

Project no.: FP7-ICT-217077
Project full title: Heterogeneous 3-D Perception across Visual Fragments
Project Acronym: EYESHOTS
Deliverable no: D1.4a
Title of the deliverable: Bioinspired Stereovision Robot System. Robot Prototype.

(Intermediate version Month 24)

Date of Delivery: 02 March 2010
Organization name of lead contractor for this deliverable: UG
Author(s): G. Cannata, A. Trabucco
Participant(s): UG
Workpackage contributing to the deliverable: WP1
Nature: Prototype/Other
Version: 1.2
Total number of pages: 55
Responsible person: Giorgio Cannata
Revised by: S.P. Sabatini
Start date of project: 1 March 2008 Duration: 36 months

Project Co-funded by the European Commission within the Seventh Framework Programme

Dissemination Level

PU Public
PP Restricted to other program participants (including the Commission Services) X
RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Abstract:
In order to meet the objectives of workpackage WP1 it has been decided to develop a software simulator
which could be used as a tool for the analysis of ocular motion and its interplay with vision both within the
scope of WP1 and also within other workpackages and in view of the integration activities planned as final
demonstration of the project’s results. This document describes a software package designed as a
simulation tool for the analysis of bio-inspired dynamic ocular models suitable for the study of bio-inspired
ocular motion control strategies, as a support tool for the design of a bio-inspired robot eye (expected as
deliverable D1.4b), and, if required, to perform comparative analysis with the common pan-tilt platforms
commonly used in robot vision. The package has been designed to be an analysis tool bearing in mind
various operational requirements. The first is that it could be used with a reasonably limited background
knowledge of the Simulink programming environment. To this aim a particular care has been given to limit
the number of blocks required to set-up the simulation environments and to provide an extensive use of
graphical user interfaces (GUIs) to support the parameterization of the models. The second important
requirement has been that of making possible the integration with the virtual reality simulator developed as
part of WP1 for the synthesis of ground truth stereo images datasets.

This document is in final form and no updated versions of it will be issued. However, as this report is the
User’s Manual of the release 1.1 of a software package, some sections could be subject to modification or
upgrade. Additional release notes related to further development of the software described in the present
report could be produced during the forthcoming project activities.

EYESHOTS - Deliverable D1.4a CONTENTS

Contents
1 Executive Summary 4

2 Introduction 5

3 System description 6
3.1 Software requirements . 6
3.2 Directories and Files . 6
3.3 Installation and Startup . 7

3.3.1 The setup.m file . 8
3.3.2 The startup.m file . 8
3.3.3 The get path.m file . 9
3.3.4 The slblocks.m file . 9

4 Library blocks description 10
4.1 Geometrical parameters . 10
4.2 SimMechanics Toolbox . 12
4.3 Creating block Libraries . 13
4.4 Creating Matlab GUI (Graphical User Interfaces) 14
4.5 Source code of the library blocks 16
4.6 Library blocks . 17
4.7 Head block . 18

4.7.1 Model description . 19
4.7.2 Dialog box . 20

4.8 Eye block . 31
4.8.1 Model description . 33
4.8.2 Dialog box . 40

4.9 EOMs block . 42
4.9.1 Model description . 43
4.9.2 Dialog box . 45

4.10 Pan-tilt block . 46
4.10.1 Model description . 49
4.10.2 Dialog box . 50

4.11 Joint velocities block . 51
4.11.1 Dialog box . 53

2

EYESHOTS - Deliverable D1.4a LIST OF FIGURES

List of Figures
1 Directories . 7
2 Reference frames . 11
3 SimMechanics reference frames 12
4 Library EyeLib in the Simulink Library Browser. 14
5 GUI template in the Layout Editor 16
6 Simulink/SimMechanics model of the head 19
7 Head block interface . 21
8 Head mask editor . 30
9 Eyeball . 31
10 Simulink/SimMechanics model of the eye 34
11 Simulink model of the Muscle forces block 35
12 Simulink model of the force direction block 36
13 Simulink model of the Muscle length block 37
14 Simulink model of the Muscle length block for the left muscle . . 37
15 The plane of muscle i for a generic eye orientation 38
16 Simulink model of the Angular position block 39
17 Simulink block of the conversion from world to head reference

frame . 39
18 Eye block interface . 41
19 Agonist and antagonist muscle 42
20 EOMs Simulink model . 44
21 Simulink model of the left rectus muscle 44
22 EOMs block interface . 45
23 Axes orientation for a generic frame i 46
24 Geometry of the pan-tilt system 47
25 Geometry of the complete pan-tilt system 48
26 Simulink model of the pan-tilt block 50
27 Pan-tilt block interface . 51
28 Simulink model of the Joint velocities block 52
29 Joint velocities block interface 53

3

EYESHOTS - Deliverable D1.4a 1 EXECUTIVE SUMMARY

1 Executive Summary
This document is the User’s Manual of a custom made Simulink Toolbox software
package which constitutes the Deliverable D1.4a entitled Bioinspired Stereovision
Robot System. Robot Prototype. (Intermediate Version) of the EU Project EYE-
SHOTS. Deliverable D1.4a is part of the workpackage WP1: Eye Movements for
Exploration of the 3D Space. In particular D1.4a is the first outcome of the ac-
tivities of the worktasks Task 1.3 Control of voluntary eye movements in 3D, and
Task 1.4 Bioinspired Stereovision Robot System.

The workpackage WP1 is devoted to the study of ocular mechanics and ocu-
lomotor control, for both single eye and conjugate movements. The target is to
investigate how mechanics of the eye plant affects the strategies implemented by
the brain to drive typical biological motions ocular motions (including saccades
and smooth pursuit). A second goal is the study of the geometric and kinematic
effects of ocular motions on image flow, for supporting the estimation of 3D infor-
mation from ocular motions. Finally, from the engineering point of view the major
expected achievement is to develop a bio-inspired stereoscopic robot system ca-
pable to emulate the ocular motions to be used during the planned experimental
tests.

In order to meet these objectives it has been decided to develop a software
simulator which could be used as a tool for the analysis of ocular motion and its
interplay with vision both within the scope of WP1 and also within other work-
packages and in view of the integration activities planned as final demonstration
of the project’s results.

This document describes a software package designed as a simulation tool
for the analysis of bio-inspired dynamic ocular models suitable for the study of
bio-inspired ocular motion control strategies, as a support tool for the design of a
bio-inspired robot eye (expected as deliverable D1.4b), and, if required, to perform
comparative analysis with the common pan-tilt platforms commonly used in robot
vision.

The package has been designed to be an analysis tool bearing in mind various
operational requirements. The first is that it could be used with a reasonably
limited background knowledge of the Simulink programming environment. To
this aim a particular care has been given to limit the number of blocks required to
set-up the simulation environments and to provide an extensive use of graphical
user interfaces (GUIs) to support the parameterization of the models. The second
important requirement has been that of making possible the integration with the
virtual reality simulator developed as part of WP1 for the synthesis of ground truth
stereo images datasets [15].

4

EYESHOTS - Deliverable D1.4a 2 INTRODUCTION

2 Introduction
This document describes a software package designed as:

• a simulation tool for the analysis of bio-inspired dynamic ocular models
suitable for the study of bio-inspired ocular motion control strategies,

• a support tool for the design of a bio-inspired robot eye, and, if required, for
a comparative analysis with the common pan-tilt platforms commonly used
in robot vision.

The system allows to model fully bio-inspired or robotic head eye platforms.
The simulator has been fully implemented using MATLAB/Simulink in order

to guarantee flexibility and portability (and furthermore has been designed as a
Simulink toolbox). The package has been designed to be an analysis tool bearing
in mind various operational requirements. The first is that it could be used with a
reasonably limited background knowledge of the Simulink programming environ-
ment. To this aim, a particular care has been taken to limit the number of blocks
required to set-up the simulation environments and to provide an extensive use
of graphical user interfaces (GUIs) to support the parameterization of the models.
The second important requirement has been that of making possible the integra-
tion with the virtual reality simulator developed as part of WP1 for the synthesis
of ground truth stereo images [15].

In order to make the usage of the package as simple as possible an extensive
on line help documentation has been included in order to provide the required
background on the bio-inspired eye modelling and on the robot eye kinematics.

The structure of this document is the following. Section 3 describes the set-
up procedures required to install the software package1. Section 4 describes the
geometric and kinematic conventions adopted during the implementation of the
models (first part), and provides the description of the implementation of the var-
ious custom block including reference to the scientific literature (second part).

1The software makes use of several files generated at configuration and run time. These files
are required to manage the data which parameterize each model instance, and they should be never
directly modified, moved or deleted by the user.

5

EYESHOTS - Deliverable D1.4a 3 SYSTEM DESCRIPTION

3 System description
This documentation addresses the procedure to model the human oculomotor
plant for the binocular vision and the kinematic of a pan-tilt system. In particular,
the goal is to provide guidelines for the implementation of the various functions
responsible for human eye movements and binocular vision.
In the first part we describe the steps and the software requirements necessary to
configure the system, then we analyze how to implement the various functions of
the oculomotor plant and the kinematics of a pan-tilt system.

