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Abstract: 
In order to meet the objectives of workpackage WP1 a mathematical and geometrical model of the 
oculomotor plant able to implement the ocular eye movements in the 3D space has been developed.  A 
detailed description of the eyeball and of the extra-ocular muscles is given. In particular the geometrical 
properties of the plant, necessary for the implementation of  the Listing’s Law, are described.  
Two different models of the extra-ocular muscles are presented (Hill-type muscle and linearized muscle 
model). On the oculomotor plant the Inverse and Direct Problem are formulated and numerically solved in 
the 3D space. The first computes the muscle forces given a reference eye orientation, and the second one 
computes the eye orientation given the muscle forces. 
These two control problems have been tested with a Simulator implementing the biomechanics of the 
oculomotor plant. 
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1 Executive Summary
This document contains a detailed description of the oculomotor plant and a con-
trol strategy for the ocular movements in the 3D space, which constitutes the De-
liverable D1.4a entitled Control of voluntary transfer of fixations to new depth
planes (Intermediate Version) of the EU Project EYESHOTS. Deliverable D1.4 is
part of the workpackage WP1: Eye Movements for Exploration of the 3D Space.
In particular D1.4a is the first outcome of the activities of the worktasks Task 1.3
Control of voluntary eye movements in 3D, and Task 1.4 Bioinspired Stereovision
Robot System.
The workpackage WP1 is devoted to the study of ocular mechanics and oculomo-
tor control, for both single eye and conjugate movements. The target is to inves-
tigate how eye plant mechanics affects the strategies implemented by the brain to
drive typical biological ocular motions (including saccades and smooth pursuit).
A second goal is the study of the geometric and kinematic effects of ocular mo-
tions on image flows, for supporting the estimation of 3D information from ocular
motions. Finally, from the engineering point of view the major expected achieve-
ment is to develop a bio-inspired stereoscopic robot system capable of emulating
the ocular motions to be used during the planned experimental tests.
In order to meet these objectives it is necessary to develop a detailed model of the
ocular mechanics and of the control strategy (at muscolar level) that realize the
human eye movements in the 3D space.
A detailed mechanical model of the oculomotor system (i.e., eyeball and extra-
ocular muscles) is presented, and the geometrical properties implementing the
Listing’s Law are described.
The control strategy solve the two main problems, common to both artificial and
biological systems, called Inverse and Direct Problem.
This model has been also used to develop the stereo-vision robot, described in
detail in the Deliverable 1.4: Bioinspired Stereovision Robot System.. With the
Simulator the validity of the control strategy proposed has been verified.
The oculomotor model described in this document has been implemented in the
MATLAB/Simulink envinronment as described in the Deliverable 1.4a, entitled:
Bioinspired Stereovision Robot System. Robot Prototype Simulator.
The work presented can be easily integrated with the vision modules realized in
the other workpachages (WP2, WP3), in order to realixe stereo vision experi-
ments.
As final results these vision modules and the control strategy, presented here, can
be used to control the robot-eye prototype developed on the model described in
this document.
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2 Introduction
This document is a major review of the human oculomotor system, composed of
the eyeball and the extra-ocular muscles, and describes a new strategy to solve the
two main control problems, called, Direct and Inverse Problem.
This study is the starting point to realize the control strategy for the human eye
system and robot-eye prototype. In literature many different model of the oculo-
motor plant have been presented. In this document the mechanical and geometri-
cal properties of the human eye are described in detail, and two different models
of the extra-ocular muscles are presented.
The geometrical parameters of the oculomotor plant play a significant role for the
implementation of ocular motions that obey to the so called Listing’s Law and
Half-angle Rule.
The extra-ocular muscles drive the eyeball, the eye movements are performed by
the control strategy. In this document two main problems are analyzed and nu-
merically solved: 1) Direct Problem, 2) Inverse Problem, which are common to
both artificial and biological systems.
The Direct Problem computes the eye orientation given the muscle forces, instead
the Inverse Problem computes the four muscle forces given a reference eye orien-
tation. This control strategy is solved in the 3D space and respect the ocular laws.
Both the oculomotor model and the control strategy can be easily integrated with
the vision module developed in the other workpackages (WP2, WP3). In fact
given a retinal position (of the target object) the muscle forces that drive the eye-
ball in that position are computed.
Furthermore the control strategy presented here can be adapted to the robot-eye
prototype, in fact the robot-eye is built on the assumption made in this document.
The validity of the control strategy has been tested with a simulator, developed
with the MATLAB/Simulink envinronment described in the Deliverable 1.4a, in-
stead the control algorithms have been developed in MATLAB code.
In the first part of this document is described in detail the oculomotor system
(eyeball and muscles) and the two main ocular laws. In the second part the con-
trol strategy (Direct and Inverse problem) is presented and the simulations on the
plant and on the control algorithms are shown.
Finally in the Appendix A is shown the MATLAB code implementing the two
control algorithms.

