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Abstract: 
 
Computational models for the control of horizontal vergence, based on a distributed 
representation of disparity, are proposed and analyzed. The models directly extract the linear 
servos from the post-processed response of a population of disparity tuned complex cells, without 
explicit calculation of the disparity map. The disparity-vergence curves have been either designed 
on the basis of a desired behavior, or learned by examples. Training and evaluation of the 
networks are discussed. The resulting vergence controls yield to stable fixation and has small 
response time to a wide range of disparities. 
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1 Executive summary

One of the objective of Workpackage 2 is to develop a convolutional network-based vergence
control from a population of disparity-based feature. To this end, we investigated the special-
ization of disparity detectors at different levels in a hierarchical network architecture to see the
effect of learning specific coding and decoding strategies for active vergence control and depth
vision. The extraction of binocular features occurs through a cortical-like population network,
developed by partner UG. The network provides a harmonic (i.e., amplitude and phase) repre-
sentation of the visual signal, operated by a set of ”simple cell” units (S-cells). At the level of
S-cells, the ”totipotency” of the representation containsall the necessary basic components to
differentiate into several classes of visual descriptors.Stereo and - in perspective - stereomotion
percepts emerge in layers of disparity energy ”complex cell” units (C-cells) that gather S-cells
outputs according to specific architectural schemes. Thesecomputations can be supported by
neuromorphic architectural resources organized as hierarchical arrays of interacting nodes. On
this basis, convolutional network paradigms and learning processes have been introduced to
develop a high degree variability of the cell’s responses towards the specialization of disparity
detectors for the control of vergence. The desired linear servos have been either designed on
the basis of the disparity-vergence curves observed in the Medial Superior Temporal cortical
area, or learned by examples. The selected learning paradigm is inspired by LeNet5 [1], since
it is expected to have a good performance being such a networkoptimized at every level of the
hierarchy. To this end, the LeNet architecture has been extended to increase its flexibility and
including new functionalities. Specifically, differentlyfrom most of the conventional vergence
control models [2, 3, 4, 5, 6], based on the minimization of the horizontal disparity, we pro-
pose to avoid implicit computation of the disparity map and extract the vergence control signal
directly from the population responses over the ”foveal” region. A neural network paradigm
has been chosen for this type of conversion/extraction procedure. An increasing complexity
strategy in the learning process is adopted: starting from the simplest one-unit architecture we
increase the number of units/layers until an acceptable level of generalization error is reached.
In order to learn the vergence control, we developed and useda simulator to create the train-
ing datasets. Each sample in the training dataset contains the stereo image pairs, the actual
vergence angle, the actual gaze orientation, and the desired (for this particular case) vergence
angle (”ground truth”). Using these datasets and the simulated environment it has been possible
to train and evaluate the proposed neural network based vergence controller. We conclude that:

1. The vergence can be controlled using convolutional networks arranged in a closed loop,
for different orientations of the gaze.

2. A strategy for reading-out binocular energy population codes for short-latency disparity-
vergence eye movements can be devised. Specific features are: (i) wide working range
with a reduced number of resource (single scale), (ii) linear servos with fast reactions
and precision.

In general, we can take full advantage of the flexibility and adaptability of distributed comput-
ing to specialize disparity detectors for vergence controland depth vision.

On this ground, further generalization of the network paradigm will be explored, also with
the aim of including (i) dynamic (i.e., spatiotemporal) disparity tuning, and (ii) attentional
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signals (based on object properties) that might guide intentional exploration of the selected
object.

The results described in this deliverable have been partially presented at ESANN’09,
ICVS’09, and submitted to ISABEL’09.