3.1 Software requirements
To correctly run the system it is necessary to install the following programs and
tools:

• WindowsXp or Windows Vista Operating System;

• MATLAB R2008b;

• Simulink 7.2;

• SimMechanics 3.0.

3.2 Directories and Files
The system is organized in a set of directories and files. Fig. 1 shows the di-
rectories structure of the system. The base folder is called EyeShotsLib and it
contains the following folders and files:

• setup.m: MATLAB file that is central to configure the EyeShotLib package
(see the following section for more details);

• data folder: directory that contains (∗.mat) files with the saved parameters
of the Simulink models;

• doc folder: contains web files (∗.html) for the Matlab help browser and the
User′sGuide.pdf ;

• examples folder: contains some examples about the library block such as a
pan-tilt system and the model of the human oculomotor plant;

• lib folder: contains Simulink Library files (∗.mdl) that implement the func-
tions of a pan-tilt system and of the human eye system;

6

EYESHOTS - Deliverable D1.4a 3 SYSTEM DESCRIPTION

• src folder: contains all the Matlab files (∗.m, ∗.mat and ∗.f ig) necessary
for the library blocks.

Figure 1: Directories structure of the EyeShotsLib package.

3.3 Installation and Startup
To install the EyeShotsLib package you need to execute the following steps:

1. save the package on a local disk (e.g. C : \Work);

2. open Matlab;

3. in the command window type:
cd C:\Work\EyeSho t sL ib

4. in the command window type:
s e t u p (p a t h)

where path is the string of the path where you have saved the package;
for example type:
s e t u p (’C:\Work ’)

and then press enter.

5. finally, close and restart Matlab.

7

EYESHOTS - Deliverable D1.4a 3 SYSTEM DESCRIPTION

3.3.1 The setup.m file

This is the main file. Do not delete the setup.m file. It is located in the EyeShot-
sLib folder and it comprises three sections.
The first is called addpath and adds to the MATLAB path all the folders of the
package EyeShotsLib. In this way MATLAB and Simulink know where the files
of the system are located.
f u n c t i o n s e t u p (p a t h)

% a d d p a t h s e c t i o n
us= u s e r p a t h ;
s= s i z e (us) ;
us=us (1 : s (2) −1) ;
p= p a t h ;
a d d p a t h ([p ’ / EyeSho t sL ib / l i b ’]) ;
a d d p a t h ([p ’ / EyeSho t sL ib / doc ’]) ;
a d d p a t h ([p ’ / EyeSho t sL ib / da t a ’]) ;
a d d p a t h ([p ’ / EyeSho t sL ib / s r c ’]) ;
a d d p a t h ([p ’ / EyeSho t sL ib / s r c / p a r a m e t e r s ’]) ;
a d d p a t h ([p ’ / EyeSho t sL ib / examples ’]) ;
s a v e p a t h
. . . .

The second section, Creation of the startup.m file section, creates the
startup.m file. See the following for more information.

. . . .
%C r e a t i o n o f t h e s t a r t u p .m f i l e s e c t i o n
f i d = fopen ([us , ’\ s t a r t u p .m’] , ’w ’) ;
f p r i n t f (f i d , ’ p=’’%s ’ ’ ; \ n ’ , p a t h) ;
f p r i n t f (f i d , ’ f i d = fopen (

[p ’ ’ / EyeSho t sL ib / s r c / g e t p a t h .m’ ’] , ’ ’w’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’ f p r i n t f (f i d , ’ ’ f u n c t i o n o u t = g e t p a t h ()\\ n ’ ’)

;\ n ’) ;
f p r i n t f (f i d , ’ f p r i n t f (f i d , ’ ’ o u t =’’ ’ ’%%s ’ ’ ’ ’ ; ’ ’ , p) ; \ n ’) ;
f p r i n t f (f i d , ’ f c l o s e (f i d) ; ’) ;
f c l o s e (f i d) ;
. . . .

If you change the user path or the location of the package you must re-run
the setup.m file.

3.3.2 The startup.m file
2 When the MATLAB program starts, automatically executes the master M-file
matlabrc.m and, if it exists, startup.m. The file matlabrc.m invokes the file
startup.m if it exists on the search path that MATLAB uses. You can create a

2Part of this section is extracted from the help guide of MATLAB.

8

EYESHOTS - Deliverable D1.4a 3 SYSTEM DESCRIPTION

startup.m file in your own startup directory for MATLAB. In our case it is saved
on the user path (the location of the current directory when MATLAB is open),
and creates the file get path.m.
Code:

p = ’C:\Work ’ ;
f i d = fopen ([p ’ / EyeSho t sL ib / s r c / g e t p a t h .m’] , ’w ’) ;
f p r i n t f (f i d , ’ f u n c t i o n o u t = g e t p a t h () \ n ’) ;
f p r i n t f (f i d , ’ o u t =’’%s ’ ’ ; ’ , p) ;
f c l o s e (f i d) ;

Every time MATLAB is opened,- the startup.m file is called and the get path.m
is created.

3.3.3 The get path.m file

The get path file, created by the startup.m, implements a function that returns the
path where the package is located. It is used by the functions that save and update
the parameters of the model. This file is saved in the src folder.
Code:

f u n c t i o n o u t = g e t p a t h ()
o u t = ’C:\Work ’ ;

3.3.4 The slblocks.m file

With this file the library, that contains all the blocks of the oculomotor plant, is
added to the Simulink Library Browser. This file is located in the lib folder. The
following code is an example of the slblocks file:

f u n c t i o n b l k S t r u c t = s l b l o c k s
%SLBLOCKS D e f i n e s a b l o c k l i b r a r y .
% L i b r a r y ’ s name . The name a p p e a r s i n t h e L i b r a r y Browser ’ s
% c o n t e n t s pane .
b l k S t r u c t . Name = [’My’ s p r i n t f (’\ n ’) ’ L i b r a r y ’] ;

% The f u n c t i o n t h a t w i l l be c a l l e d when t h e u s e r double−c l i c k s
%on t h e l i b r a r y ’ s name . ;
b l k S t r u c t . OpenFcn = ’ mylib ’ ;

% The argument t o be s e t a s t h e Mask D i s p l a y f o r t h e subsys t em .
% You may comment t h i s l i n e o u t i f no s p e c i f i c mask i s d e s i r e d .
% Example : b l k S t r u c t . MaskDisplay =
’ p l o t ([0 : 2 ∗ p i] , s i n ([0 : 2 ∗ p i])) ; ’ ;

% No d i s p l a y f o r now .
% b l k S t r u c t . MaskDisplay = ’ ’ ;
% End of b l o c k s

9

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

4 Library blocks description
In this section we analyze each block of the library EyeLib. In particular the
guidelines to create or modify a library block are supplied. In this library the
blocks of the oculomotor plant and of the pan-tilt system are present.
The oculomotor plant developed is composed of the head, the two eyeballs and
the muscles that drive each eye to reach a particular position. The pan-tilt system
is composed of the head, the two pan-tilt cameras and the block that computes
the joint velocities of the pan-tilt camera system. The eyeball and the head are
modelled using SimMechanics, that is a block diagram modelling environment
for the engineering design and simulation of rigid body machines. Conversely
the computational block of the oculomotor plant, the eye’s muscle and the pan-tilt
system are modelled in Simulink, that is a software that models, simulates, and
analyzes dynamic systems.

4.1 Geometrical parameters
The system, from a geometric point of view, is composed of a fixed reference
frame called world < w > with the origin of the axes in (0 0 0). A second frame
< h >, called head, is positioned and oriented in the space with respect to the
reference frame < w >. On the head two other frames < l > (left camera: eye
or pantilt) and < r > (right camera: eye or pantilt) are defined, that describe the
position and the orientation of these two frames with respect to the head reference
frame.
Now all the geometrical parameters of the system and the transformation matrices

between the frames are described (Fig. 2):

• wph/w: position vector of the frame < h > with respect to the reference
frame < w >.

• hpl/h: position vector of the frame< l >with respect to the reference frame
< h >.

• hpr/h: position vector of the frame < r > with respect to the reference
frame < h >.

• w
hR: rotation matrix of the frame < h > with respect to the reference frame
< w >.

• h
l R: rotation matrix of the frame < l > with respect to the reference frame
< h >.

10

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 2: Reference frames and geometrical parameters.

• h
rR: rotation matrix of the frame < r > with respect to the reference frame
< h >.

• w
hT : transformation matrix of the frame < h > with respect to the reference
frame < w >.

• h
l T : transformation matrix of the frame < l > with respect to the reference
frame < h >.

• h
rT : transformation matrix of the frame < r > with respect to the reference
frame < h >.

Where:
w
hT =

[
w
hR

wph/w

0T 1

]
(1)

h
l T =

[
h
l R

hpl/h

0T 1

]
(2)

h
rT =

[
h
rR

hpr/h

0T 1

]
(3)

11

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

4.2 SimMechanics Toolbox
3 SimMechanics software is a block diagram modelling environment for the en-
gineering design and simulation of rigid body machines and their motions, using
the standard Newtonian dynamics of forces and torques.
With SimMechanics software, you can model and simulate mechanical systems by
a suite of tools to specify bodies and their mass properties, their possible motions,
kinematic constraints, and coordinate systems, and to initiate and measure body
motions. You can represent a mechanical system by a connected block diagram,
like other Simulink models, and then incorporate hierarchical subsystems. The

Figure 3: SimMechanics reference frames.

