + fL(ωR)

ėR = − [(ωR × kR) × ūR] + fR(ωL)

this means that the effect of the motion of eyes is coupled with respect to the
relative orientation errors specified in (5.1) and (5.2).

5.3 Simplified Control Strategies

From the previous analysis we have found that V̇ could be also written as:

V̇ = −ėL · [(ωL × kL) × ūL] − ėR · [(ωR × kR) × ūR]

+ėL · fL(ωR) + ėR · fR(ωL) (5.12)

Let us now assume that only the left camera is controlled to perform a
rotation, while the right one is kept still. This is equivalent to say that we
are only interested to control to zero only the task error eL. In particular
consider a rotation of frame 〈L〉 such that the angle θL is decreasing. In this
case V̇ could be expressed as:
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V̇ = eL · ėL = −eL · [(ωL × kL) × ūL] (5.13)

in fact fL = 0 since we are assuming that the right camera is not moving,
i.e. ωR = 0. By exploiting the cross products in the expression above we
obtain:

V̇ = −eL · [(ωL × kL) × ūL] = −(ωL × kL) · [ūL × eL] (5.14)

By using the definition of task error defined in (5.3) the expression above
can be expanded as:

V̇ = (ωL × kL) · [ūL × (kL × ūL)] =

= (ωL × kL) · [(ūL · ūL)kL − (ūL · kL)ūL] =

= −(ūL · kL) ūL · (ωL × kL) =

= −(ūL · kL) (kL × ūL) · ωL (5.15)

and eventually, again by (5.3) we obtain:

V̇ = (ūL · kL) eL · ωL (5.16)

In the above formula the coefficient (ūL·kL) is zero only in the degenerate
case of uL → ∞ (i.e. orthogonal to kL).

5.3.1 Continuous Decoupled Control

By choosing the control signal ωL as:

ωL = −γ
1

(ūL · kL)
eL (5.17)

where γ is a positive constant feedback gain, then V̇ becomes:

V̇ = −γ eL · eL < 0 (5.18)

Then, control law (5.17) is a continuous feedback control signal which
ensures the asymptotic convergence to zero of the task error eL.

Remark 3 The control law (5.17) can also be reformulated as follows:

ωL = γ (kL × uL) (5.19)

In fact recall that ūL = uL/ |uL| and that (uL · kL) = 1 (normalized focal
length of the cameras).
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An equivalent rationale could be applied assuming that the left camera is
still while controlling the rotation of the right one. Therefore, we conjecture5

that two decoupled control signals of the form:

ωL = γL (kL × uL) (5.20)

ωR = γR (kR × uR) (5.21)

ensure the asymptotic convergence of the vergence point onto S. Simulations
reported in section 5.5 highlight the feature of this control algorithm.

Remark 4 The proposed control scheme is equivalent to assume that each
camera is rotated assuming the other is fixed. The speed of convergence and
the final vergence point depend on the selection of the feedback gains γL and
γR which establishes the relative speed rate of the two cameras. To achieve
a symmetrical behavior of the system it is reasonable to assign the same
feedback gain to both controllers.

Remark 5 The control law specified in (5.20) and (5.21) establishes the
nominal angular speed of the cameras to accomplish the vergence task. In
practice we must ensure that such a control law could be physically imple-
mentable. From (5.20) and (5.21) it is clear that the desired angular veloc-
ities must be parallel to the image planes of the cameras. This means that
rotations of the cameras about their optic axes are specified. In fact, any
rotation about kL or kR would affect the convergence properties6 of the algo-
rithm. This means that the control law can be implemented by any robot eye
system which could generate angular velocities which have components paral-
lel to the image planes as defined by formulas (5.20) and (5.21). Therefore,
any two degrees of freedom mechanism7 can implement the proposed control
law (including pan-tilt cameras).

5.3.2 Non-smooth Decoupled Control

Following the arguments of the previous section it is possible (in principle) to
define another kind of feedback control algorithm. Assume again that only
the left camera is rotated, from (5.16) we see that any control signal ωL such
that eL ·ωL is negative for eL 6= 0 will ensure the convergence to zero of eL.
In particular the largest is the magnitude of the control signals the highest
is the convergence rate of the errors to zero.

5A formal proof of this property is not presently available. A simplified geometric

argument is sketched in Appendix D.
6Under the assumption of motion of a single camera.
7Far from its singular configurations.
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Let us assume that |ωL| ≤ Ωmax where Ωmax specifies the maximum
admissible angular speed of the camera. Then V̇ can be made maximally
negative by choosing ωL as:

ωL = −Ωmax
eL

|eL|
sign(ūL · kL) (5.22)

leading to

V̇ = −Ωmax |ūL · kL| |eL| (5.23)

From (5.23) we have that V̇ < 0 for |eL| 6= 0 then sin θL is decreasing so
|ūL · kL| = cos θL is increasing. For any initial orientation of 〈L〉 and 〈R〉,
assuming that at time t = 0 there is a small misalignment between kL and
kR, we have:

V̇ ≤ −λ Ωmax |eL| (5.24)

where λ > 0. The inequality above can be also rewritten as:

V̇ ≤ −λ Ωmax V 1/2 (5.25)

which can be integrated leading to:

|eL| < |eL(0)| − 1

2
λ Ωmax t (5.26)

Then eL will converge to 0 in finite time t̄ where:

t̄ <
2 |eL(0)|
λ Ωmax

(5.27)

By mimicking the reasoning from the previous section, we conjecture that
this control law could be generalized to the case when both eye are controlled,
in such a case we suggest the control laws