2 Introduction

Experimental evidences show that, although depth perception and vergence eye movements
are based on the activity of complex cells of the primary visual cortex, the brain adopts spe-
cific and separate mechanisms to combine binocular information and carry out the two distinct
tasks. Vergence control models that are based on a distributed population of disparity detectors,
usually require first the computation of the disparity map, thus limiting the functionality of the
vergence system inside the sensitivity range of the population of cells specialized for depth per-
ception. For the control of vergence larger disparities have to be discriminated while keeping
a good accuracy around the fixation point for allowing finer refinement and achieving stable
fixations. Thus, alternative strategies might be employed.In this work, we developed models
that combine the population responses without taking a decision, but extracting, directly from
the population responses, a disparity-vergence response that allows us to nullify the disparity
in the fovea, even if the stimulus presented is far beyond thedisparity sensitivity range. The
disparity-vergence response is obtained by a weighted combination of the population response.
First, the weights were computed in order to obtain desired set disparity-vergence responses
on which to base a ’dual-mode’ vergence control mechanism; then the weights were directly
learned from examples of the desired vergence behaviour. Wetested the proposed model in a
virtual environment achieving stable fixation and small response time to a wide range of dis-
parities. The vergence movements produced are able bring and to keep the fixation point both
on a steady and on a moving stimulus. Section 3 and Section 4, respectively, report on the basic
population network of disparity detectors and the proposed’dual-mode’ strategy for binocular
vergence, devised by UG. Section 5 reports on the two networks (linear and convolutional) de-
veloped by K.U.Leuven to learn disparity-vergence behaviours on the basis of the population
responses.

3 Distributed representation of binocular disparity

3.1 Computational theory

3.1.1 Multichannel band-pass representation of the visualsignal

An efficient (internal) representation is necessary to guarantee all potential visual information
can be made available for higher level analysis. At an early level, feature detection occurs
through initial localquantitativemeasurements of basic image properties (e.g., edge, bar, ori-
entation, movement, binocular disparity, colour) referable to spatial differential structure of the
image luminance and its temporal evolution (cf. linear cortical cell responses). Later stages
in vision can make use of these initial measurements by combining them in various ways, to
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come up with categoricalqualitativedescriptors, in which information is used in a non-local
way to formulate more global spatial and temporal predictions. The receptive fields of the cells
in the primary visual cortex have been interpreted as fuzzy differential operators (or localjets
[7]) that provide regularized partial derivatives of the image luminance in the neighborhood of
a given pointx = (x, y), along different directions and at several levels of resolution, simul-
taneously. Given the 2D nature of the visual signal, the spatial direction of the derivative (i.e.,
the orientation of the corresponding local filter) is an important “parameter”. Within a local
jet, the directionally biased receptive fields are represented by a set of similar filter profiles that
merely differ in orientation.

Alternatively, considering the space/spatial-frequencyduality [8], the local jets can be de-
scribed through a set of independent spatial-frequency channels, which are selectively sensi-
tive to a different limited range of spatial frequencies. These spatial-frequency channels are
equally apt as the spatial ones. From this perspective, it isformally possible to derive, on a
local basis, a complete harmonic representation (phase, energy/amplitude, and orientation, for
any frequency channel) of any visual stimulus, by defining the associated analytic signal in
a combined space-frequency domain through filtering operations with complex-valued band-
pass kernels. Formally, due to the impossibility of a directdefinition of the analytic signal in
two dimensions, a 2D spatial frequency filtering would require an association between spatial
frequency and orientation channels. Accordingly, for eachorientation channelθ, an imageI(x)
is filtered with a complex-valued filter:

f θA(x) = f θ(x) − jf θH(x) (1)

wheref θH(x) is the Hilbert transform off θ(x) with respect to the axis orthogonal to the
filter’s orientation. This results in a complex-valuedanalytic image:

Qθ
A(x) = I ∗ f θA(x) = Cθ(x) + jSθ(x) , (2)

whereCθ(x) andSθ(x) denote the responses of the quadrature filter pair. For each spatial
location, the amplitudeρθ =

√

C2
θ + S2

θ and the phaseφθ = arctan(Sθ/Cθ) envelopes measure
the harmonic information content in a limited range of frequencies and orientations to which
the channel is tuned.

In the harmonic space, it is in general an important requirement to have both the spatial
width of the filters and the spatial frequency bandwidth small, so that good localization and
good approximation of the harmonic information is realizedsimultaneously. Gabor functions
reaching the maximal joint resolution in space and spatial frequency domains are specifically
suitable for this purpose and are extensively used in computational vision [8]. Different band-
pass filters have been proposed as an alternative to Gabor functions, on the basis of specific
properties of the basis functions [9, 10, 11, 12, 13, 14, 15, 16], or according to theoretical
and practical considerations of the whole space-frequencytransform [17, 18, 19, 20, 21, 22].
A detailed comparison of the different filters evades the scope of this report and numerous
comparative reviews can be already found in the literature (e.g., see [23] [24] [25]).