SimMechanics master coordinate system and reference frame is called World. All
grounds are at rest in World. The connector port of each Ground block defines a
grounded coordinate system called GND. The GND coordinate system’s axes are
parallel to World.
The SimMechanics block library provides the following blocks specifically for
modelling machines:

• Machine Environment blocks set the mechanical environment for a ma-
chine. Exactly one Ground block in each machine must be connected to
a Machine Environment block.

• Body blocks represent a machine’s components and the machine’s immobile
surroundings (ground).

• Joint blocks represent the degrees of freedom of one body relative to another
body or to a point on ground.

3Part of this section is extracted from the help guide of MATLAB.

12

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

• Constraint and Driver blocks restrict motions of or impose motions on bod-
ies.

• Actuator blocks specify forces, motions, variable masses and inertias, or
initial conditions applied to bodies, joints, and drivers.

• Sensor blocks measure the forces on and motions of bodies, joints, and
drivers.

• Force element blocks model interbody forces.

Simscape mechanical elements model one-dimensional motion and, with certain
restrictions, can be interfaced with SimMechanics machines.

4.3 Creating block Libraries
In this section we illustrate the procedure to create the library EyeShots Blockset,
and its sublibrary, and how to add it to the Simulink Library Browser. All the files
of the library are in the ’lib’ folder.
The root of the library developed for the project is called EyeShotsBlockset. To
create this library proceed as follows:

• Select Library from the New submenu of the File menu. Simulink creates
a model (*.mdl) file for storing the new library and displays the file in a new
model editor window.

• Create an empty subsystem with the name of the sublibrary EyeLib.

• Save the library’s model file under EyeShotsBlockset.

• Create another library with the blocks of the oculomotor plant and of the
pan-tilt system and save it under EyeLib.

• Open the root library and select the subsystem EyeLib.

• In the Matlab command window type:
s e t p a r a m (gcb , ’ OpenFcn ’ , ’ EyeLib ’)

in this way, when you double click on the EyeLib subsystem you open the
EyeLib library.
To execute this command in the command window, the EyeLib subsystem
must be selected.

• save and close the library.

13

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 4: Library EyeLib in the Simulink Library Browser.

When you open a library, this is automatically locked and you cannot modify
its contents. To unlock the library, select Unlock Library from the Edit menu.
Closing the library window locks the library. To add the library to the Simulink
Library Browser it is necessary to create the slblocks.m file and save it in the same
directory of the libraries.

4.4 Creating Matlab GUI (Graphical User Interfaces)
4 To view or modify the parameters of the oculomotor plant and of the pan-tilt
system a graphical interface for each block of the library it is developed.
A graphical user interface (GUI) is a graphical display in one or more windows
containing controls, called components, that enable a user to perform interactive
tasks.
The GUI components can be menus, toolbars, push buttons, radio buttons, list
boxes, and sliders just to name a few. GUIs created in MATLAB software can
group related components together, read and write data files, and display data as
tables or as plots.

4Part of this section is extracted from the help guide of MATLAB.

14

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Most GUIs wait for their user to manipulate a control, and then respond to each
action in turn. Each control, and the GUI itself, has one or more user-written
routines (executable MATLAB code) known as callbacks, named for the fact that
they ”call back” to MATLAB to ask it to do things. The execution of each callback
is triggered by a particular user action such as pressing a screen button, clicking a
mouse button, selecting a menu item, typing a string or a numeric value, or passing
the cursor over a component. The GUI then responds to these events. You, as the
creator of the GUI, provide callbacks which define what the components do to
handle events.
To cretae a GUI:

• Start GUIDE from the MATLAB File menu by selecting New GUI.

• Select Create New GUI.

• Select a template in the left pane. A preview displays in the right pane.

• Optionally, name your GUI now by selecting ”Save new figure as” and typ-
ing the name in the field to the right. GUIDE saves the GUI before opening
it in the Layout Editor. If you choose not to name the GUI at this point,
GUIDE prompts you to save it and give it a name the first time you run the
GUI.

• Click OK to open the GUI template in the Layout Editor.

• The component palette at the left side of the Layout Editor contains the com-
ponents that you can add to your GUI. You can display it with or without
names.

By default, the first time you save or run a GUI, GUIDE stores the GUI in two
files:

• A FIG-file, with extension .fig, that contains a complete description of the
GUI layout and the GUI components, such as push buttons, axes, panels,
menus, and so on. The FIG-file is a binary file and you cannot modify it
except by changing the layout in GUIDE.

• An M-file, with extension .m, that initially contains initialization code and
templates for some callbacks that are needed to control GUI behavior. You
must add the callbacks you write for your GUI components to this file. As
the callbacks are functions, the GUI M-file can never be a MATLAB script.
When you save your GUI the first time, GUIDE automatically opens the
M-file in your default editor.

15

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 5: GUI template in the Layout Editor.

The FIG-file and the M-file must have the same name, usually reside in the same
directory. They correspond to the tasks of laying out and programming the GUI.
When you lay out the GUI in the Layout Editor, your work is stored in the FIG-
file. When you program the GUI, your work is stored in the corresponding M-file.
See the MATLAB help for more informations about the GUIs.

4.5 Source code of the library blocks
The source code of the blocks is in the ”src” folder and it contains:

• ”parameters” folder: with the source code of each block and another folder
(models parameters) with the saved parameters of the Simulink models cre-
ated by the user;

• get model.m: this file returns the full path of the block in the model. For
example if the name of the model is Eye model and the block is called
Head, this function returns the string Eye model Head. The source code
is:

16

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

f u n c t i o n model = g e t m o d e l ()
s t r i n g = gcb ;
l e n g h t = s i z e (s t r i n g) ;
f o r i =1 : l e n g h t (2)

i f (s t r i n g (i) = = ’ / ’)
s t r i n g (i)= ’ ’ ;

end
end
model = s t r i n g ;

For each block the following files have been created (here are shown only the files
for the eye block):

• eye parameters.m contains the code of the callbacks relative to the GUI
components.

• eye parameters.fig contains the components, of the GUI, necessary to con-
figure the parameters of the block.

• eye param.mat contains the value of the parameters used to initialize the
GUI the first time that is opened.

• eye default param.mat conatins the default parameters of the block.

4.6 Library blocks
The library Eyelib contains the blocks that describe the oculomotor plant, such as:

• Head: models the human head,

• Eye: model the human eye,

• EOMs: model the muscles of the eye,

and a pan-tilt system:

• Head,

• Pan-tilt: models a pan-tilt camera with two degrees of freedom,

• Joint velocities: computes the joint velocities for the pan-tilt camera.

17

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

4.7 Head block

The head block, of the library EyeLib, models the human head. Here we
assume that the head is fixed with respect to the reference frame world. The head
is modeled like a rigid body regardless the mass, the dimensions and the inertia of
the body.
The parameters used in the head model are:

• H: head position with respect to the world reference frame, vector [x y z]
in mm.

• O: head orientation vector with respect to the world reference frame, Euler
angles in deg.

• L: left camera position with respect to the head reference frame, vector [x
y z] in mm.

• R: right camera position with respect to the head reference frame, vector [x
y z] in mm.

• LR: left camera orientation with respect to the head reference frame, rota-
tion matrix [3x3].

• RR: right camera orientation with respect to the head reference frame, ro-
tation matrix [3x3].

• LO: left camera orientation vector with respect to the head reference frame.

• RO: right camera orientation vector with respect to the head reference
frame.

LO andRO are used as input parameters in the GUI, instead LR andRR are used
as input parameters in the model of the head. Thus there is a conversion from LO,
RO to the respective rotation matrices.

18

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

• eyeball: defines the representation of the orientation (LO or RO) for the
connected blocks. If it is equal to 1 the connected block is the Eye block
and the orientation is expressed with the axis angle representation.

• pantilt: defines the representation of the orientation (LO or RO) for the
connected blocks. If it is equal to 1 the connected block is the Pan-tilt block
and the orientation is expressed with the euler angles representation.

The outputs used of the head block are:

• LEye: position vector of the left camera with respect to the head ([x y z] in
mm).

• REye: position vector of the right camera with respect to the head ([x y z]
in mm).

• P h/w: position vector of the head with respect to the world reference
frame ([x y z] in mm).

• R h/w: orientation matrix of the head with respect to the head reference
frame.

LEye and REye are SimeScape signals. LEye must be connect to the Eye Pos
input port of the Eye block for the left eye, in the same way the REye output port
must be connect to the Eye Pos input port of the Eye block for the right eye.

4.7.1 Model description

Figure 6: Simulink/SimMechanics model of the head

19

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

In each system modelled in SimMechanics a ground body must be present,
i.e., a body without mechanical properties. We use this block to define the head
position (parameter H) with respect to the reference frame world < w >. Con-
nected to the ground there is a weld joint (joint without degrees of freedom) be-
cause the head is considered fixed with respect to the world reference frame. The
body that implements the head is connected to the joint..
On the body four frames are defined:

• CG: the center of gravity or center of mass of an extended body, it’s con-
nected to the weld joint.

• CS2: this frame defines the position (L) and the orientation (LR) for the
left camera with respect to the frame < h >.