ωL = −Ωmax
eL

|eL|
sign(ūL · kL) (5.28)

ωR = −Ωmax
eR

|eR|
sign(ūR · kR) (5.29)

Remark 6 Remarks 4 and 5 also apply to the control laws (5.28) and (5.29),
which are decoupled as well as (5.20) and (5.21).
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5.4 Advanced Analysis

The control strategies proposed in the previous sections have been defined
neglecting the two coupling terms fL(ωR) and fR(ωL) appearing in V̇ as
shown in equation (5.12). For the sake of simplicity we shall refer in the
following only to fL(ωR) and for symmetry we will generalize the results
also to fR(ωL). From (5.10) fL(ωR) can be expressed as:

fL(ωR) =
1

|FR − PL|
kL × P⊥

ūL

d

dt
(FR − PL) (5.30)

and in order to exploit its structure we must compute the time derivative in
the right hand side of the above equality. In particular, we have:

d

dt
(FR − PL) =

d

dt
(FR − PR + PR − PL) =

=
d

dt
(FR − PR) +

d

dt
(PR − PL) =

d

dt
(zR kR) +

d

dt
b (5.31)

where zR is the distance of the fixation point of the right camera from 〈R〉
and b is the baseline. Then:

d

dt
(FR − PL) = żR kR + zR (ωR × kR). (5.32)

We still have to compute żR which, as discussed below, depends on both
ωR and on the shape of the surface S. To this aim consider figures 5 and 6.

By assuming S piecewise smooth then d/dt (FR − PR) must be tangent
to S at FR, so it must be orthogonal to vector ks representing the normal
to the surface at the fixation point; furthermore, from (5.32) it is a linear
combination of vectors kR and (ωR×kR). Therefore, d/dt (FR − PR) must
be orthogonal to both ks and (ωR × kR)× kR. This can be also written as:

d

dt
(FR − PR) = v

ks × [(ωR × kR) × kR]

|ks × [(ωR × kR) × kR]| (5.33)

where v takes into account the magnitude and direction of the derivative. By
projecting the expressions (5.32) and (5.33) along the direction of (ωR×kR)
we obtain the following equality:

v
ks × [(ωR × kR) × kR]

|ks × [(ωR × kR) × kR]| · (ωR × kR) = zR (ωR × kR) · (ωR × kR) (5.34)

The scalar product in the left hand side of the above equality can be
simplified as follows:
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Figure 5: Geometric interpretation of żR: 2D sketch.
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Figure 6: Geometric interpretation of żR: 3D sketch.

{ks × [(ωR × kR) × kR]} · (ωR × kR) =

= {[(ωR × kR) × kR] × (ωR × kR)} · ks =

= [(ωR × kR) · (ωR × kR)] (kR · ks) (5.35)

By using the right hand side of (5.35), the equality (5.33) can be solved
with respect to v as follows:

v = zR
|ks × [(ωR × kR) × kR]|

(kR · ks)
. (5.36)

From the formula above we have that always v ≥ 0 since at any visible
fixation point FR the normal to the surface S must have a component pointing
toward the camera. Then, by using (5.32), (5.33) and (5.36) we can write:
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żR = kR · d

dt
(FR − PR) =

= v
kR · {ks × [(ωR × kR) × kR]}

|ks × [(ωR × kR) × kR] | =

= v
ks · {[(ωR × kR) × kR] × kR}

|ks × [(ωR × kR) × kR] | =

= v
ks · {[(ωR · kR)kR − (kR · kR)ωR] × kR}

|ks × [(ωR × kR) × kR] | =

= v
ks · (ωR × kR)

|ks × [(ωR × kR) × kR] | (5.37)

By substituting expression (5.36) into the above formula we obtain:

żR = −zR
(kR × ks) · ωR

(kR · ks)
(5.38)

which relates the rate of change of zR to the control signals and to the local
shape of the surface S.

5.5 Vergence Control Simulations

In this section we present a few simulation results which show the effec-
tiveness of the proposed control strategy based on (5.20) and (5.21). In all
the following tests we have assumed an ideal independent pan-tilt kinematic
model for both cameras8

Test 1 The cameras are looking at a vertical plane passing through a point at
a distance of 0.35 m and rotated about the y − axis by 45 deg. The
cameras have a common feedback gain γ = 5 and initial conditions
(q1

L, q2
L) = (q1

R, q2
R) = (0, 0) (where q1

j is the tilt angle, and q1
j is the

pan angle) such that the optic axes are parallel. Figures 7 and 8 show
the transient response for the left and right cameras. Please note that
since the cameras have the same elevation at time t = 0 the task is a
pure vergence control.

Test 2 The cameras are looking at the same plane as in Test 1 under the
same operating conditions except for the initial conditions (q1

L, q2
L) =

8All the simulations proposed in this section and in section 6.4 have been performed
using a kinematic simulator implemented using MATLAB and SIMULINK. Short video
clips showing the simulated behavior of the SCS are available in the EYESHOTS web-site
along with this report.
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Figure 7: Transient response of the smooth control for the left camera (Test
1)
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Figure 8: Transient response of the smooth control for the right camera (Test
1)
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Figure 9: Transient response of the smooth control for the left camera (Test
2)

(−π/32,−π/6) and (q1
R, q2

R) = (π/6, π/12). The transient response is
shown in figures 9 and 10. In this case it is clear that an initial vertical
disparity is present; therefore, the task is not a pure vergence control
as a correction of the elevation is also performed.