We have considered a discrete set of oriented Gabor filters with different anglesθ. To
generate a filter with orientationθ (measured from the positive horizontal axis), we can rotate
a vertically oriented filter byθ − 90◦ with respect to the filter’s center (positive angle means
counterclockwise rotation):
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g(x, θ, ψ) = η · 1

2πσxσy
exp

(

− x2
θ

2σ2
x

− y2
θ

2σ2
y

)

cis(k0xθ + ψ) (3)

with
{

xθ = x cos(θ − 90◦) + y sin(θ − 90◦)
yθ = −x sin(θ − 90◦) + y cos(θ − 90◦)

k0 denotes theradial peak frequency, ψ relates to the filter symmetry, andσ’s relates to the
spatial filter extension, andcis(◦) is intended to becos(◦) + j sin(◦). The parameterη is a
proper normalization constant (e.g., chosen to the unitary maximum condition or to the unitary
energy condition). Equivalently, the set of Gabor filters can be defined by a quadratic form as:

g(x, θ, ψ) = η · 1

2πσxσy
exp

(

−1

2
xTAx

)

cis(kT0 x + ψ) (4)

wherek0 = (k0 sin θ,−k0 cos θ)T is the oriented spatial frequency vector1, and the matrix
A can be derived from a diagonal matrixD (corresponding to a vertically oriented Gabor filter)
by multiplication with the rotation matrixΘ:

A = ΘTDΘ =

(

sin θ cos θ
− cos θ sin θ

) (

σ−2
x 0
0 σ−2

y

) (

sin θ − cos θ
cos θ sin θ

)

. (5)

It is worth noting that the peak radial frequencyk0 and the widthσx of the Gaussian envelope
in the Gabor function are linked by the constant relative bandwidth factorβ (in octave)2 as:

σx =
1

k0

(

2β + 1

2β − 1

)

. (6)

Typically, β is chosen around 1 (β ∈ [0.8, 1.2]). The relative bandwidth constancy yields
self-similar filters across the scales: filters with different radial peak frequencies, but identical
orientation angle are simply geometrically scaled versionof each other. The aspect ratioσx/σy
normally takes values between 0.25 and 1 and, together with the radial peak frequency, defines
the orientation bandwidth of the filter3. In the following, to bind the orientation bandwidth of

1The orientation of the Gabor filter in space and the orientation of the bandpass channel in the frequency
domain are related byθ = arg(k0) + π

2
.

2The relative bandwidth of a Gabor filter is defined as

β = log
2

(

k0 + ∆k/2

k0 − ∆k/2

)

= log
2

(

k0σx + 1

k0σx − 1

)

when one chooses the cut-off frequency at one-standard-deviationof the amplitude spectrum of the Gabor function
(1/σx) to define the absolute bandwidth∆k.

3The orientation bandwidth is the angle between two lines that pass through the frequency origin and are
tangent to the one-standard-deviation contour of the amplitude spectrum of the Gabor function. It is given by

Bθ = arctan

(

2β − 1

2β + 1

)

.
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the filter to the presence of the sinusoidal term only, we fix the aspect ratio to 1 (i.e., σx = σy =
σ).

The values of all the design parameters have been chosen to have a good coverage of the
space-frequency domain, to guarantee a uniform orientation coverage and to keep the spatial
support to a minimum, in order to cut down the computational cost. Therefore, we determined
the smallest filter on the basis of the highest allowable frequency without aliasing, and we dou-
bled the sampling when the model analysis requires a higher precision in the filter’s profile
(or, from a different perspective, a larger spatial supportin pixels). [Note: this design strat-
egy reveals itself particularly effective for economic multi-scale analysis through pyramidal
techniques [26]. Yet, for all the simulations conducted in this work we considered a single
scale, only]. Accordingly, we fixed the maximum radial peak frequency (k0) by considering
the Nyquist condition and a constant relative bandwidthβ around one octave, that allows us to
cover the frequency domain without loss of information. Theresult was a minimal11×11 filter
mask capable of resolving sub-pixel phase differences. To satisfy the quadrature requirement
all the even symmetric filters have been “corrected” to cancel the DC sensitivity. The filters
have been expressed as sums ofx-y separable functions to implement separate 1D convolu-
tions instead of 2D convolutions in a similar way that [27], with a consequent further drop of
the computational burden. For a detailed description of thefilters used, see the Appendix.