• CS3: this frame defines the position (R) and the orientation (RR) for the
right camera with respect to the frame < h >.

• CS4: this frame is fixed with CG and it is used to measure the orientation
and the position of the head with respect to the < w > frame.

Note that CS2 and CS3 are two outputs of the system (respectively LEye and
REye) and are SimMEchanics signals. With CS4 the other two outputs of this
block (P h/w and R h/w) are created, which are Simulink signals. This block
has no inputs.

4.7.2 Dialog box

The dialog box for the Head block is a MATLAB GUI (Fig. 7). It comprises
four sections. The first one is a ’panel’ component that contains a ’static text’
component with a description of the block (inputs, outputs and parameters). The
second is a panel with two ’check box’ components. The third one is a ’panel’
component that contains: on the left side the ’static text’ components with the
name of the parameters and on the right the ’edit text’ components, used to view
or modify the parameters of the block. With these components you can set the
parameters for the head block. In the bottom side of the GUI there are seven
’button’ components (Ok, Cancel, Apply, Default parameters, Open, Save as and
Help).
Now we analyze the callbacks for each component and for the GUI figure itself.
The function head parameters OpeningFcn is called when you open the GUI
and it executes the following code:
name = g e t p a r a m (gcb , ’ Name ’) ;
s e t (gcf , ’ Name ’ , name) ;

20

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 7: Head block interface.

The two previous lines of code set the name of the GUI with the current name
of the block (for example if the block name is Head1 the name that appear when
you open the GUI is Head1)
i f (s t r c mp (bd roo t , ’ EyeLib ’) = = 1)

s e t (h a n d l e s . H, ’ Enable ’ , ’ o f f ’) ;
s e t (h a n d l e s . O, ’ Enable ’ , ’ o f f ’) ;
s e t (h a n d l e s . LO, ’ Enable ’ , ’ o f f ’) ;
s e t (h a n d l e s . RO, ’ Enable ’ , ’ o f f ’) ;
s e t (h a n d l e s . L , ’ Enable ’ , ’ o f f ’) ;
s e t (h a n d l e s . R, ’ Enable ’ , ’ o f f ’) ;

This code is a control that disable all the ’edit text’ component if the block is
in the library model, or in the Simulink library browser.
i f (e x i s t ([g e t m o d e l () , ’ head pa ram . mat ’]) = = 0)

l o = l o a d (’ head param . mat ’) ;
u p d a t e e d i t b o x (h a n d l e s , l o) ;
H= l o .H;
O= l o .O;
L= l o . L ;

21

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

R= l o . R ;
LR= l o . LR ;
RR= l o . RR;
e y e b a l l = l o . e y e b a l l ;
p a n t i l t = l o . p a n t i l t ;
s ave ([g e t p a t h () ’ / EyeSho t sL ib / s r c / p a r a m e t e r s / m o d e l s p a r a m e t e r s / ’

[g e t m o d e l () , ’ head pa ram . mat ’]] , ’ H’ , ’O’ , ’ L ’ , ’R’ , ’ LR’ , ’RR’ ,
’ e y e b a l l ’ , ’ p a n t i l t ’) ;

e l s e
l o = l o a d ([g e t m o d e l () , ’ head pa ram . mat ’]) ;
u p d a t e e d i t b o x (h a n d l e s , l o) ;

end
i f (l o . e y e b a l l == 1)

% Radio b u t t o n i s s e l e c t e d , t a k e a p p r o p r i a t e a c t i o n
s e t (h a n d l e s . t e x t 1 2 , ’ s t r i n g ’ , ’ L e f t eye o r i e n t a t i o n

(LO) [n t e t a] [mm deg] ’)
s e t (h a n d l e s . t e x t 1 1 , ’ s t r i n g ’ , ’ R i g h t eye o r i e n t a t i o n

(RO) [n t e t a] [mm deg] ’)
s e t (h a n d l e s . e y e b a l l , ’ Value ’ , 1) ;

e l s e
% Radio b u t t o n i s n o t s e l e c t e d , t a k e a p p r o p r i a t e a c t i o n
s e t (h a n d l e s . t e x t 1 2 , ’ s t r i n g ’ , ’ L e f t pan− t i l t o r i e n t a t i o n

(LO) [XYZ] [deg] ’)
s e t (h a n d l e s . t e x t 1 1 , ’ s t r i n g ’ , ’ R i g h t pan− t i l t o r i e n t a t i o n

(RO) [XYZ] [deg] ’)
s e t (h a n d l e s . p a n t i l t , ’ Value ’ , 1) ;

end

With this part of code we load the parameters (by the function update editbox)
of the block in the ’edit box’ component of the GUI and there is a control of which
’check box’ is selected. When this block is used in a Simulink model for the first
time the values saved in a file called head param.mat are loaded, otherwise, the
parameters saved in the ’*.mat’ file named with the full path name of the block.
For example if the name of the model and of the block are, respectively, ’Model’
and ’Head1’ the name of this file is Model Head1 head param.mat.
The function update editbox() executes the following code:
H= l o .H;
O= l o .O;
L= l o . L ;
R= l o . R ;
LR= l o . LR ;
RR= l o . RR;
e y e b a l l = l o . e y e b a l l ;
p a n t i l t = l o . p a n t i l t ;
i f (e y e b a l l ==1)

% From r o t a t i o n m a t r i x t o a x i s a n g l e r a p r e s e n t a t i o n f o r t h e l e f t eye
i f (LR== eye (3))

LO=[0 , 0 , 0 , 0] ;

22

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

e l s e
q l =dcm2quat (LR) ;
LR=LR−LR ’ ;
LO(1) = LR (6) ;
LO(2) = LR (7) ;
LO(3) = LR (2) ;
LO=LO/ norm (LO) ;
LO(4) = rad2deg (2∗ acos (q l (1))) ;

end

% From r o t a t i o n m a t r i x t o a x i s a n g l e r a p r e s e n t a t i o n f o r t h e r i g h t eye
i f (RR== eye (3))

RO= [0 , 0 , 0 , 0] ;
e l s e

q r =dcm2quat (RR) ;
RR=RR−RR ’ ;
RO(1) = RR (6) ;
RO(2) = RR (7) ;
RO(3) = RR (2) ;
RO=RO/ norm (RO) ;
RO(4) = rad2deg (2∗ acos (q r (1))) ;

end
end
i f (p a n t i l t ==1)

i f (LR== eye (3))
LO=[0 , 0 , 0] ;

e l s e
[LO(1) LO(2) LO(3)] = dcm2angle (LR, ’XYZ’) ;
LO(1) = rad2deg (LO (1)) ;
LO(2) = rad2deg (LO (2)) ;
LO(3) = rad2deg (LO (3)) ;

end

i f (RR== eye (3))
RO= [0 , 0 , 0] ;

e l s e
[RO(1) RO(2) RO(3)] = dcm2angle (RR, ’XYZ’) ;
RO(1) = rad2deg (RO (1)) ;
RO(2) = rad2deg (RO (2)) ;
RO(3) = rad2deg (RO (3)) ;

end
end
s e t (h a n d l e s . H, ’ S t r i n g ’ , [’ [’ num2s t r (H’) ’] ’]) ;
s e t (h a n d l e s . O, ’ S t r i n g ’ , [’ [’ num2s t r (O’) ’] ’]) ;
s e t (h a n d l e s . L , ’ S t r i n g ’ , [’ [’ num2s t r (L ’) ’] ’]) ;
s e t (h a n d l e s . R, ’ S t r i n g ’ , [’ [’ num2s t r (R ’) ’] ’]) ;
s e t (h a n d l e s . LO, ’ S t r i n g ’ , [’ [’ num2s t r (LO) ’] ’]) ;
s e t (h a n d l e s . RO, ’ S t r i n g ’ , [’ [’ num2s t r (RO) ’] ’]) ;
s e t (h a n d l e s . e y e b a l l , ’ Value ’ , e y e b a l l) ;

23

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

s e t (h a n d l e s . p a n t i l t , ’ Value ’ , p a n t i l t) ;

The method set(...) is used to load the values of the parameters in the ’edit
box’ components of the GUI.
The head body block orients the frames of the two cameras by the rotation matrix,
but the GUI requires as the orientation parameter the angle axis representation (if
the Eyeball check box is selected) or the Euler angles representation (if the Pan-
tilt check box is selected). Thus, it is necessary to convert from rotation matrix
([3x3]) to axis angle ([n Θ]) representation by using the following procedure:

• from rotation matrix to quaternion representation

q = dcm2quat(R);

• rotation angle in deg:
Θ = 2acos(q(0))

where q(0) is the first element of the quaternion.

• rotation vector :
S = R−RT (4)

n = [S(6) S(7) S(2)]T (5)

n =
n
|n|

(6)

or to Euler angles representation ([XYZ] [deg]):

• from direct cosine matrix to Euler angles in radians

[XY Z] = dcm2angle(R,′XY Z ′);

• from radians to degrees

X = rad2deg(X);

Y = rad2deg(Y);

Z = rad2deg(Z);

where:

R is the rotation matrix

n = [nxnynz] is the axis of rotation

24

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

X ,Y ,Z are the Euler angles

rad2deeg is a MATLAB function that converts from radians to degrees

dcm2angle is a MATLAB function that computes the Euler angles from the
rotation matrix.