Test 3 Same condition as in the previous test except that now the cameras
are looking at a sphere of radius 0.25 m and centered at the point
Cx0 = (−0.1,−0.1, 0.5)T . The transient response is shown in figures
11 and 12. Also, in this case the the controller performs simultaneously
a vergence control and an elevation adjustment.

6 Surface Tracking Under Vergence Condi-

tions

In this section we will analyse the conditions required to move the vergence
point over a locally smooth surface S. The rationale is as follows. We first
assume that the SCS is verging on a generic point x∗ (expressed with respect
to frame 〈C〉 and study the conditions required to move x∗ in 3D space9.

9This preliminary part of the analysis is clearly not meaningful from the point of view
of the active vision or visual servoing paradigms, however it is technically useful to address
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Figure 10: Transient response of the smooth control for the right camera
(Test 2)
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Figure 11: Transient response of the smooth control for the left camera (Test
3)
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Figure 12: Transient response of the smooth control for the right camera
(Test 3)

Then, we find a particular solution to the general problem leading to a nomi-
nal trajectory of x∗ along S. Finally, we shall discuss some possible methods
to exploit from image data the quantities required to implement the proposed
control scheme10.

6.1 Unconstrained Vergence Tracking

This section specifies the nominal motion conditions required to keep the
vergence on a point x∗ freely moving in 3D space.

We assume that at time t = 0 the SCS is verging on some point x∗, so
that the fixation points must coincide, i.e. (FL − 0) = (PR − 0) = x∗.
Then, according to expressions (4.8) and (4.9) the following equalities must
hold for some values of zL > 0 and zR > 0:

x∗ = bL + zL/kL (6.1)

x∗ = bR + zR/kR (6.2)

the actual tracking control problem.
10The validation of these procedures using real vision systems is not within the scope of

this deliverable. The goal here is to evaluate the technical feasibility of the method (also
using simulative tests).
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The above system of equations can be also rewritten as:

0 = (bR − bL) + [zR kR − zL kL] (6.3)

2x∗ = (bR + bL) + [zR kR + zL kL] (6.4)

Let assume for the sake of simplicity that:

(bR + bL) = 0 (6.5)

i.e. 0 is assumed to be the mid-point of the baseline. Then, by (4.5) and
(6.5) the equations (6.3) and (6.4) can be rewritten as:

zR kR − zL kL = b (6.6)

x∗ =
1

2
[zR kR + zL kL] (6.7)

Equation (6.6) is necessary and sufficient for the vergence condition, while
(6.7) specifies the actual vergence point in 3D space.

The system (6.6) can be solved for zL and zR, if and only if the vectors
kL, kR and b are co-planar, i.e.:

(kR × kL) · b = 0 (6.8)

and (kR × kL) 6= 0. Under these conditions the vectors:

{

kR, kL,
kR × kL

|kR × kL|

}

△

= {kR, kL, n} (6.9)

form a moving reference frame common to both cameras. Further details
related to the solution of system (6.6) are discussed in Appendix E.

Remark 7 It is worth noting that |kR × kL| = | sinα| being α the vergence
angle of the SCS.

Let us now compute the time derivative in frame 〈C〉 of equations (6.3)
and (6.4), then we obtain:

ẋ∗ = żL kL + zL (ωL × kL) (6.10)

ẋ∗ = żR kR + zR (ωR × kR) (6.11)

Consider now the following local camera frames:

〈L′〉 = {kL, n, (kL × n)} (6.12)
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〈R′〉 = {kR, n, (kR × n)} (6.13)

By projecting equations (6.10) onto frame 〈L′〉 and (6.11) onto 〈R′〉 we
obtain:

kL · ẋ∗ = żL

n · ẋ∗ = zL (kL × n) · ωL

(kL × n) · ẋ∗ = zL [kL × (kL × n)] · ωL

(6.14)

and

kR · ẋ∗ = żR

n · ẋ∗ = zR (kR × n) · ωR

(kR × n) · ẋ∗ = zR [kR × (kR × n)] · ωR

(6.15)

From the definitions of 〈L′〉 and 〈R′〉 we have that [kL × (kL × n)] =
[kR × (kR × n)] = −n. Therefore, we can compute the feedforward control
angular velocities required to achieve (nominally) the specified tracking task:

L′

ωL =
1

zL





0
(n × kL) · ẋ∗

n · ẋ∗



 (6.16)

R′

ωR =
1

zR





0
(n × kR) · ẋ∗

n · ẋ∗



 (6.17)

Remark 8 Notice that any rotation of the cameras about the corresponding
optic axes does not affect the motion of x∗. Therefore, ωL and ωR can have
any component along the axes kL and kR. For the sake of simplicity in the
next formulas we shall set to zero these components. However, in practice
the rotation kinematics of the cameras could introduce torsional11 components
which, as stated above, do not modify the properties of the computed angular
velocities.

6.2 Constrained Vergence Control

On the basis of the previous discussion the conditions which keep the point
x∗ sliding over a locally smooth surface S can be now determined. In this
case ẋ∗ is no more arbitrary, but is constrained to be tangent to S at any
time, see figure 13.