5



EYESHOTS - Deliverable D1.3 3 OCULOMOTOR PLANT

3 Oculomotor Plant
In this Section the oculomotor plant system will be described, which is composed
of the eyeball, the orbit, the pulleys and the extraocular muscles.
The human eye has an almost spherical shape with an average diameter between
23 mm and 26 mm, and weighs betwwen 7 g and 9 g. It is housed in a cavity in
the skull called orbit and is protected by a mobile membrane (eyelid).
The human oculomotor system is composed of six extra-ocular muscles (EOMs),
housed in the orbital cavity, which allow the eye to rotate about its center with
negligible translations [1], [5]. This muscles give to the eye accelerations up to
20000 degsec−2 allowing to reach angular velocities up to 900 degsec−2 [3]. The

Figure 1: Lateral and top views of the human oculomotor plant

six extra-ocular muscles are coupled in three agonistic/antagonistic pairs, and
classified in two groups: recti (medial/lateral and superior/inferior), and obliqui
(superior/inferior). The four recti muscles have a common origin in the bottom
of the orbit (annulus of Zinn); they diverge and run along the eye-ball up to their
insertion points on the sclera (the eyeball surface). The insertion points form an
angle of about 55 deg with respect to the optical axis and are placed simmetrically
[1], [4]. The obliqui muscles have a more complex path within the orbit: they
produce actions almost orthogonal to those generated by the recti, and are mainly
responsible for the torsion of the eye about its optical axis.
Recent anatomical and physiological studies have suggested that the four recti
have an important role for the implementation of saccadic motions which obey to
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the so called Listing’s Law and Half-Angle rule. In fact, it has been found that the
path of the recti muscles within the orbit is constrained by soft connective tissue,
named soft-pulleys [6], [7].
It has long been recognized that rectus EOMs of mammals contain two distinct
layers: global and orbital layer [8], [9], [7] (Figure 2). The global layer is contin-
uous from the annulus of Zinn to the tendinous insertion on the globe, the orbital
layer terminates posterior on the soft-pulley tissue. On this caratteristics of the

Figure 2: Global and orbital layers of the four recti extar-ocular muscles

muscle the active pulleys theory has been proposed, against the previous passive
pulley theory, where both describe the movements of the pulley within the or-
bit [6], [7], [10], [11]. In the second theory is supposed that EOMs slide freely
throught connective tissue sleves, which are elastically stabilized relative to the
orbital wall.
On the contary the active pulley theory supposes that the EOMs, inserted in their
pulley sleeves, move them longitudinally (anteriorly and posteriorly), but resisting
to transverse movement.

3.1 Listing’s Law and Half-Angle Rule
The main goal of this Section is to provide the mathematical formulation of List-
ing’s law and of the Half-Angle Rule.
Recent anatomical advances [12],[7], suggest that the mechanics of the eye plant
could play a significant role to implement Listing’s law [13],[4],[14],[15],[16]. In
fact, there is evidence that connective tissue within the orbit (referred in the liter-
ature as soft pulleys) constrains the path of the extraocular muscles, affecting the
characteristics of ocular motions. For ocular motions, Listing’s law defines the
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amount of torsion of the eye for each direction of fixation [17],[18].
Relevant eye movements such as saccades and smooth pursuit obey to the List-
ing’s law, and in the following paragraphs, we shall refer to Listing compatible
motions to define any ocular movement respecting it.
Listing’s Law states that there exists a specific orientation of the eye (with respect
to a head fixed reference frame < h >= {h1, h2, h3}), called primary position.
During saccades any physiological orientation of the eye (described by the frame
< e >= {e1, e2, e3}), with respect to the primary position, can be expressed by
a rotation vector, v, always belongs to a head fixed plane, L (called Listing’s
plane). The normal to plane L is the eye direction of fixation at the primary po-
sition. Without loss of generality we can assume that e3 is the fixation axis of the
eye, and that < h >≡< e > at the primary position: then, L = span{h1, h2},
or equivalently we can state that Listing’s plane is orthogonal to vector h3. Fig-
ure 3 shows the geometry of Listing compatible rotations. In order to ensure that

Figure 3: Geometry of Listing compatible rotations. The finite rotation axis v is always orthog-
onal to h3. θ is the amount of rotation about v

v ∈ L at any time, the eye’s angular velocity ω, must belong to a plane Pω,
passing through v, whose normal, nω, forms an angle of θ/2 with the direction
of fixation at the primary position (see Figure 4). This property, directly implied
by Listing’s Law, is usually called Half-Angle Rule, [18],[19]. During a generic
saccade the plane Pω is rotating with respect to both the head and the eye due to
its dependency from v and θ. The normal to plane Pω is:
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Figure 4: Half-angle rule geometry. The eye’s angular velocity must belong to the plane Pω

passing through axis v (dashed lines indicate the part of Pω behind Listing’s plane). Vector nω is
orthogonal to Pω .

nω = h3 cos
θ

2
− (h3 × v) sin

θ

2
(1)

so that the half angle rule can be expressed as:

nω ·ω = 0 (2)

3.2 Eye Model
In the previous Section we have seen that the human eye has an almost spherical
shape and it is actuated by six extra-ocular muscles (EOMs). The eye-ball (globe)
is modeled as a homogeneus sphere of radius r, with three degrees of freedom
about its center.
The globe has a moment of inertia Jp, connected to a viscous element Bp and
a passive elasticity Kp modeling the visco-elastic properties of the orbital tissue
(Figure 5a)[21],[22],[23],[24]. On this mechanical assumptions the total torque τ
that acts on the globe can be written as:

τ = Jω̇ +Bω +K

∫ t

0

ωdt (3)

Where ω̇, ω are respectively the angular acceleration and velocity of the eye-ball,
and d

dt
ω=θ is the angular position of the globe. J, B, K are the inertia, viscosity
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and elasticity matricies:

J =

Jp 0 0
0 Jp 0
0 0 Jp

B =

Bp 0 0
0 Bp 0
0 0 Bp

K =

Kp 0 0
0 Kp 0
0 0 Kp


As it appears in Figure 5b the four extra-ocular muscles are connected to the
eyeball throught the insertion points and routed throught head fixed pointwise
pulleys, emulating the soft-pulley tissue. The pointwise pulleys are located on the
rear of the eyeball and their position can be described by vector pi = Pi − O,
whereas the insertion points can be described by vectors ci = Ci − O when the
eye-ball is in primary position (Figure 5b) [18].

(a) (b)

Figure 5: Mechanical and geometrical model of the oculomotor plant. (a) Sketch with the
mechanical parameters of the human eye: Jp moment of inertia, Bp orbit visocsity and Kp orbit
elasticity. (b) Sketch of the eye at the primary position, according to the assumptions made on the
placement of IPs, PPs, and routing of the EOMs. Each EOM generates a pulling force fi.

When the eye is rotated about a generic axis v by an angle θ, the position of the
insertion points can be expressed as:

ri = R(v, θ)ci ∀i = 1 . . . 4 (4)

Each extra-ocular muscle is assumed to follow the shortest path from each inser-
tion point to the corresponding pulley, [10]. Therefore, the direction of the torque
applied to the eye by the pulling action of each extra-ocular muscle is ortogonal
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to the plane defined by vectors ri and pi and can be expressed by the following
formula:

mi =
ri × pi
|ri × pi|

∀i = 1 . . . 4 (5)

According to the given assumptions, the torque applied to the eye by the action of
each EOM is given by:

τi = τimi ∀i = 1 . . . 4 (6)

where τi = Rfi > 0, and fi is the magnitude of the pulling forces generated by
the ith EOM. Now it is important to show that, for any eye orientation compatible
with the Listing’s Law, all the torque directions mi produced by the four recti
extra-ocular muscles belong to a common plane (Halfe-Angle Plane Pω) passing
through the finite rotation axis v that lies on the Listing plane [18]. On these
assumption all the vectorsmi are ortogonal to the vector nω, normal to the Half-
Angle Plane, and we can rewrite equation (3) as:

mi =
nω × ri
|nω × ri|

∀i = 1 . . . 4 (7)

Therefore, the total torque generated by the action of the recti EOMs can be rewrit-
ten as:

τ = nω ×
4∑
i=1

γiri (8)

where:
γi =

τi
|nω × ri|

> 0 ∀i = 1 . . . 4 (9)

At this point it is possible to rewrite the dynamic model of the oculomotor plant
shown in equation (3) as:

Jω̇ +Bω +K

∫ t

0

ωdt = nω ×
4∑
i=1

γiri (10)

3.3 Hill Muscle Model
As we have seen in the previous Section the torque τi is generated from the four
rectus muscle. The EOMs are modeled according to Hill’s approach [26],[25],[23].
In Figure 6 is shown a sketch of the Hill type model of a extraocular muscle.
The tendon of length lm is in series and off-axis by a pennation angle α with the
tendon of lenght lt, the total length of the extra-ocular muscle is ltm. The muscle
is composed of two main components: the active force generator in parallel to
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Figure 6: Hill-type model of the musculotendon dynamic.

the passive components. These two components are in series to the tendon elastic
element Kt. The passive components is composed of the parallel combination of
an elastic element Fpe, which describes the passive muscle elasticity, and a damp-
ing element Bm, which corresponds to the passive muscle viscosity. The active
state generator generates the active force for the muscle, which is the product of
length-tension relation fl(lm), velocity tension relation fv(l̇m), and the activation
level a(t).
The mass of the muscle can be ignored and the total force generated by the extra-
ocular muscle can be written as:

Ft = Fact + Fpe +Bml̇m (11)

where Ft, Fact, Fpe are, respectively, the tendon force, the active and the passive
force in the muscle whereas Bml̇m is the viscous passive muscle force. The total
torque for each muscle can be written as:

τi = Fti × ri ∀i = 1 . . . 4 (12)

where ri is the vector which identify the position of the insertion point of the ith
muscle.
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3.4 Linearized Muscle Model
In order to simplify the oculomotor plant model several researchers have been
developed a linearized model of the skeletal muscle. In particular we analyze
the model introduced by Bahill [21], and used afterwards by Enderle [22] as a
starting point for the development of control for saccadic and smooth pursuit eye
movements.
The four rectus EOMs form two agonist-antagonist muscle pairs. The agonist
muscle, for each muscle pair, is modelled as a parallel combination of an active
state tension generator FAG, viscosity element BAG, and elastic element KLT ,
connected to a series elastic element KSE . Similarly the antagonist muscle is
modeled as a parallel combination of an active state tension generator FANT ,
viscosity element BANT , and elastic element KLT , connected to a series elastic
element KSE . Each of the elements defined in the model of the muscles is ideal
and linear.