The function eyeball Callback (the pantilt Callback is similar) is called when
the user changes the state of the check box and it executes the following code:
f u n c t i o n e y e b a l l C a l l b a c k (hObjec t , e v e n t d a t a , h a n d l e s)
i f (g e t (hObjec t , ’ Value ’) == g e t (hObjec t , ’ Min ’) &&

(g e t (h a n d l e s . p a n t i l t , ’ Value ’) == g e t (h a n d l e s . p a n t i l t , ’ Min ’)))
s e t (h a n d l e s . ok , ’ Enable ’ , ’ o f f ’) ;

s e t (h a n d l e s . apply , ’ Enable ’ , ’ o f f ’) ;
s e t (h a n d l e s . c a n c e l , ’ Enable ’ , ’ o f f ’) ;

end
LO=[0 , 0 , 0 , 0] ;
RO=[0 , 0 , 0 , 0] ;
s e t (h a n d l e s . LO, ’ S t r i n g ’ , [’ [’ num2s t r (LO) ’] ’]) ;
s e t (h a n d l e s . RO, ’ S t r i n g ’ , [’ [’ num2s t r (RO) ’] ’]) ;
s e t (h a n d l e s . t e x t 1 2 , ’ s t r i n g ’ , ’ L e f t eye o r i e n t a t i o n

(LO) [n t e t a] [mm deg] ’)
s e t (h a n d l e s . t e x t 1 1 , ’ s t r i n g ’ , ’ R i g h t eye o r i e n t a t i o n

(RO) [n t e t a] [mm deg] ’)
i f (g e t (hObjec t , ’ Value ’)== g e t (hObjec t , ’ Max ’))

s e t (h a n d l e s . ok , ’ Enable ’ , ’ on ’) ;
s e t (h a n d l e s . apply , ’ Enable ’ , ’ on ’) ;
s e t (h a n d l e s . c a n c e l , ’ Enable ’ , ’ on ’) ;

end

if all the check box are unchecked, the buttons () are disabled. Then the ori-
entation vector for the two cameras are configured with the correct representation
and if the check box is checked the buttons are enabled.
The Ok callback is called when you click on the Ok button. This function:
f u n c t i o n o k C a l l b a c k (hObjec t , e v e n t d a t a , h a n d l e s)
i f (s t r c mp (bd roo t , ’ EyeLib ’) = = 1)

c l o s e (g c f) ;
e l s e

g e t p a r a m s (h a n d l e s)
c l o s e (g c f) ;

end

• close the GUI if the current model is in the Simulink library browser, else
calls the get param(handles) that gets the parameters from the ’edit box’
components and save the pare

• close the GUI.

25

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

The get param(handles), called by the Ok callback, executes the following code:
f u n c t i o n g e t p a r a m s (h a n d l e s)
H= s t r2num (g e t (h a n d l e s . H, ’ S t r i n g ’)) ’ ;
O= s t r2num (g e t (h a n d l e s . O, ’ S t r i n g ’)) ’ ;
L= s t r2num (g e t (h a n d l e s . L , ’ S t r i n g ’)) ’ ;
R= s t r2num (g e t (h a n d l e s . R, ’ S t r i n g ’)) ’ ;
LO= s t r2num (g e t (h a n d l e s . LO, ’ S t r i n g ’)) ’ ;
RO= s t r2num (g e t (h a n d l e s . RO, ’ S t r i n g ’)) ’ ;
e y e b a l l = g e t (h a n d l e s . e y e b a l l , ’ Value ’) ;
p a n t i l t = g e t (h a n d l e s . p a n t i l t , ’ Value ’) ;
i f (g e t (h a n d l e s . e y e b a l l , ’ Value ’) == g e t (h a n d l e s . e y e b a l l , ’ Max ’))

SL=[0 −LO(3) LO (2) ; LO(3) 0 −LO(1) ;−LO(2) LO(1) 0] ;
LR = eye (3) + SL∗ s i n (deg2 rad (LO (4))) + SLˆ2∗(1− cos (deg2rad (LO (4)))) ;
SR=[0 −RO(3) RO (2) ; RO(3) 0 −RO(1) ;−RO(2) RO(1) 0] ;
RR = eye (3) + SR∗ s i n (deg2 rad (RO(4))) + SRˆ2∗(1− cos (deg2rad (RO (4)))) ;

end
i f (g e t (h a n d l e s . p a n t i l t , ’ Value ’) == g e t (h a n d l e s . p a n t i l t , ’ Max ’))

LO(1) = deg2rad (LO (1)) ;
LO(2) = deg2rad (LO (2)) ;
LO(3) = deg2rad (LO (3)) ;
LR=angle2dcm (LO(1) ,LO(2) ,LO(3) , ’XYZ’) ;
RO(1) = deg2rad (RO (1)) ;
RO(2) = deg2rad (RO (2)) ;
RO(3) = deg2rad (RO (3)) ;
RR=angle2dcm (RO(1) ,RO(2) ,RO(3) , ’XYZ’) ;

end
save ([g e t p a t h () ’ / EyeSho t sL ib / s r c / p a r a m e t e r s / m o d e l s p a r a m e t e r s / ’

[g e t m o d e l () , ’ head pa ram . mat ’]] , ’ H’ , ’O’ , ’ L ’ , ’R’ , ’ LR’ , ’RR’ ,
’ p a n t i l t ’ , ’ e y e b a l l ’ , ’− append ’) ;

the get(...) method gets the value (string) of the parameter relative to an ’edit
box’ component and save (save(...) method) the parameters in the ’.mat’ file as-
sociated to the block. The str2num(...) is a MATLAB function that converts the
variable from string to a vector of double. Then if the eyeball check box is selected
the angular axis representation is converted in the rotation matrix representation
by using the Rodrigues formula:

R = I + S sin(Θ) + S2(1− cos(Θ)) (7)

else if the Pan-tilt checkbox is selected:

X = deg2rad(X)

Y = deg2rad(Y);

Z = deg2rad(Z);

R = angle2dcm(′XY Z ′);

where:

26

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

I is the identity matrix [3x3]

R is the rotation matrix [3x3]

X ,Y ,Z are the Euler angles

deg2rad is a MATLAB function that converts from degrees to radians

angle2dcm is a MATLAB function that computes the rotation matrix from
the Euler angles

and

S =

 0 −nz ny

nz 0 −nx

−ny nx 0

 (8)

where
n = [nxnynz]

is the axis of rotation.
The Cancel callback load, in the ’edit text’ components, the last parameters saved,
to delete the last parameters insert by the user and close the GUI. The code is:
i f (s t r c mp (bd roo t , ’ EyeLib ’) = = 1)

c l o s e (g c f) ;
e l s e

l = l o a d ([g e t m o d e l () , ’ head pa ram . mat ’]) ;
u p d a t e e d i t b o x (h a n d l e s , l) ;
i f (l . e y e b a l l == 1)

% Radio b u t t o n i s s e l e c t e d , t a k e a p p r o p r i a t e a c t i o n
s e t (h a n d l e s . t e x t 1 2 , ’ s t r i n g ’ , ’ L e f t eye o r i e n t a t i o n

(LO) [n t e t a] [mm deg] ’)
s e t (h a n d l e s . t e x t 1 1 , ’ s t r i n g ’ , ’ R i g h t eye o r i e n t a t i o n

(RO) [n t e t a] [mm deg] ’)
s e t (h a n d l e s . e y e b a l l , ’ Value ’ , 1) ;

e l s e
% Radio b u t t o n i s n o t s e l e c t e d , t a k e a p p r o p r i a t e a c t i o n
s e t (h a n d l e s . t e x t 1 2 , ’ s t r i n g ’ , ’ L e f t pan− t i l t o r i e n t a t i o n

(LO) [XYZ] [deg] ’)
s e t (h a n d l e s . t e x t 1 1 , ’ s t r i n g ’ , ’ R i g h t pan− t i l t o r i e n t a t i o n

(RO) [XYZ] [deg] ’)
s e t (h a n d l e s . p a n t i l t , ’ Value ’ , 1) ;

end
% e y e b a l l = l . e y e b a l l ;
% p a n t i l t = l . p a n t i l t ;

s ave ([g e t p a t h () ’ / EyeSho t sL ib / s r c / p a r a m e t e r s / m o d e l s p a r a m e t e r s / ’
[g e t m o d e l () , ’ head pa ram . mat ’]] , ’ − append ’) ;

c l o s e (g c f) ;
end

27

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

The Apply callback has the same behavior of the Ok callback, but it doesn’t
close the GUI, the code is:
f u n c t i o n a p p l y C a l l b a c k (hObjec t , e v e n t d a t a , h a n d l e s)
i f (s t r c mp (bd roo t , ’ EyeLib ’) = = 1)

e l s e
g e t p a r a m s (h a n d l e s)

end

The def param Callaback load in the GUI (when the user click on the De-
fault parameters button) the default parameters of the block, saved in the ’.mat’
file, called head default param.mat.
f u n c t i o n d e f p a r a m C a l l b a c k (hObjec t , e v e n t d a t a , h a n d l e s)
i f (s t r c mp (bd roo t , ’ EyeLib ’) = = 1)

e l s e
l = l o a d (’ h e a d d e f a u l t p a r a m . mat ’) ;
u p d a t e e d i t b o x (h a n d l e s , l) ;

end

The Open Callback is called when you click on the Open button. It gets
a ’.mat’ file from the ’data’ folder and loads, in the GUI, the parameters of the
block saved in the file.
i f (s t r c mp (bd roo t , ’ EyeLib ’) = = 1)

e l s e
[F i l e , Pa th]= u i g e t f i l e ([g e t p a t h () ’ / EyeSho t sL ib / d a t a / ∗ . mat ’] ,