11By torsional component we intend here the component of the angular velocity about
the fixation axis. This definition is by no way well posed in the literature. As a matter of
fact the torsional component is referred to the axis kC in the statement of Listing’s Law.
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Figure 13: Constrained motion of x∗ along the surface S.
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The frame 〈S∗〉 = {iS, jS, kS} defines a local coordinate system moving
with x∗ ∈ S. The vector kS was already introduced in section 5.4

In fact if x∗ ∈ S, from (4.1) the following equality must hold:

Ṡ(x∗) = 0 ⇐⇒ ∂S

∂x

∣

∣

∣

∣

x=x
∗

· ẋ∗ = 0 (6.18)

then

kS =
∂S
∂x

|∂S
∂x
|

∣

∣

∣

∣

∣

x=x
∗

(6.19)

and therefore x∗ ∈ span(iS, jS).
Let us now assume we are given a generic velocity command in 3D, and

call it ẋ∗

0
, then we may compute an admissible reference velocity command

as follows (see Appendix E):

ẋ∗ = P⊥

kS
ẋ∗

0
(6.20)

By assuming that all the vectors are expressed with respect to a known,
common reference frame, e.g. 〈C〉, the above formula can be also expressed
as

Cẋ∗ =
[

I − CkS
CkS

T
]

Cẋ∗

0
(6.21)

6.3 Computing the vector kS

In order to compute kS the following procedure is proposed. Consider the
scenario sketched in figure 14.

Let P ′

L
and P ′

R
be the projections of the the fixation points respectively

of the left camera and right cameras on the corresponding image planes ΠL

and ΠR. Consider an image segment on ΠL and call it γL, then γL is the
projection of a segment of a curve γS ∈ S. By construction γS is (at least
locally) a regular planar curve and its osculatory plane ΠγL

is defined by the
orientation of γL ∈ ΠL and kL.

Consider now the projection of γS in the camera frame 〈R〉. This is
a segment of a curve γR, which, under vergence conditions over S, passes
through P ′

R
.

Let tS be the tangent vector to γS at x∗; then, tS ∈ T , where T is the
tangent plane to S at x∗. The line passing through x∗ and directed as tS

is projected in 〈L〉 and 〈R〉 with two lines parallel to the vectors tL and tR

passing through P ′

L
and P ′

R
, respectively.
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Figure 14: Correspondence of curves passing through x∗ ∈ S.
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Following the previous rationale it is clear that tL specifies the direction
of the line γL and is known, since γL is an arbitrary selected line in ΠL.
On the other hand, the vector tR is unknown and should be computed by
estimating the tangent of γR at point P ′

R
.

Remark 9 Computing γR is a specific image processing task (while γL is
given).

Once tL and tR are given, tS can be computed as the intersection of
planes ΠγL

and ΠγR
formally defined as:

nL · (P − PL) = 0 (6.22)

nR · (P − PR) = 0 (6.23)

where

nL

△

= (kL × tL) (6.24)

nL

△

= (kR × tR) (6.25)

Then

tS =
nR × nR

|nR × nR|
(6.26)

The procedure described above is numerical and should be repeated for
different selections of orientations of tL

12. In this way it is possible to com-
pute a set of vectors

{

t1
s

t2
s
· · · tm

s

}

which (at least nominally) must span
the plane T .

Therefore, in order to compute kS we must find the common normal to
all the vectors ti

s
. A possible method is to find kS as the vector (of unit

norm) which minimizes the following cost function:

J =

m
∑

i=1

(kS · ti

S
)2 (6.27)

By projecting all the vectors ti

S
on a common reference frame, e.g. 〈C〉,

we can rewrite the cost function (6.27) as:

12The same rationale can be applied by selecting straight segments tR passing through
the origin of the right camera, and repeating the procedure starting from 〈R〉.
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J =
m

∑

i=1

CkS
T Cti

S
(Cti

S
)T CkS =

= CkS
T

[

m
∑

i=1

Cti

S
(Cti

S
)T

]

CkS =

= CkS
T CTS

CkS (6.28)

In the above formula the matrix CTS is a symmetric semi-positive definite
matrix; hence, kS can be computed as the eigenvector of CTS associated with
its least eigenvalue13.

6.4 Tracking Control Simulations

In this section we present a few simulation results which show the effec-
tiveness of the proposed feedforward control strategy (6.16) and (6.17) with
and without projection of the reference velocity as shown in equation (6.21).
Where not otherwise specified, the simulations have been performed under
the conditions discussed in section 5.5.

Test 4 The cameras are fixating the point reached at the end of the task de-
scribed in Test 1. The initial conditions of the cameras joint angles
are (q1

L, q2
L) = (0, −1.282 × 10−1) and (q1

R, q2
R) = (0, 1.023 × 10−1),

while γ = 1. The reference velocity command x∗

0
has a magnitude

of 0.25 m/sec, components only the x − y plane and it generates an
8-shaped trajectory. The response errors of the system using the pro-
jection algorithm discussed in section 6.2 and 6.3 are shown in figures
15 and 16. The magnitude of the tracking errors is virtually 0 being
well below the machine accuracy limits.

Test 5 The cameras perform the same task discussed above, but the projection
algorithm of section 6.2 is not applied in this case. The response errors
of the system are shown in figures 17 and 18. In this case the tracking
errors are significant and related to the slantness of the target plane
where the eyes try to keep the vergence during the tracking.

7 Torsional ocular posture

The control model described in the previous sections does not involve any
torsional action of the cameras. Here, we consider the possible effects of

13Standard SVD decomposition methods are appropriate for this task.
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Figure 15: Transient response of the smooth control for the left camera (Test
4)
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Figure 16: Transient response of the smooth control for the right camera
(Test 4)
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Figure 17: Transient response of the smooth control for the left camera (Test
5)
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Figure 18: Transient response of the smooth control for the right camera
(Test 5)
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torsional ocular postures as two additional degrees of freedom of the stereo
camera pair, for any given vergence point.