Figure 7: Linearized muscle model: F active state tension generator, B viscosity element, KLT

tendon elastic element, KSE muscle elastic element.

In Figure 7 is shown a sketch of the linear model of a extra-ocular muscle, where
B can beBAG orBANT if the muscle is agonist or antagonist. The force generated
by each mucle is:

Ft = KSEltm Ft = F −KLT lt −Bl̇m (13)

where F is the active force,KLT lt andBl̇m are respectively the passive elastic and
passive viscous force. The total torque generated by each muscle can be written
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as:
τi = Fti × ri ∀i = 1 . . . 4 (14)

The active state tension generator F is a first-order filter of the neuronal control
signal N , thus we have:

Ḟ =
N − F
τ

(15)

where τ is the activation or deactivation time constant.
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4 Control Problem
In the previous Section the eyeball has been modeled like a sphere with three
degrees of freedom about its center and it is controlled by six extra-ocular muscles.
During the discussion of the control strategy proposed we consider only the four
recti muscles (lateral/medial and superior/inferior) which play a significant role
during saccadic and smooth pursuit movements.
The control problem can be divided in two main parts: 1) computing the EOM
forces to achieve a given (Listing compatible) eye orientation, this is the so called
Static Inverse Problem; 2) computing eye orientation from EOM forces, called
the Static Direct Problem. In particular the inverse problem is to compute the
neurological control signal (muscle acivation) that implements the muscle force
for a reference eye position, thus we have a mapping between the angular position
of the eyeball and the motor commands.

4.1 Static Direct Problem
The direct dynamic problem is common to both biological and artificial motor
system and a number of analytical solutions have been proposed. We can define
the direct dynamic problem as: ”given the force and the torque of the joints com-
puting the position of the end effector”.
In our case we have the eyeball (end-effector) with three degrees of freedom about
its center (spherical joint) actuated by the four rectus muscles. Therefore, we can
rewrite the direct dynamics problem for the oculomotor plant as: ”given the four
muscle forces computing the angular position of the eye”. We want to solve this
problem at steady state condition, which means computing the eye orientation
given the EOM forces f ∗i without considering the transient of the oculomotor sys-
tem. For the static direct problem the solution is unique, namely, four muscles
force identify one, and only one, eye orientation. As it appears in the previous
Section the dynamics model of the oculomotor plant, at steady state, is:

Kvθ = nR
ω ×

4∑
i=1

γ∗i ci γ∗i =
f ∗i r

|nR
ω × ci|

> 0 ∀i = 1 . . . 4 (16)

For the static direct problem there is not an analitycal or geometrical solution for
the 3D model presented in this document. We have found a recursive algorithm,
which in few steps compute the eye orientation from the four muscle forces. Math-
ematically the algorithm can be written as:

γi[K] = D[K]f∗[K]r ∀K = 1 . . . N (17)
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where:

D[K] =



1

|nR
ω [K−1]×c1|

0 0 0

0 1

|nR
ω [K−1]×c2|

0 0

0 0 1

|nR
ω [K−1]×c3|

0

0 0 0 1

|nR
ω [K−1]×c4|

f
∗ =


f1
f2
f3
f4


r is the radius of the eyeball and K represents the K-th iteration. The axis of
rotaion v at the K-th iteration is:

v[K] =
nR

ω [K − 1]×
∑4

i=1 γi[K]ci

|nR
ω [K − 1]×

∑4
i=1 γi[K]ci|

∀i = 1 . . . 4, ∀K = 1 . . . N

(18)
and the angle θ of rotation about the axis v at the K-th iteration is:

θ[K] =
|nR

ω [K − 1]×
∑4

i=1 γi[K]ci|
Kp

∀i = 1 . . . 4, ∀K = 1 . . . N

(19)
Finally the vector orthogonal to the Half-angle Plane can be written as:

nR
ω [K] = h3 cos

θ[K]

2
− (h3 × v[K]) sin

θ[K]

2
∀K = 1 . . . N (20)

where the initial value for the vector nR
ω is:

nR
ω [0] = h3 (21)

4.2 Static Inverse Problem
The three rotational degrees of freedom of the eye are controlled by the four ex-
traocular muscles, so there are infinitely values of the motor commands that cor-
respond to a unique eye position. For example, in static condition, the tensions of
the muscles can be encreased, so that the total force dose not change, leaving the
position unchanged.
In the oculomotor system the four rectus muscles are divided in two agonistic/an-
tagonistic muscle pairs (lateral/medial and superior/inferior) and are reciprocally
innervated. This means that an increase in the innervation in the agonistic muscle
is accompanied by a decrease in the antagonistic muscle innervation.
Here we investigate the problem of associating the motor commands that mantain
the eyeball in a given reference eye position. All the mechanical and geometri-
cal properties described in Section 4 are considered to solve the Inverse Problem,
where we have defined the mathematical model of the oculomotor dynamic as:

τ = Jω̇ +Bω +Kθ (22)
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where:

τ = nω ×
4∑
i=1

γiri, γi =
fir

|nω × ri|
> 0 ∀i = 1 . . . 4 (23)