’ S e l e c t t h e M−f i l e ’) ;
i f (F i l e)

l o = l o a d (F i l e) ;
u p d a t e e d i t b o x (h a n d l e s , l o)

end
end

The uigetfile(...) is a MATLAB function that is used to load a file from a
folder.
The save as Callback is called when you click on the Save as button and it gets
all the parameters of the block from the ’edit text’ components and they are saved
in a .mat file in the folder ’data’.
f u n c t i o n s a v e a s C a l l b a c k (hObjec t , e v e n t d a t a , h a n d l e s)
i f (s t r c mp (bd roo t , ’ EyeLib ’) = = 1)
e l s e
H= s t r2num (g e t (h a n d l e s . H, ’ S t r i n g ’)) ’ ;
O= s t r2num (g e t (h a n d l e s . O, ’ S t r i n g ’)) ’ ;
L= s t r2num (g e t (h a n d l e s . L , ’ S t r i n g ’)) ’ ;
R= s t r2num (g e t (h a n d l e s . R, ’ S t r i n g ’)) ’ ;

28

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

LO= st r2num (g e t (h a n d l e s . LO, ’ S t r i n g ’)) ’ ;
RO= s t r2num (g e t (h a n d l e s . RO, ’ S t r i n g ’)) ’ ;
i f (g e t (h a n d l e s . e y e b a l l , ’ Value ’) == g e t (h a n d l e s . e y e b a l l , ’ Max ’))

SL=[0 −LO(3) LO (2) ; LO(3) 0 −LO(1) ;−LO(2) LO(1) 0] ;
LR = eye (3) + SL∗ s i n (deg2 rad (LO (4))) + SLˆ2∗(1− cos (deg2rad (LO (4)))) ;
SR=[0 −RO(3) RO (2) ; RO(3) 0 −RO(1) ;−RO(2) RO(1) 0] ;
RR = eye (3) + SR∗ s i n (deg2 rad (RO(4))) + SRˆ2∗(1− cos (deg2rad (RO (4)))) ;

end
i f (g e t (h a n d l e s . p a n t i l t , ’ Value ’) == g e t (h a n d l e s . p a n t i l t , ’ Max ’))

LO(1) = deg2rad (LO (1)) ;
LO(2) = deg2rad (LO (2)) ;
LO(3) = deg2rad (LO (3)) ;
LR=angle2dcm (LO(1) ,LO(2) ,LO(3) , ’XYZ’) ;
RO(1) = deg2rad (RO (1)) ;
RO(2) = deg2rad (RO (2)) ;
RO(3) = deg2rad (RO (3)) ;
RR=angle2dcm (RO(1) ,RO(2) ,RO(3) , ’XYZ’) ;

end
[F i l e , Pa th]= u i p u t f i l e ([g e t p a t h () ’ / EyeSho t sL ib / d a t a / ∗ . mat ’] ,

’ Save as f i l e ’) ;
s ave ([Pa th ’ / ’ F i l e] , ’H’ , ’O’ , ’ L ’ , ’R’ , ’ LR’ , ’RR ’) ;
end

The uiputfile(...) is a MATLAB function used to save a file in a particular
folder.
The Help callback open the head help.html file in the MATLAB Help Browser
that contains a description of the Head block:
f u n c t i o n h e l p C a l l b a c k (hObjec t , e v e n t d a t a , h a n d l e s)
web ([g e t p a t h () ’ / EyeSho t sL ib / doc / h e a d h e l p . html ’] , ’− h e l p b r o w s e r ’) ;

Now the GUI and the model of the head are separated. To connect the GUI
and the model:

• open a Simulink file (’.mdl’) and insert here the model of the head,

• create a subsystem of this model,

• mask this subsystem (To create the mask for this subsystem, select the Sub-
system block and choose Mask Subsystem from the Edit menu),

• open the Mask Editor by selecting the subsystem and click on Edit Mask
from the Edit menu (Fig. 8),

• in the Parameters panel insert the variables with the same name of the GUI,

• for each variable in the dialog callback type:

29

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 8: Mask editor for the head block.

i f (e x i s t ([g e t m o d e l () , ’ head pa ram . mat ’]) = = 0)
l = l o a d (’ head param . mat ’) ;

e l s e
l = l o a d ([g e t m o d e l () , ’ head pa ram . mat ’]) ;

end
l = l o a d ([g e t m o d e l () , ’ head pa ram . mat ’]) ;
v a r = l . v a r ;

where var is the name of the parameters,

• close the mask editor and double click on the masked subsystem to open
the default Dialog box. For each variable, set the value to H , O, L, R, LR,
RR, respectively,

• select the head model and in the command window type:
s e t p a r a m (gcb , ’ OpenFcn ’ , ’ h e a d p a r a m e t e r s ’)

• double click on the block to open the head GUI for the block.

In this way, the parameters that you insert in the GUI are ’writen’ by Simulink in
the blocks of the model.

30

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

4.8 Eye block

This block models the human eye. The eye in humans has an almost spherical
shape and is actuated by six extra-ocular muscles (EOMs) [1] [14]. Each EOM
has an insertion point on the sclera, and is connected with the bottom of the orbit
at the other end. The four rectii extra-ocular muscles play a significant role for
the implementation of saccadic motion wich obey to the so called Listing’s law
[3] [4] [5]. It has been found that the path of the recti muscles within the orbit is
costrained by soft connective tissue, named soft-pulleys.
We model the soft pulley as fixed pointwise pulleys [6] [7] [8] [9] [10], and we
consider only the four rectii muscles.
The eyeball is assumed to be modeled as a homogeneous sphere of radius R, hav-
ing three degrees of freedom about its center (fig. 9). The eyeball has a moment of
inertia (Jp) a mass (mass) and it is connected to viscosity element (Bp) and elastic
element (Kp) [11] [12]. The parameters used in the eye model are:

Figure 9: Mechanical properties of the eyeball.

31

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

• C1: insertion point of the left muscle on the eyeball ([x,y,z] in [mm]);

• C2 insertion point of the right muscle on the eyeball ([x,y,z] in [mm]);

• C3: insertion point of the upper muscle on the eyeball ([x,y,z] in [mm]);

• C4: insertion point of the lower muscle on the eyeball ([x,y,z] in [mm]);

• P1: position of the pointwise pulley for the left muscle ([x,y,z] in [mm]);

• P2: position of the pointwise pulley for the right muscle ([x,y,z] in [mm]);

• P3: position of the pointwise pulley for the upper muscle ([x,y,z] in [mm]);

• P4: position of the pointwise pulley for the lower muscle ([x,y,z] in [mm]);

• r: radius of the eyeball [mm];

• mass: mass of the eyeball [g];

• Jp: moment of inertia of the eyeball [Kg*m2];

• Bp: viscous element of the orbit [N*s/m];

• Kp: elastic element of the orbit [N/m];

The inputs of the model are:

• |Fi| [N]: signal with the four rectus muscle forces. These forces are scalar
and F1,F2,F3,F4 are the forces of the left, right, upper and lower muscle,
respectively. This input port is connected to the outport (|Fi| [N]) of the
muscle model.

• Eye Pos [mm]: position vector of the eye with respect to the head reference
frame. It is possible to connect this input port with the output port LEye
of the head block, for the left eye; or Reye for the right eye. This is a
SimMechanics signal.

• R h/w: orientation matrix of the head with respect to the world reference
frame.

The outputs of the model are:

• |Li| [mm]: signal with the lengthening of the four rectus muscles. L1, L2,
L3, L4 correspond to the lengthening of the left, right, upper and lower
muscle, respectively. This outport is connected to the input port |Li|[mm]
of the EOMs block.

32

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

• R e/h[3x3]: rotation matrix of the eyeball with respect to the head refer-
ence frame.

• ap e/h[3x1][deg]: angular position of the eyeball with respect to the head
reference frame.

4.8.1 Model description

The Eye block, of the library Eyelib, models the human eye. The colored blocks
are SimMechanics blocks, while the not-colored are Simulink blocks. The green
block is the body that models the eyeball. On this body are defined the mechanical
properties of the eye such as mass and moment of inertia, and a set of frames (Fig.
10), that are:

• CG that it is the center of gravity of the body, all the frames of the body are
oriented and positioned respect to the CG reference frame. The CG frame
is connected to the joint (grey block). This frame is oriented and positioned
like the frame that is directly connected through the joint.

• CS3 and CS4 are two frames fixed with the CG refernce frame. Two ac-
tuator are connected to these two frames (magenta blocks), which are the
elastic and viscosity passive forces of the orbit.