7.1 The Listing’s Law

In theory the eye could assume an infinite number of torsional positions for
any gaze direction. Thus, there are infinitely many ways to fixate any given
target. Donders discovered that, for steady fixation with the head upright,
the actual positions of the eye are restricted in a way that there is only one
eye position for every gaze direction [2]. In other words, Donders found that
the eye is restricted to a two-dimensional subspace of the three-dimensional
space of all possible orientations. He observed that there is only one torsional
eye position for each combination of horizontal and vertical eye positions,
and postulated that the torsional position of the eye is always the same,
independent of how the eye reaches a particular gaze direction. Listing’s law
goes one step further, by specifying the amount of ocular torsion. It states
that, when the head is fixed, there is an eye position called primary position,
such that the eye assumes only those orientations that can be reached from
the primary position by a single rotation about an axis in a plane called
Listing’s plane. This plane is orthogonal to the line of sight when the eye
is in primary position [3]. In other words, one can considers any given eye
movement as caused by rotation about an axis. The collection of these axes
for all rotations that start from the primary position constitutes Listing’s
plane, see figure 19.

This is valid if we consider a movement from and to the primary position.
What happens if the eye starts its rotation from an eccentric eye position?
The orientation of the eye is still determined by rotation about axes that lie
in a plane (irrespective of the direction of movement), but this plane is no
longer orthogonal to the line of sight; instead, it is tilted in the same direction
as the line of sight but only half as much [3] [4], see figure 20. To summarize,
Listing’s law can be expressed in terms of any initial eye position, not only
primary position. In this form the law states that for any eye position, there
is an associated velocity plane such that any position can be reached from
that position by rotating about an axis that is confined to this particular
plane. The orientation of velocity planes (and hence the rotational axes of
the eye) depends on initial eye position: when the eye is in primary position,
the velocity plane is called Listing’s plane, which is orthogonal to the gaze
line. For any other eye position, the corresponding velocity plane is rotated
half as far as the gaze line (half-angle rule).
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Figure 19: The nine orientations drawn in solid line according to Listing’s
Law: they are obtained by rotation to these positions from the primary
position, about axes (thick solid lines) that lie on the Listing’s plane (in this
case represented by the paper plane). The position drawn in dashed lines
at the top center does not obey Listing’s Law, because the rotation to this
position from primary position occurs about an axis (thick dotted line) that
is tilted out the paper plane.

7.2 Binocular Listing’s Law

Listing’s law applies when the eye fixates a target at optical infinity. However,
the torsional position of the eye changes when the eyes converge on a near
object [5; 6; 7; 8; 9; 10; 11]. During convergence, the orientation of each eye is
still determined by rotation about the axes that lie in a plane; however, this
plane is rotated temporally and roughly symmetrically in each eye through an
angle proportional to the vergence. These convergence-dependent changes of
torsional position (i.e., orientation of Listing’s plane) have been referred to as
the binocular extension of Listing’s law or L2. Note that L2 is a generalization
of the original monocular Listing’s Law, and reduces to it when the vergence
angle is zero, as it occurs when the eyes fixate a distant object.

In other words, as long as the vergence angle is fixed, there is still one and
only one torsional position that the eye adopts for any gaze direction, but
the torsion can change when vergence changes. The more the convergence
there is, the more the temporal rotation of the plane there is, meaning that
during convergence, there is a relative excyclotorsion on upgaze, and a rel-
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P r i m a r y  P o s i t i o n

E c c e n t r i c  P o s i t i o n  
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Figure 20: Listing’s half angle rule. The horizontal dashed line represents
the line of sight when the eye is in primary position, and the vertical dashed
line represents Listing’s plane, orthogonal to the line of sight. When the eye
starts to move from tertiary position (a angle, solid arrow) the orientation of
the eye is determined by rotation about the axes that lie on a plane rotated
in the same direction, but only half as much as the line of sight, that is a/2.

ative incyclotorsion on downgaze, when one expresses torsion in Helmholtz
coordinates.

7.3 The meaning of Listing’s Law

The oculomotor system follows precise laws in order to move and to rotate the
eye. But we can ask what the real advantage is of following them. Concerning
Listing’s Law it is possible to state that it enhances motor efficiency by
minimizing the rotational eccentricity of the eye. The theory is based on the
fact that some eye rotations are more efficient than others when it comes to
move the gaze line [10]. Now let us suppose there is some “special”, central
eye position and that we want to direct our gaze in all directions using the
smallest possible rotation displacement from the centre; i.e with the smallest
possible 3D eye eccentricity. To this goal, the eye rotates back and forth to
the centre about the axes orthogonal to the vector gaze direction (gc). That
means, the eye takes only positions that can be reached from the centre by
rotating about an axis that lies in the plane orthogonal to gc. If we rename
the centre position as primary position and call the plane Listing’s plane we
see that Listing’s Law yields, consequently, the minimization of eccentricity.
Let us attempt a mathematical proof of this concept [10]. First of all we
write the quaternion q associated with a particular eye position defined by
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Figure 21: Binocular extension of Listing’s Law. During convergence, the
Listing’s plane is rotated temporally and symmetrically in each eye about an
angle φ proportional to the vergence angle.