The problem is to compute the forces fi that mantain the eye (at steady state) in
a given Listing compatible orientation. At steady state the angular velocity (nω)
and the angular acceleration (ω̇) of the eyeball are equal to zero, and let (v∗,θ∗)
be the reference orientation of the eye, the dynamic of the oculomotor plant can
be re-written as:

Kv∗θ∗ = nω ×
4∑
i=1

γiri γi =
fir

|nω × ri|
> 0 ∀i = 1 . . . 4 (24)

where nω and ri are explicit function of (v∗,θ∗):

ri = R(v∗, θ∗)ci ∀i = 1 . . . 4, nω = h3 cos
θ∗

2
−(h3×v∗) sin

θ∗

2
(25)

Figure 8: Geometry of the oculomotor plant after a rotation (v∗,θ∗): nω vector ⊥ to the Half-
Angle Plane, ri new position of the four insertion points.

In Figure 8 are shown the position of the inserion points and of the vector orthog-
onal to the Hal-Angle Plane after a rotation around the axis v∗ by an angle θ∗.

17
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Applying a rigid rotation (v∗,−θ∗) the steady state equations can be re-written as:

Kv∗θ∗ = nR
ω ×

4∑
i=1

γici γi =
fir

|nR
ω × ci|

> 0 ∀i = 1 . . . 4 (26)

In Figure 9 is shown the geometry of the oculomotor plant (insertion points and

Figure 9: Geometry of the oculomotor plant after a rotation (v∗,−θ∗): nr
ω vector ⊥ to the

Half-Angle Plane, the vectors ri and vector e3 are rotated back in primary position.

nR
ω ) after the rotation (v∗,−θ∗).

At this point the unknown variables are the γi and from these it is possible compute
the four muscle forces.
With this approach we have transformed the problem of computing the muscle
forces from a three dimensional space in to a bidimensional one, that is the plane
identified by vectors h1, h2 or the locally isomorph surface.
The unknown variables can be expressed as:

γi = γpi + γoi (27)
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where γi, the general solution to the equation (22), is the sum of the general so-
lution (γoi ) of the related homogeneous equation and the particular solution (γpi ).
The particular solution is computed by assuming that the four γpi are equal:

γpi = γp > 0 ∀i = 1 . . . 4 (28)

We can rewrite equation (22) as:

Kv∗θ∗ =

{
nR

ω ×
4∑
i=1

ci

}
γp (29)

And the solution γp is:

γp =
Kθ

sin
(
θ
2

)
4 cos β

(30)

At this point the muscle forces related to the particular solution are:

fpi =
γp|nR

ω × ci|
r

(31)

where r is the radius of the eyeball.
The γoi are the general solution of the related homogeneous equation, which can
be written as:

0 = nR
ω ×

4∑
i=1

γpi ci ∀i = 1 . . . 4 (32)

This equation is true if:

4∑
i=1

γpi ci = n
R
ω ∀i = 1 . . . 4 (33)

It is possible to redefine nR
ω as:

ñR
ω = δnR

ω = [ñRωx ñ
R
ωy ñ

R
ωz]

T where δ =
sin θ

2

cos β
(34)

Where ñR
ω is the vector nR

ω scaled on the plane identified by the vectors ci and
parallel to the Listing plane. At this point we can define the vector:

n̂R
ω = 2ñR

ω = [n̂Rωx n̂
R
ωy n̂

R
ωz]

T (35)

We can chose two vectors like: n̂ω
H = [n̂Rωx 0 ñ

R
ωz]

T and n̂ω
V = [0 n̂Rωy ñ

R
ωz]

T that:

n̂R
ω = n̂ω

H + n̂ω
V and ñR

ω =
n̂ω

H + n̂ω
V

2
(36)
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Figure 10: Front view of the geometry of the oculomor plant.

An important property of the vectors n̂ω
H and n̂ω

V is that they belong, respectively,
to the planes identified by vectors c1,c3 and c2,c4. These two vectors can be
written as the linear combination of vectors c1,c3 and c2,c4:

n̂ω
H = γo1c1 + γo3c3

n̂ω
V = γo2c2 + γo4c4 (37)
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The four unknown variables γpi are computed as:

γo1 =
n̂ω

H · c1 − (c3 · c1)(n̂ω
H · c3)

1− (c3 · c1)2

γo3 =
n̂ω

H · c3 − (c3 · c1)(n̂ω
H · c1)

1− (c3 · c1)2

γo2 =
n̂ω

H · c2 − (c4 · c2)(n̂ω
H · c4)

1− (c4 · c2)2

γo4 =
n̂ω

H · c4 − (c4 · c2)(n̂ω
H · c2)

1− (c4 · c2)2
(38)

At this point the muscle forces related to the general solution of the homogeneous
equation are:

f oi =
γoi |n̂ω

H × ci|
r

∀i = 1 . . . 4 (39)

and the total force fi produced by each rectus muscle is:

fi = f oi + fpi ∀i = 1 . . . 4 (40)
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5 Simulations
In order to verify the validity of the solution for the static direct problem and for
the static inverse problem have been developed two different MATLAB programs.
In Appendix A is shown the code to compute the solution for the direct and inverse
problems. With the inverse problem function have beeen computed the muscle
forces at different eye orientaion. The angular position of the eye is defined by the
rotaion axis v and the amount of rotation θ about v, defined as:

(v∗, θ∗) = ([cosα sinα 0], θ∗) (41)

In Figure 11 are shown the module of the muscls forces at different eye orienta-
tion. The four muscle forces computed at different eye orientation has been used

Figure 11: Table with the computed muscle forces given a reference eye orientation. f1,f2,f3
and f4 are, respectively the forces of the lateral, superior, medial and inferior rectus muscle, ex-
pressed in Newton

like inputs for the Simulink model of the oculomotor plant shown in Figure 12.
The human eye system is composed of the model of the head (supposed fixed)
and the eyeball (Simulink Library blocks), modeled on the assumptions made in
the Section 3. This simulator is described in detail in the Deliverable 1.4b entitled
Bioinspired Stereovision Robot System. Robot Prototype Simulator.
In this simulations we test the algorithms on one eye and we assume that the eye
start always from the primary position.
Each block of the system has a custom Graphical User Interface (MATLAB GUI)
where you can configure the geometrical and mechanical parameters of the block.
On the head model you can configure the initial position and orientation of the
head (the head is supposed fixed) and the initial orientation and position of the
eyeball with respect to the head reference system. On the eye block are con-
figured the following parameters (used also to solve the direct and inverse static
problem) [22]:

• Mechanical parameters

– Orbit elasticity Kp [Nm−1]: 66.4,

– Orbit viscosity Bp [Nsm−1]: 3.1,
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– Inertia moment Jp [Ns2m−1]: 2.2x10−3,

– Mass [g]: 8.

• Geometrical parameters:

– Radius r [mm]: 12,

– Insertion points ci [mm]: computed as explained is Section 3,

– Pointwise pulleys pi [mm]: computed as explained is Section 3.

Figure 12: Simulink model of the oculomotor plant, composed of the head, the eyeball and the
four muscle forces (constats).

In Figure 13 is shown the output (angular position of the eye) of the Simulink
model of the oculomotor plant where the inputs are the forces computed from the
reference eye orientation:

(v∗, θ∗) = ([cosα sinα 0], θ∗) where α = 30◦ and θ = 20◦

As it appears in Figure 13 the third component of the eye orientation vector is
equal to zero, according to the Listing’s Law.
In order to verify the validity of the static direct problem algorithm, four muscle
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Figure 13: Eye orientation after the action of the EOMs. vxθ, vyθ vzθ components of the eye
orientation vector.

Figure 14: Static Direct Problem algorithm. The muscle forces (inputs of the algorithm), and
the orientation vector (output of the algotithm) are shown

forces have been passed as inputs to the direct problem function and in Figure 14
are shown the muscle forces, the steps of the algorithm and the solution.
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6 Conclusions
In this document a detailed model, geometrical and mechanical, of the human ocu-
lomotor plant has been described. In particular the mechanical properties of the
orbital tissue that surround the eyeball have been analyzed. Furthermore the geo-
metrical parameters (extraocular muscle insertion points, softwise pulleys) which
are fundamental for the implementation of the ocular laws (Listing’s law and Half-
Angle Rule) have been presented.
Two different models of the extraocular muscle have been described: the first is a
non-linear model based on the Hill modelization of the skeletal muscle, the sec-
ond is a linearized model composed of linear mechanical elements such as spring
and dumper.
The main problem of artificial and biological systems is to compute the forces that
drive the system in a reference position (inverse dynamic problem) and to com-
pute the position given the forces (direct problem). In this document a recoursive
algorithm able to solve the direct problem in few steps is described. Furthermore a
geometrcial inverse control problem is formulated and numerically solved. These
two problems are solved with the system at steady state, namely when the system
is in a static condition.
On this model the analysis of the dynamic behavior of the system can be computed
and the control problem for the saccadic and smooth pursuit movements can be
formulated.
Both the oculomotor model and the control strategy, presented here, can be eas-
ily integrated with the vision module developed in the other workpackages (WP2,
WP3), infact given a retinal position (of the target object) are computed the mus-
cle forces that drive the eyeball in that position.
Furthermore the robot eye prototype is developed on the assumpions given in this
document, regarding the eyeball and the actuation system (linear motor imple-
menting the extra-ocular muscle) that drive the eyeball respecting the two ocular
laws. The control strategy can be also implemented on the robot with a force con-
trol on the motor, instead themore classical position or velocity control strategy.
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A Simulation Code

A.1 Inverse Problem (MATLAB Code)

f u n c t i o n i n v e r s e p r o b l e m ( a l f a , t e t a )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%The INVERSE PROBLEM(ALFA, TETA) f u n c t i o n computes t h e f o u r muscle f o r c e s
%%from a g i v e n eye o r i e n t a t i o n i n t e r m s of a l f a and t e t a .
%%a l f a [ deg ] i d e n t i f y t h e o r i e n t a i o n v e c t o r v
%%t e t a [ deg ] i s t h e amount o f r o t a t i o n a b o u t v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% problem i n i t i a l i z t i o n
s = i n i t i n v e r s e p r o b l e m ( a l f a , t e t a ) ;

% comput ing t h e p a r t i c u l a r s o l u t i o n
l p = ( s . Kp∗ r ad2deg ( s . t e t a ) / ( 4 ∗ norm ( s . nw r )∗ cos ( s . b e t a ) ∗ ( s i n ( s . t e t a 2 ) ) ) ) ;