• CS5, CS6, CS7, CS8 are four frames that define the insertion points (Ci)
of the four rectus muscles on the globe. To these frames are connected the
actuators (blue blocks) that actuate the body with the muscle forces.

• CS2 is the frame connected to the sensor (light blue block) that measures
the motion of the body. In our case it measures the position ([mm]), the
angular velocity ([deg/s]) and the rotation matrix of the eyeball with respect
to the world reference frame.

• CS9,CS10,CS11,CS12 are the frames positioned in the insertion point of
the muscles on the globe and they are connected to the sensors that measure
the position of the insertion points during the motion of the eyeball with
respect to the world reference frame. These frames are useful to compute
the muscle lenghts.

Note that the actuators and the sensors actuate and measure only with respect to
the world reference frame. Now, we analyze the Simulink blocks (Muscle forces,
Muscle length , Angular position and From world frame to head frame).

33

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 10: Simulink/SimMechanics model of the eye.

34

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Muscle forces block

This Simulink block (Fig. 11 and Fig. 12) computes the four muscle forces that
act on the globe and are connected to the actuators (blue block). The inputs of the
block are:

• R h/w rotation matrix of the head with respect to the world reference frame;

• |Fi|[N] signal with the module of the four rectus muscle forces, that is the
output of the EOMs model;

• pCi/e position of the four insertion point during the eye movement posi-
tioned with respect to the eye reference frame and oriented with respect to
the head reference frame. This is the output of the ’From world frame to
head frame’

Figure 11: Simulink model of the Muscle forces block

The outputs of the this block are the vectors of the four rectus forces that are the
inputs for the actuators (blue blocks):

• LMForce: left muscle force [N]

• RMForce: right muscle force [N]

• LoMForce: lower muscle force [N]

35

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 12: Simulink model of the force direction block

• UpMForce: upper muscle force [N]

The Simulink block model that calculates the force direction [14] for the four
rectus muscles, is shown in Fig. 12. Mathematically we have:

ni =
pi × ri

pi × ri

(9)

fi =
ni × ri

ni × ri

(10)

where:

i = 1 . . . 4

pi is the position vector of the soft pulley fixed with respect to the head
reference frame

ri is the position vector of the insertion point (in the model p Ci/e)

fi is the force direction vector normalized.

The fi vectors are premultiplied for the rotation matrix R h/w, thus these vectors
are expressed with respect to the world reference frame. Then the module of the
four rectus forces are multiplied with the four force direction vectors and these
are the four forces that act on the globe.

36

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 13: Simulink model of the Muscle length block

Figure 14: Simulink model of the Muscle length block for the left muscle

Muscle length block

This Simulink block (Fig. 13 and Fig. 14) computes the muscle lengths on geo-
metrical basis. The input of this model are the four position vectors of the insertion

37

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 15: The plane of muscle i for a generic eye orientation

points (p Ci/e) and the outputs are the four muscle lenghts. An algebraic map-
ping [14] relating the eye orientation to the displacement of the muscles can be
computed by using the formula:

xi = r(φi − φ0i) (11)

where xi is the amount of the displacement of the free end of the muscle, while
φi and φ0i are the angles, formed by vectors ri and ti at a generic eye orientation,
and at the primary position, respectively. In order to compute xi the angle φi can
be determined, as follows. According to figure 15, the angle αi must be costant
for any eye orientation and can be expressed by:

αi = cos−1

(
r

di

)
(12)

If the eye orientation is known with respect to frame < h >, then ri is known,
hence:

rdicos (αi + φi) = ripi (13)

and finally, we obtain:

φi = cos−1

(
ripi

rdi

)
− cos−1

(
r

di

)
(14)

Angular position block

This Simulink block (Fig. 16) calculates the angular position vector (ap e/houtput
of the block) of the eyeball from the rotation matrix (R e/h input of the model).
Out of this block the angular position vector is premultiplied for the rotation ma-
trixR h/w, thus this vector is expressed with respect to the world reference frame.

38

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 16: Simulink model of the Angular position block

From world frame to head frame block

This Simulink block (Fig. 17) executes a change of the reference system. The
signals of the position of the four insertion points are positioned and oriented
with respect to the world reference frame. We want these segnals expressed with
respect to the head reference frame. Also the rotation matrix of the eyeball is
expressed with respect to the < w > frame. The input of this block are:

Figure 17: Simulink block of the conversion from world to head reference frame.

39

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

• p e/w position vector of the eye traslated with respect to the < w > frame

• R h/w rotation matrix of the head with respect to the < w > frame

• R e/w rotation matrix of the eye with respect to the < w > frame

• p ci/w position vector of the insertion point i traslated with respect to the
< w > frame.

The output of this block are the rotation matrix of the eye (R e/h) expressed with
respect to the head reference frame and the position vector of the insertion points
(p ci/e) traslated with respect to the < e > reference frame and oriented with
respect to the < h > frame. Mathematically we have:

R e/h = R h/wTR e/w (15)

p ci/e = R h/wT (p ci/w − p e/w) (16)

4.8.2 Dialog box

The Dialog box (Fig. 18) of the Eye block is similar to the dialog box of the
Head block. Here only the parameters change, but the structure of the GUI and
the procedure to cretate and to connect it to the block remain the same.

40

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 18: Eye block interface.

41

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

4.9 EOMs block

The EOMs block, of the library EyeLib, models the four rectus extraocular
muscles. The left, right muscles and the upper, lower muscles form two agonist-
antagonist muscle pairs.
Fig. 19 illustrates the mechanical components of the agonist and the antagonist
muscles. The agonist muscle is modelled as a parallel combination of an active
state tension generator FAG, viscosity element BAG, and elastic element KLT ,
connected to a series elastic element KSE . Similarly the antagonist muscle is
modeled as a parallel combination of an active state tension generator FANT , vis-
cosity element BANT , and elastic element KLT , connected to a series elastic ele-
ment KSE [11] [12].
Each of the elements defined in the model of the muscles is ideal and linear. The

Figure 19: (a) Agonist muscle. (b) Antagonist muscle. [11]

parameters used in the muscle model are:

• BAG Agonist viscous element of the agonist muscle [N*s/m]

• BANT Antagonist viscous element of the antagonist muscle [N*s/m]

• KLT Elastic element (parallel) of the muscle [N/m]

• KSE Elastic element (serie) of the muscle [N/m]

• Tac/Tde: activation and deactivation time costant of the force generators
[s]

42

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

• t1 control signal switch time [s]

The inputs of the model are:

• |Li| [mm]: signal with the lengthening of the four rectus muscles. L1, L2,
L3, L4 that correspond to the lengthening of the left, right, upper and lower
muscle, respectively. This input port is connected to the output port|Li|
[mm] of the eye block.

• |Ni|: neurological control signal for the four rectus muscles. N1, N2, N3,
N4 that correspond to the neurological signals of the left, right, upper and
lower muscle, respectively.

The outputs of the model are:

• |Fi| [N]: signal with the four rectus muscle forces. These forces are scalar
and F1, F2, F3, F4 are the forces, respective, of the left, right, upper and
lower muscle. This output port is connected to the input port (|Fi| [N]) of
the eye model.

4.9.1 Model description

Each of the four rectus muscles it has been modeled in Simulink (Fig. 20 and
Fig. 21). Now we show the equations that describe the agonist and the antagonist
muscles pair [11] [12].
For the agonist muscle we have:

KSE(x2 − x1) = FAG −KLTx2 −BAGẋ2 (17)

ḞAG = (NAG − FAG)/Tag (18)

Tag = Tac(u(t)− u(t− t1)) + Tdeu(t− t1) (19)

and for the antagonist muscle:

KSE(x1 − x3) = FANT +KLTx3 +BANT ẋ3 (20)

ḞANT = (NANT − FANT)/Tant (21)

Tant = Tde(u(t)− u(t− t1)) + Tacu(t− t1) (22)

where:

x1 displacement from equilibrium for the stiffness element (KSE) in each
muscle

43

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

x2 and x3 displacement from equilibrium for the parallelel combination of
elements in each muscle

Tag and Tant agonist and antagonist time costant

Tac and Tde activation and deactivation time costant.

Therefore, according to the direction of the eye movements, each rectus muscle
can be agonist or antagonist. The correct choice of the agonist and antagonist
viscosity is based on the sign of the force produced by the parallel combination.
If this force is greater than zero the muscle is antagonist else it is agonist.

Figure 20: EOMs Simulink model.

Figure 21: Simulink model of the left rectus muscle.

44

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

4.9.2 Dialog box

The Dialog box (MATLAB GUI) of the EOMs block is similar to the dialog box
of the Head and Eye block. Here only the parameters change, but the structure of
the GUI and the procedure to cretate and to connect it to the block are the same.
In Fig. 22 the GUI of the block is shown.

Figure 22: EOMs block interface.