the three Helmholtz angles V, H and T:

q = qV ◦ qH ◦ qT

= (cV/2cH/2cT/2 − sV/2sH/2sT/2) +

+ i(cV/2sH/2sT/2 + sV/2cH/2cT/2) +

+ j(cV/2sH/2cT/2 − sV/2cH/2sT/2) +

+ k(cV/2cH/2sT/2 + sV/2sH/2cT/2) (7.1)

where cV/2 is the cosine of half the elevation angle V and sH/2 is the sine
of half the azimuth angle H, etc; and i, j, k are (head-fixed) unit vectors
pointing along the X (left), Y (up) and Z (forward) axis. Since the primary
position coincides with the Z axis, and since Listing’s Law states that the
rotation axis must lie on a plane orthogonal to the primary position, this
means that the component of q along the versor k must always be equal to
zero, qz = 0. This leads to the following equation:

cV/2cH/2sT/2 + sV/2sH/2cT/2 = 0 (7.2)

Divided by cV/2cH/2cT/2 this simplifies to

tan(T/2) = − tan(V/2) tan(H/2) (7.3)

Now let us consider the scalar component of q :

q0 = (cV/2cH/2cT/2 − sV/2sH/2sT/2) (7.4)



Eyeshots Deliverable D1.1 37

This is the eccentricity of the rotation, hence the angle by which to rotate
around the axis represented by the vector part of q. If we derive equation
7.4 by T and equal the result to zero - in order to obtain the T angle that
minimizes eccentricity - we obtain again equation 7.2. Obeying Listing’s law
brings many functional advantages, improving motor efficiency. Though, our
eyes violate Listing’s law on near fixation, as we observed above. So, there
must be some even greater functional advantage, incompatible with Listing’s
law, to make the brain violate it so markedly on near gaze.

7.4 The meaning of binocular Listing’s Law or L2

Listing’s Law states that each eye’s cyclorotation is proportional to the prod-
uct of its horizontal and vertical angles in radians, T = -HV/2. This means
that when the eyes are fixating a distant object (at infinity) the torsional
angle for both eyes are equal; but this is not true when they are converging
on a near object. Indeed, when vergence is not zero, the azimuth angles for
the right and the left eye respectively, are different. This implies different
values of Tr and Tl. This difference gives rise to a cyclovergence that has
to be reduced since it afflicts directly the stereopsis. This is probably the
reason why the eyes violate Listing’s Law and they follow the L2 law on near
vision: to reduce the cyclovergence and to restrict the motion of the epipo-
lar line, thus permitting stereo matching to work with smaller search zones
[10] [12]. Also in this case we try to give a mathematical explanation of the
fact that by following the L2 law it is possible to nullify the cyclovergence,
Tr − Tl. Empirically, it is found that each rotation axis for the left eye lies
on a plane rotated temporally by an angle φl, and each rotation axis for the
right eye lie on a plane rotated temporally by an angle φr, where the angles
φ are linear functions of vergence ν: φl = µν; φr = −µν. This means that
each rotation axis for the left eye is perpendicular to the normal of the plane
[sin(φl), 0, cos(φl)] and each rotation axis for the right eye is perpendicular
to the normal of the plane [sin(φr), 0, cos(φr)]. If we define ql and qr respec-
tively, the quaternion representing the position for the left and right eye, the
L2 law requires [13]:

V (ql) · [sin(φl), 0, cos(φl)] = 0 (7.5)

V (qr) · [sin(φr), 0, cos(φr)] = 0 (7.6)

where V (q) represents the vector part of the quaternion q, and · the dot
product. The solution of this equation yields the following equations that
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give the torsion angle as function of fixation:

tan(Tl/2) = − tan(Vl/2)

[

tan(Hl/2) + tan(µν)

tan(Hl/2) tan(µν) + 1

]

(7.7)

tan(Tr/2) = − tan(Vr/2)

[

tan(Hr/2) + tan(−µν)

tan(Hr/2) tan(−µν) + 1

]

Then from equation 7.8 we can derive the value for µ that equal the torsion
for both the eye:

µ = −arcsin(sec
(

Hl+Hr

2

)

sin
(

Hl−Hr

2

]

)

2(Hr − Hl)
(7.8)

It is worth noting that, since Helmholtz torsion represents a rotation rela-
tive to the visual plane, minimizing cyclovergence brings the two eyes into
torsional alignment relative to the visual plane (and thus relative to the vi-
sual world). In other words, the torsion prescribed by L2 keeps the classical
theoretical horopter, a circle in the visual plane and a vertical line in the
midsaggital plane, making it’s basic shape invariant across gaze movements.
Actually, it has been reported [7] [10] [11] that human eye movements do
not actually follow L2 precisely. It has been argued that the actual angle
of rotation of Listing’s planes with vergence strikes a compromise between
the motor advantages associated with Listing’s Law, and the improvement
of binocular alignment that L2 brings about [14].

7.5 Implications on the disparity patterns

The eyes follow particular and different strategies of movements in order to
fixate objects in the world around us. Specifically, for far and near fixations,
the Listing’s Law and its binocular extension pose constraints which influence
the torsional components of eyes movements. For implementing these two
types of ocular movements it is necessary to include, besides the classical
azimuth H and elevation V angles, also a torsional T angle along the line
of sight to describe the eye positions. This further degree of freedom affects
directly on how an object projects on our retina (or CCD) and obviously
this strikes again the disparity pattern, defined as the difference between the
projections of an object on the left and the right retina. Hence the idea
of a disparity statistics arises in order to understand the influence of eye
movements on depth perception of the 3D peripersonal world [15] [16] [17]
[18].