% comput ing t h e g e n e r a l s o l u t i o n r e l a t e d t o t h e homogeneous e q u a t i o n
l o = f o r c e ( s ) ;

l = l o + l p ;
% t o t a l muscle f o r c e
f 1 t = l ( 1 ) ∗ ( norm ( c r o s s ( s . nw r , s . c1 ) ) ) / s . r ;
f 2 t = l ( 2 ) ∗ ( norm ( c r o s s ( s . nw r , s . c2 ) ) ) / s . r ;
f 3 t = l ( 3 ) ∗ ( norm ( c r o s s ( s . nw r , s . c3 ) ) ) / s . r ;
f 4 t = l ( 4 ) ∗ ( norm ( c r o s s ( s . nw r , s . c4 ) ) ) / s . r ;

% muscle f o r c e r e l a t e d t o l p
f 1 p = l p ∗ ( norm ( c r o s s ( s . nw r , s . c1 ) ) ) / s . r ;
f 2 p = l p ∗ ( norm ( c r o s s ( s . nw r , s . c2 ) ) ) / s . r ;
f 3 p = l p ∗ ( norm ( c r o s s ( s . nw r , s . c3 ) ) ) / s . r ;
f 4 p = l p ∗ ( norm ( c r o s s ( s . nw r , s . c4 ) ) ) / s . r ;

% muscle f o r c e r e l a t e d t o l o
f 1 o = l o ( 1 ) ∗ ( norm ( c r o s s ( s . nw r , s . c1 ) ) ) / s . r ;
f 2 o = l o ( 2 ) ∗ ( norm ( c r o s s ( s . nw r , s . c2 ) ) ) / s . r ;
f 3 o = l o ( 3 ) ∗ ( norm ( c r o s s ( s . nw r , s . c3 ) ) ) / s . r ;
f 4 o = l o ( 4 ) ∗ ( norm ( c r o s s ( s . nw r , s . c4 ) ) ) / s . r ;

% s t o r e t h e f o r c e s i n a MAT f i l e
f i t =[ f 1 t f 2 t f 3 t f 4 t ] ;
f i p =[ f 1 p f 2 p f 3 p f 4 p ] ;
f i o =[ f 1 o f 2 o f 3 o f 4 o ] ;
a = num2s t r ( a l f a ) ;
t = num2s t r ( t e t a ) ;
s ave ( [ ’ f o r c e ’ f l a g , ’ ’ a ’ ’ t , ’ . mat ’ ] , ’ f i t ’ , ’ f i p ’ , ’ f i o ’ , ’ lo ’ , ’ lp ’ ) ;

f u n c t i o n s = i n i t i n v e r s e p r o b l e m ( a l f a , t e t a )
r = 1 1∗0 . 0 0 1 ; % r a d i u s
s . r = r ;
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s . Kp = 6 6 . 4∗ ( r ) ˆ 2 / 5 7 . 2 9 6 ; % o r b i t e l a s t i c i t y
h3 = [0 0 1 ] ’ ;
s . a l f a = deg2rad ( a l f a ) ;
s . v = [ cos ( s . a l f a ) s i n ( s . a l f a ) 0 ] ’ ; % o r i e n t a t i o n v e c t o r
s . t e t a = deg2rad ( t e t a ) ; % amount o f r o t a t i o n
s . b e t a = deg2rad ( 5 5 ) ; % a n g l e f o r p u l l e y s and i n s e r i o n p o i n t s
s . t e t a 2 = s . t e t a / 2 ;

d e l t a = cos ( s . b e t a ) / cos ( s . t e t a 2 ) ; % s c a l e f a c t o r

% compute r o t a t i o n m a t r i x
S=[0 −s . v ( 3 ) s . v ( 2 ) ; s . v ( 3 ) 0 −s . v (1) ;− s . v ( 2 ) s . v ( 1 ) 0 ] ;
R = eye ( 3 ) + S∗ s i n ( s . t e t a )+Sˆ2∗(1− cos ( s . t e t a ) ) ;

% i n s e r t i o n p o i n t s i n p r i m a r y p o s i t i o n
C1 = r ∗ [ s i n (55∗ p i / 1 8 0 ) ; 0 . 0 0 ; cos (55∗ p i / 1 8 0 ) ] ;
C3 = r ∗ [− s i n (55∗ p i / 1 8 0 ) ; 0 . 0 0 ; cos (55∗ p i / 1 8 0 ) ] ;
C2 = r ∗ [ 0 . 0 0 ; s i n (55∗ p i / 1 8 0 ) ; cos (55∗ p i / 1 8 0 ) ] ;
C4 = r ∗ [ 0 . 0 0 ; −s i n (55∗ p i / 1 8 0 ) ; cos (55∗ p i / 1 8 0 ) ] ;
s . c1 = C1 / norm ( C1 ) ;
s . c2 = C2 / norm ( C2 ) ;
s . c3 = C3 / norm ( C3 ) ;
s . c4 = C4 / norm ( C4 ) ;