45

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

4.10 Pan-tilt block

The pan-tilt block, models a pan-tilt system, that can be represented as a kine-
matic chain with two degrees of freedom. This system is composed of a revolute
joint with one rotational degree of freedom about the x axis (tilt joint), a second
revolute joint with one rotational degree of freedom about the y axis (pan joint)
and the end-effector (the axis orientation is shown in Fig 23). For each joint and

Figure 23: Axes orientation for a generic frame i.

for the end effector, a frame that identifies the position and the orientation of the
joints and of the end effector in the space is defined (Fig. 24). The frame < 0 >
identifies the position and the orientation of the tilt joint with respect to the head
referrnce frame < h >. The frame < 1 > identifies the position and the orienta-
tion of the pan joint with respect to the tilt joint frame < 0 > and the frame < e >
(that can be the left or the rignt camera) identifies position and orientation of the
end-effector with respect to the pan joint reference frame < 1 >. Through the
transformation matrices the position and the orientation of the end-effector can
be expressed with respect to the head reference frame < h > (see Fig. 25). The
geometrical parameters of the pan-tilt system are:

• 0p1/0: position vector of the frame < 1 > with respect to the reference
frame < 0 >.

• 1pe/1: position vector of the frame< e >with respect to the reference frame
< 1 >.

46

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 24: Geometry of the pan-tilt system.

• 0
1R: rotation matrix of the frame < 1 > with respect to the reference frame
< 0 >.

• 1
eR: rotation matrix of the frame < e > with respect to the reference frame
< 1 >.

• 0
1T : transformation matrix of the frame < 1 > with respect to the reference
frame < 0 >.

• 1
eT : transformation matrix of the frame < e > with respect to the reference
frame < 1 >.

Where:
0
1T =

[
0
1R

0p1/0

0T 1

]
(23)

1
eT =

[
1
eR

1pe/1

0T 1

]
(24)

The transformation matrices between the head and the world frame are the same
ones of those defined in the section 4.1. In the case of an ideal pan-tilt system the

47

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 25: Geometry of the complete pan-tilt system.

frames of the joints and of the end-effector coincide and there isn’t translational
movement of the end-effector, for a given rotation, with respect to the tilt joint
reference frame < 0 >. Conversely in the case of a real pan-tilt system the end-
effector has a translational movement with respect to the tilt-joint frame. The
parameters of the pan-tilt block are:

• P 1/0: position vector of the pan joint frame < 1 > with respect to the tilt
joint reference frame < 0 > ([x y z] in mm),

• P e/1: position vector of the end-effector frame < e > with respect to the
pan joint reference frame < 1 > ([x y z] in mm).

The inputs of the model are:

• d/dt q: vector with the velocities for the two joints [rad/s],

• R h/w: rotation matrix of the head with respect to the world reference
frame,

• P h/w: position vector of the head with respect to the world reference
frame ([x y z] in mm),

• CameraPos: position vector and of the tilt joint frame < 0 >, and initial
orientation of the end effector with respect to the head reference frame <
h > [mm].

48

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

The outputs of the model are:

• R e/h: rotation matrix of the camera < e > with respect to the head refer-
ence frame < h >,

• P e/h: position vector of the camera < e > with respect to the head refer-
ence frame < h >,

• J e/0: Jacobian of the pan-tilt system.

4.10.1 Model description

The pan-tilt block, of the library EyeLib, models the kinematic of a pan-tilt cam-
era. From the joint velocities are computed the joint positions and from these the
rotaion matrix of the end-effector with respect to the head reference frame.
The initial condition for the system are taken from the input signal CameraPos.
Then the Jacobian matrix [13] of the system is computed, which describes the
relation between the angular velocity of the end effector and the joint velocities:

0w =0 Je/0q̇ (25)

where J is composed of:

J =

[
JA

JL

]
(26)

where: JA is the angular Jacobian and JL is the linear Jacobian. For a revolute
joint we have that:

JA = ki (27)

with ki the axis of rotation of the joint i, and:

JL = ki ∧ re/i (28)

with re/i the position of the end-effector with respect to the joint i.
Therefore for our system we have that:

J =

[
JA

JL

]
=

[
k0 k1

k0 ∧ re/0 k1 ∧ re/1

]
(29)

Finally adding the position of the pan joint expressed with respect to the head
reference frame and the position of the end-effector expressed with respect to the
pan joint reference frame we have the position of the end effector expressed with
respect to the head reference frame:

pe/h = pe/0 + p0/h (30)

49

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 26: Simulink model of the pan-tilt block.

4.10.2 Dialog box

The Dialog box (Fig. 27) of the Pan-tilt block is similar to the dialog box of the
Head, Muscle and Eye block. Here only the parameters change, but the structure
of the GUI and the procedure to cretate and to connect it to the block are the same.
In this GUI it isn’t present the ’Default parameters’ button, because it is a block
with only two parameters.

50

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 27: Pan-tilt block interface.

4.11 Joint velocities block

The Joint velocities block (Fig. 28), is used to compute the SVD (Singular
Value Decomposition) of the Jacobian matrix of the pan-tilt kinematic chain. In
this case, the system is redundant, so the Jacobian matrix has more columns than
rows and infinite solution exist for the following equation [13]:

q̇ = J−1w (31)

We consider only the angular part of the Jacobian matrix because, for simplicity,
we assume that the pan-tilt system is ideal. The inputs of the model are:

51

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

Figure 28: Simulink model of the Joint velocities block.

• R e/h: rotation matrix of the camera < e > with respect to the head refer-
ence frame < h > [3x3],

• w∗: the angular velocity of the end-effector [rad/s],

• J e/0: Jacobian matrix of the pan tilt system.

The outputs of the model are:

• d/dt q: vector with the velocities for the two joints [rad/s],

• R e/h: rotation matrix of the camera < e > with respect to the head refer-
ence frame < h > [3x3],

• P e/h: position vector of the camera < e > with respect to the head refer-
ence frame < h > [mm],

• J e/0: jacobian matrix of the pan tilt system.

52

EYESHOTS - Deliverable D1.4a 4 LIBRARY BLOCKS DESCRIPTION

4.11.1 Dialog box

The Dialog box (Fig. 29) contains only the panel with a description of the inputs
and the outputs of the block, because this block hasn’t parameters. There are only
two button, that in both cases, close the GUI.

Figure 29: Joint velocities block interface.

53

EYESHOTS - Deliverable D1.4a REFERENCES

References
[1] G. Cannata and M. Maggiali, ”Models of the Design of Bioinspired Robot

Eyes”, IEEE Transaction on Robotics, 2008, vol.24 (no.1).

[2] A. R. Koene, C.J. Erkelens, ”Properties of 3D rotations and their relation
to eye movement control”, Biol. Cybern., vol. 90, pp. 410-417, Jul. 2004.

[3] D. Tweed, T. Vilis, ”Geometric relations of eye position and velocity vec-
tors during saccades”, Vision. Res., vol. 30, n. 1, pp. 111-127, 1990.

[4] A. D. Polpitiya and B. K. Ghosh, ”Modeling the Dynamics of Oculomotor
System in Three Dimensions”, Proceedings of the Conference on Decision
and Control, pp. 6418-6422, Maui,Dec. 2003.

[5] L. Koornneef, ”The first results of a new anatomical method of approach to
the human orbit following a clinical enquiry”, Acta Morphol Neerl Scand,
vol. 12, n. 4, pp. 259-282, 1974.

[6] J. M. Miller, ”Functional anatomy of normal human rectus muscles”, Vi-
sion Res., vol. 29, pp. 223-240, 1989.

[7] J. L. Demer, J. M. Miller,V. Poukens,H. V. Vinters and B.J. Glasgow, ”Ev-
idence for fibromuscular pulleys of the recti extraocular muscles”, Inves-
tigative Ophthalmology and Visual Science, vol. 36, pp. 1125-1136, 1995.

[8] R. A. Clark, J.M. Miller, J. L. Demer, ”Three-dimensional Location of Hu-
man Rectus Pulleys by Path Inflection in Secondary Gaze Positions”, Inves-
tigative Ophthalmology and Visual Science, vol. 41, pp. 3787-3797, 2000.

[9] J. L. Demer, S. Y. Ho, V. Pokens, ”Evidence for Active Control of Rectus
Extraocular Muscle Pulleys”, Invest. Ophtalmol. Visual Sci., vol. 41, pp.
1280-1290, 2000.

[10] A. T. Bahill, J. R. Latimer and B. T. Troost, ”Linear homeomorphic sac-
cadic eye movement”, IEEE Trans. Biomed. Eng., vol BME-27, no. 11, pp
631-639, 1980.

[11] J. D. Enderle and J. W. Wolfe, ”Time-Optimal Control of Saccadic Eye
Movements”, IEEE Trans. Biomed. Eng., vol BME-34, no. 1, pp 43-55,
1987.

[12] J. D. Enderle, J. W. Wolfe and J. T. Yates, ”The linear homeomorphic sac-
cadic eye movement model- A modification”, IEEE Trans. Biomed. Eng.,
vol BME-31, no. 11, pp 717-720, 1984.

54

EYESHOTS - Deliverable D1.4a REFERENCES

[13] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, ”Robotics. Modelling,
Planning and Control”, Springer-Verlag London Limited 2009.

[14] G. Cannata, M. Maggiali, ”Design of a Humanoid Robot Eye”, Humanoid
Robots, New Developments”, I-Tech, pp. 582, 2007.

[15] Chessa, M., Solari, F., Sabatini, S.P., ”A Virtual Reality Simulator for Ac-
tive Stereo Vision System”, International Conference on Computer Vision
Theory and Applications 2009,VISAPP ‘09, Lisbon 5-8 February 2009.

55