What we carried out is a comparative analysis of the behaviour of three
types of stereo-head:
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Figure 22: Comparative analysis between different stereo-head systems, (a) a
classical Tilt/Pan system; (b) a system following Listing’s Law; (c) a system
following L2. Probability distribution of horizontal and vertical disparities.
From these figures it is possible to note how a system implementing the
Listing’s Law is characterized by a widespread distribution of the disparity,
while a system implementing L2 have a behavior very close to that of a
classical Tilt/Pan stero-head. The difference in the torsional angles of both
eyes (characterizing the Listing’s Law) determines an increase of the vertical
disparities while in the other two cases the distribution has a horizontal
elongation.
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• a classical Tilt/Pan/Vergence system

• a system implementing the Listing’s Law

• a system implementing the binocular extension of Listing’s Law

In our simulation the 3D world was modelled as a set of random points
distributed uniformly through space. Each scene consisted of 25000 points.
The distance of the points from the observer were restricted between 30 cm
and 100 cm. The distributions presented here are based on 50 such worlds.
For each of these worlds we considered a grid of fixation points. These are
characterized by a gaze eccentricity that varied between ±30◦ by step of 3◦

and by a distance from the observer ranging between 30 cm and 100 cm
by step of 5 cm. For every fixation point we collected the disparity of the
points in the world whose projections fall on both the retinas, and then
we interpolated the disparity pattern on a 21 × 21 grid of retinal sample.
As a first analysis we computed the distribution of the disparities. This is
represented in figure 22, where the 2D histogram of the disparity occurrence
is drawn.

7.6 Open issues

It is interesting to consider the kinematics of the classical robotic head sys-
tems tilt/pan/vergence. These systems are characterized by a common tilt
axis, directed along the interaural axis, and two separated pan axes, one for
each camera. There are no possibilities for the cameras to rotate around
the visual axis. This means that besides nullifying the cyclovergence, these
systems are characterized by zero cycloversion. One can object that L2 law
is only a way to obtain a binocular alignment which in the classical tilt/pan
systems is structurally guaranteed (for free), by mechanical constraints that
they are subject to. Of course this is true and, from a perceptual point of
view tilt/pan heads would be optimal. However, in such systems there is no
possibility of adaptation. Instead, it has been recently demonstrated that the
control of ocular torsion can be changed by a cyclodisparity stimulus [19] [20].
This suggests a scenario where ocular torsions are dynamically controlled to
optimize binocular image alignment to simplify the perception of slanted sur-
faces. From this point of view, the presence of further degrees of freedom
would not increase the redundancy of the system, but it could increase its
efficiency. The way by which the eyes (or the cameras) fixate a point on a
surface could change accordingly and adaptively with the characteristics of
the surface itself, eventually improving the depth perception.
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A Extraocular muscles and their actions

The direction of gaze of each globe is determined by a delicate and extremely
precise balance of rotational tractions exerted by a group of muscles that,
by virtue of their respective attachments to the surface of the eye globes,
allow their rotation. This is the group of the extraocular muscles and they
comprise four rectus muscles for each eye (medial MR, lateral LR, superior
SR and inferior IR) and the two oblique ones (superior SO and inferior IO),
see figure 23.
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Figure 23: Left eye position an its muscles. (A) top view. (B) bottom view.

Each extraocular muscle rotates the globe in specific directions, also de-
pendent on the current position of the eye, see figure 24. Nasal movement of
the eye is adduction, temporal movement is abduction. Up and down move-
ments are elevation and depression, respectively. Torsional eye movements
rotate the eye around its visual axis, whereby intorsion is nasal rotation of the
vertical meridian and extorsion is temporal rotation of the vertical meridian
[21].

MR and LR have horizontal actions, even if they acquire a vertical action
when the globe is elevated or depressed. SR has a vertical action when
the eye is abducted by 23◦. When the globe is adducted starting from 23◦

of abduction the action of SR changes in a combination of adduction and
intorsion. On the contrary, when eye is abducted more than 23◦ its action
becomes a combination of abduction and extorsion. IR behaves in the same
way but with opposite actions. When the globe is adducted SR and IR
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Figure 24: The eye’s rotations

are less or not effective in elevating or depressing the eye. These become
the functions of the oblique muscles which in adduction are very efficient,
SO for depression and the IO for elevation. In full abduction SO causes
only abduction (assisting the LR) and intorsion. The actions of the IO
correspond with and balance those of the SO [21].

B Mathematics of eye movements

The movement of the globe approximately corresponds to a rotation of an
object in the three dimensional space around a certain axis. The globe center
can be regarded as the rotation center. Eye positions usually are classified in
three groups: primary, secondary and tertiary position. In primary position
the eye looks straight ahead and in this position the muscles exhibit the
minimum force. From primary position any rotation about the vertical or
the horizontal axis bring the eye in secondary position. In this case it looks
to the left or to the right or up or down. With a combination of rotation
around both the horizontal and vertical axis the eye is in tertiary position.
The current eye position is defined by characterizing the 3D rotation from
a somewhat arbitrarily chosen reference position to the current eye position.
This reference position is usually defined as the position the eye assumes
when the subject is looking straight ahead, while the head is kept upright
[22]. To describe the 3D orientation of the eye, Euler’s theorem can be
applied: it states that for every two orientations of an object, the object
can always move from one to the other by a single rotation about a fixed
axis. The rotation from the reference position to the current eye position
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can be described, other than this single rotation, also by three consecutive
rotations about well defined, hierarchically nested axes. A combination of
a horizontal and a vertical rotation of the eye is a well defined sequence,
uniquely characterizing the direction of the line of sight. However, this does
not completely determine the 3D eye position, since the rotation around the
line of sight is still unspecified. A third rotation is needed to completely
determine the orientation of the eye. The sequence of rotation plays an
important role, since the execution of rotations specifying the same angles but
in different order, leads to a different final orientation of the rotated object.
Helmholtz coordinate systems are widely adopted. The Helmholtz system
uses a head-referenced horizontal axis for describing the vertical component
of eye rotation and an eye referenced vertical axis for describing the horizontal
component of eye position. In this system the eye position is characterized
first by a vertical rotation V around the X (head fixed) axis, then a horizontal
rotation H around the Y (eye fixed) axis and, finally, a torsional rotation T
around the Z (eye fixed) axis 14, see figure 25.