% nw and nw r and nw r1 ( s c a l e d )
nw = ( h3∗ cos ( s . t e t a 2 )−( c r o s s ( h3 , s . v )∗ s i n ( s . t e t a 2 ) ) ) ;
s . nw r = R’∗nw ;
s . nw r1 = d e l t a ∗ s . nw r ;

f u n c t i o n l o i = f o r c e ( s )

nw r2 = 2∗ s . nw r1 ;
% nh and nv v e c t o r s
nh = [ nw r2 ( 1 ) 0 s . nw r1 ( 3 ) ] ’
nv = [0 nw r2 ( 2 ) s . nw r1 ( 3 ) ] ’ ;
% compute g e n e r a l s o l u t i o n
l o 1 = ( ( nh ’∗ s . c1 )− ( ( s . c3 ’∗ s . c1 ) ∗ ( nh ’∗ s . c3 ) ) ) / ( 1 − ( s . c1 ’∗ s . c3 ) ˆ 2 )
l o 3 = ( ( nh ’∗ s . c3 )− ( ( s . c3 ’∗ s . c1 ) ∗ ( nh ’∗ s . c1 ) ) ) / ( 1 − ( s . c1 ’∗ s . c3 ) ˆ 2 )
l o 2 = ( ( nv ’∗ s . c2 )− ( ( s . c4 ’∗ s . c2 ) ∗ ( nv ’∗ s . c4 ) ) ) / ( 1 − ( s . c2 ’∗ s . c4 ) ˆ 2 ) ;
l o 4 = ( ( nv ’∗ s . c4 )− ( ( s . c4 ’∗ s . c2 ) ∗ ( nv ’∗ s . c2 ) ) ) / ( 1 − ( s . c2 ’∗ s . c4 ) ˆ 2 ) ;

l o i = [ l o 1 l o 2 l o 3 l o 4 ]∗ s . r ;

A.2 Direct Problem (MATLAB Code)

f u n c t i o n [ v , t e t a ]= d i r e c t p r o b l e m ( f i )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%The [V, TETA]=DIRECT PROBLEM( Fi ) f u n c t i o n computes t h e eye
%%o r i e n t a t i o n g i v e n t h e f o u r muscle f o r c e s .
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%%Fi v e c t o r wi th t h e f o u r muscle f o r c e s
%%V i d e n t i f y t h e o r i e n t a i o n v e c t o r v
%%TETA [ deg ] i s t h e amount o f r o t a t i o n a b o u t v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c l c
r = 1 1∗0 . 0 0 1 ; % e y e b a l l r a d i u s
Kp = 6 6 . 4∗ ( r ) ˆ 2 / 5 7 . 2 9 6 ; % o r b i t e l a s t i c i t y
h3 = [0 0 1 ] ’ ;

g l o b a l f c1 c2 c3 c4 i
i =1
f = f i ;
% i n s e r t i o n p o i n t s i n p r i m a r y p o s i t i o n
C1 = r ∗ [ s i n (55∗ p i / 1 8 0 ) ; 0 . 0 0 ; cos (55∗ p i / 1 8 0 ) ] ;
C3 = r ∗ [− s i n (55∗ p i / 1 8 0 ) ; 0 . 0 0 ; cos (55∗ p i / 1 8 0 ) ] ;
C2 = r ∗ [ 0 . 0 0 ; s i n (55∗ p i / 1 8 0 ) ; cos (55∗ p i / 1 8 0 ) ] ;
C4 = r ∗ [ 0 . 0 0 ; −s i n (55∗ p i / 1 8 0 ) ; cos (55∗ p i / 1 8 0 ) ] ;
c1 = C1 / norm ( C1 ) ;
c2 = C2 / norm ( C2 ) ;
c3 = C3 / norm ( C3 ) ;
c4 = C4 / norm ( C4 ) ;

nw r = h3 ; % i n i t i a l i z a t i o n o f nw r f o r t h e r e c o u r s i v e a l g
[ v t e t a ] = a l g ( nw r , h3 , Kp , r ) ;

f u n c t i o n [ w v t e t a ] = a l g ( nw r , h3 , Kp , r )
g l o b a l f c1 c2 c3 c4 i
D = [ 1 / ( norm ( c r o s s ( nw r , c1 ) ) ) 0 0 0 ; 0 1 / ( norm ( c r o s s ( nw r , c2 ) ) ) 0 0 ; . . .

0 0 1 / ( norm ( c r o s s ( nw r , c3 ) ) ) 0 ; 0 0 0 1 / ( norm ( c r o s s ( nw r , c4 ) ) ) ] ;
l = D∗ f ’∗ r ;
h = l ( 1 )∗ c1 + l ( 2 )∗ c2+ l ( 3 )∗ c3+ l ( 4 )∗ c4 ;
w = c r o s s ( nw r , h ) ;
w v = w/ norm (w ) ;
t e t a = norm (w ) / Kp ;
temp1 = t e t a ;
temp = nw r ;
nw r = ( h3∗ cos ( deg2rad ( temp1 / 2 ) ) + ( c r o s s ( h3 , w v )∗ s i n ( deg2 rad ( temp1 / 2 ) ) ) ) ;
i f ( temp−nw r<1e−12)

e l s e
[ w v t e t a ] = a l g ( nw r , h3 , Kp , r )
i = i +1

end
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