C Time derivative of unit geometric vectors

Let ū = u/ |u| be a unit vector then:

d

dt
ū =

d

dt

u

|u| =
1

|u|u̇ − u

|u|2
d

dt
|u| (C.1)

14The Helmholtz system is just one of the possible coordinate system that can be used.
Another possibility is the so called Fick system: it uses a head-referenced vertical axis
of rotation to describe the horizontal component of eye position and an eye referenced
horizontal axis to describe the vertical component of eye position. In this system the eye
position is characterized first by a horizontal rotation H around the Y (head fixed) axis,
then a vertical rotation V around the X (eye fixed) axis and, finally, a torsional rotation
T around the Z (eye fixed) axis. Another example would be to use a coordinate system
in which all the components of eye position are described by eye-referenced axes (Harms
system), or on the contrary a system that uses only head fixed axes (Hess system) [23].
These four coordinate systems described above yield very different descriptions of eye
movements responses to targets in tertiary positions of gaze; the problem is that they do
not indicate the actual coordinate system used by the oculomotor system. The empirical
question is which one best describes the movements of the two eyes, but the answer is
not well-defined, because the oculo-motor system does not adhere to any one of the four
systems, neither in terms of internal representation of target position, nor in terms of a
mechanical gimbaling of the eye in the orbit. Recent evidence suggests that the extraocular
muscles are mechanically constrained by tissue that connects muscles sheaths to the wall
of the orbit [24] [25] [26]. Given this arrangement, the axes of rotation will tend to be
either eye fixed or head fixed depending on whether the muscle sheaths act as pulleys or
pivot points for the extraocular muscles.
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Figure 25: Eye fixed reference frame

Recalling that |u| =
√

u · u, equation (C.1) can be rewritten as:

d

dt
ū =

1

|u|

[

u̇ − u

|u|
1

2
√

u · u
d

dt
(u · u)

]

=

=
1

|u|

[

u̇ − u

|u|
(u · u̇)

|u|

]

=
1

|u| [u̇ − (ū · u̇) ū] (C.2)

Definition 1 Given a unit geometric vector ū the orthogonal projection vec-
tor operator is defined as:

P⊥

ū
a = a − (ū · a) ū ∀a (C.3)

Remark 10 If ū and a are projected onto the same reference frame 〈0〉,
then the orthogonal projector P⊥

ū
can be expressed in matrix form as:

0P⊥

ū
=

[

I − 0ū 0ūT
]

(C.4)

where I is the 3 × 3 identity matrix.

Following the definition above, (C.2) can be rewritten as:

˙̄u =
1

|u| P
⊥

ū
u̇ (C.5)
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D Simplified analysis of convergence proper-

ties of the decoupled control

In this section we provide an informal proof of the convergence of the simpli-
fied control method discussed in section 5.3. Assume here that the cameras
have the same elevation, therefore the control strategy must perform a pure
vergence task (the situation sketched in figure 4 corresponds to this planar
control problem). It is easy to see in this case that any small rotation ωLdt
of the left eye which tends to reduce the angle θL also produces a reduction
of θR. Now, the angular velocity of the left eye proposed in (5.20) (or (5.28))
minimizes (monotonically) θL; furthermore, by using the argument above,
it also reduces θR. This means that assuming that only the left eye is con-
trolled, then both θL and θR go to zero. Then, in the worst case, that the
term eR · fR(ωL) must go to zero faster than eL. A symmetric argument
can be applied for the right eye, and since both control strategies (5.20) and
(5.21) (or (5.28) and (5.29)) jointly produce a reduction of the task errors
(in cooperative way) this means that the proposed control strategies (the
smooth or the non-smooth) ensure the convergence to zero of the task errors
as required.

E Solving Equation (6.6)

By projecting equation (6.6) along all the vectors forming the frame (6.9) we
obtain:

kL · [zL kL − zR kR] = kL · b (E.1)

kR · [zL kL − zR kR] = kR · b (E.2)

n · [zL kL − zR kR] = n · b (E.3)

where the last equation is identically 0 by definition of n, while the others
lead to:

zL − (kR · kL)zR = kL · b (E.4)

(kR · kL)zL − zR = kR · b (E.5)

Recall that (kR · kL) = cos α then the equations above can be written in
matrix form as:
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[

1 − cos α
cos α −1

] [

zL

zR

]

=

[

kL · b
kR · b

]

(E.6)

The system (E.6) can be solved in closed form as follows:

[

zL

zR

]

=
1

sin2 α

[

1 − cos α
cos α −1

] [

kL · b
kR · b

]

(E.7)

In particular:

zL =
1

sin2 α
[(kL · b) − (kR · b) cos α] (E.8)

zR =
1

sin2 α
[(kL · b) cos α − (kR · b)] (E.9)

then since | sin α| = |kR × kL| and cos α = kR · kL it is possible to compute
the following quantities which have been used through the text:

1

zL

=
|kR × kL|2

(kL · b) − (kR · kL)(kR · b)
(E.10)

1

zR

=
|kR × kL|2

(kR · kL)(kL · b) − (kR · b)
(E.11)