3.1.2 Phase-based disparity detection

Depth perception derives from the differences in the positions of corresponding points in the
stereo image pair projected on the two retinas of a binocularsystem. When the camera axes are
parallel, on the basis of a local approximation of the Fourier Shift Theorem, the phase-based
stereopsis defines the disparityδ(x) as the one-dimensional (1D) shift necessary to align, along
the direction of the horizontal epipolar lines, the phase values of bandpass filtered versions of
the stereo image pairIR(x) andIL[x + δ(x)] [28]. In general, this type of local measurement
of the phase results stable, and a quasilinear behaviour of the phase vs. space is observed
over relatively large spatial extents, except around singular points where the amplitudesρ(x)
vanishes and the phase becomes unreliable [29]. This property of the phase signal yields good
predictions of binocular disparity by

δ(x) =
⌊φL(x) − φR(x)⌋2π

k(x)
=

⌊∆φ(x)⌋2π

k(x)
, (7)

whereφL andφR are the local phase in the left and right image, respectively, andk(x) is the
average instantaneous frequency of the bandpass signal, measured by using the phase derivative
φx from the left and right filter outputs:

k(x) =
φLx (x) + φRx (x)

2
. (8)

As a consequence of the linear phase model, the instantaneous frequency is generally constant
and close to the tuning frequency of the filter (φx ≃ k0), except near singularities where abrupt
frequency changes occur as a function of spatial position. Therefore, a disparity estimate at a
pointx is accepted only if|φx − k0| < k0µ, whereµ is a proper threshold [29].
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Equivalently, the principal part of the interocular phase difference necessary to estimate the
binocular disparity can be obtained directly, without explicit manipulation of the left and right
phase and thereby without incurring the ‘wrapping’ effectson the resulting disparity map [30]
(see also [31, 32]):

⌊∆φ⌋2π = arg(QLQ∗R) (9)

= atan2
(

Im(QLQ∗R),Re(QLQ∗R)
)

(10)

= atan2
(

CRSL− CLSR, CLCR+ SLSR
)

(11)

whereQL = QL(x) = IL ∗ g(x, 0◦, ψ), QR = QR(x) = IR ∗ g(x, 0◦, ψ) andQ∗ denotes
complex conjugate ofQ.

When the camera axes are moving freely, as it occurs in a binocular active vision system,
stereopsis cannot longer be considered a 1D problem and the disparities can be bothhorizontal
andvertical. Therefore, the 1D phase difference approach must be extended to the 2D case.

Still relying upon the local approximation of the Fourier Shift Theorem, the 2D local vec-
tor disparityδ(x) between the left and right images can be related/detected asa phase shift
kT (x)δ(x) in the local spectrum, wherek(x) is the local (i.e., instantaneous) frequency vector
defined as the phase gradient:

k(x) = ∇φ(x) =

(

∂φ(x, y)

∂x
,
∂φ(x, y)

∂y

)T

(12)

with

φ(x) =
φL(x) + φR(x)

2
.

Given the 1D character of both the local phase and the instantaneous frequency, their measures
strictly depend on the choice of one reference orientation axis, thus preventing the determi-
nation of the full disparity vector by a punctual single-channel measurement. We will see
that only the projected disparity component on the direction orthogonal to the dominant local
orientation of the filtered image can be detected.

Let us distinguish two cases. When the image (stimulus) structure is intrinsically 1D, with
a dominant orientationθs (let us think of an oriented edge or of an oriented grating with fre-
quency vectorks = (ks sin θs, ks cos θs)

T , as extreme cases), the aperture problem [33] restricts
detectable disparity to the direction orthogonal to the edge (i.e., to the direction of the dominant
frequency vectorks):

δθs
(x) =

ks

ks

⌊∆φθs
(x)⌋2π

k(x)
≃ ks

ks

⌊∆φθs
(x)⌋2π

ks
(13)

wherek(x) is the magnitude of the instantaneous frequency. That is, only the projectionδθs
of

the disparityδ onto the direction of the stimulus frequencyks is observed. A spatial disparity
in a direction orthogonal toks cannot be measured. For an intrinsic 1D image structure, indeed,
the spectrum energy is confined within a very narrow bandwidth and it is gathered by the band-
width (∆k,Bθ) of a single activated channel. This is a realistic assumption for a relatively large
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number of orientation channels. Moreover, in this condition, when the dominant frequency of
the stimulusks is unknown, it can be approximated byk0, and thus Eq. (13) becomes:

δθs
(x) ∼ k0

k0

⌊∆φθs
(x)⌋2π

k0

. (14)

When the image structure is intrinsically 2D (let us think ofa rich texture or a white noise, as
an extreme case), the visual signal has local frequency components in more than one direction
and the dominant direction is given by the orientation of theGabor filter. Similarly, the only
detectable disparity by a band-pass oriented channel (∆k,Bθ) is the one orthogonal to the
filter’s orientationθ, i.e., the projection in the direction of the filter’s frequency:

δθ(x) =
k0

k0

⌊∆φθ(x)⌋2π

k(x)
. (15)

Again, k(x) can be derived by Eq. (12) or approximated by the peak frequency of the Gabor
filter k0.

By considering the whole set of oriented filters, we can derive the projected disparities in
the directions of all the frequency components of the multi-channel band-pass representation,
and obtain the full disparity vector by intersection of constraints [3], thus solving the aperture
problem. Without measurement errors, the vector disparitydetermined by each orientation
channel consists of projectionδθ(x) in k0-direction and unknown orthogonal component (see
Fig. 1). The full disparity vectorδ(x) can be recovered from at least two projectionsδθ(x),
which are not linearly dependent. The end points of the vectorsδθ(x) for fixedk0 are located
on a circle through the origin and the end point ofδθ(x). Taking into account measurement
errors of∆φθ and , the redundancy of more than two projections can be used to minimize the
mean square error forδ(x):

δ(x) = argmin
δ(x)

∑

θ

cθ(x)

(

δθ(x) − kT0
k0

δ(x)

)2

. (16)

where the coefficientcθ(x) = 1 when the component disparity along directionθ for pixel x is
avalid (i.e.reliable) component on the basis of a confidence measure, andis null otherwise. In
this way, the influence of erroneous filter responses is reduced.

3.2 Distributed models

The phase-based disparity estimation approach presented in section 3.1 impliesexplicit mea-
surements, for each spatial orientation channelθ (and for any given scale) of the local phase
difference∆φ in the image pairs, from which we obtain thedirect measure of the binocular
disparity componentδθ. Similarly, we can consider a distributed approach in whichthe binocu-
lar disparityδ is never measured but implicitly coded by the population activity of cells that act
as “disparity detectors” - over a proper range of disparity values. Such models are inspired by
the experimental evidences on how the brain and, specifically, the primary visual cortex (V1),
implements early mechanisms for stereopsis. Using such a distributed code it is possible to
achieve a very flexible and robust representation of binocular disparity for each spatial position
in the retinal image.
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Figure 1: Recovery of the 2D disparity vector. By construction, the end points of all the
(correct) estimatesδestθ of the disparity component with respect to the orientationθ are located
on a circle through the origin. The true full disparity is thelongest vector whose end point lies
on the circle.

3.2.1 Phase-shift and binocular energy models

An abundance of neurophysiological evidences report that the cortical cells’ sensitivity to
binocular disparity is related to interocular phase shiftsin the Gabor-like receptive fields of
V1 simple cells ([28][34][35][36][37][38]). It is worth noting that models based on a differ-
ence in the position of the left and right RFs (position-shift models) or hybrid approaches have
been proposed (we will discuss the consequences of this model extentions in the Section). The
phase-shift model posits that the center of the left and right eye RFs coincides, but the arrange-
ments of the RF subregions are different. Formally, the response of a simple cell with RF center
in x and oriented alongθ, can be written as:

θ
∆ψrs,ψ0

(x) = IL ∗ hL(x; θ, ψ0 + ψL) + IR ∗ hR(x; θ, ψ0 + ψR) (17)

where

h(x) = h(x; θ, ψ) = η exp

(

− 1

2σ2
xTx

)

cos(kT0 x + ψ) (18)

is a real-valued RF (cf Eq. (4)),ψ0 is a “central” value of the phase of the RF, andψL andψR

are the phases that characterize the binocular RF profile.
In order to make the disparity tuning independent of the monocular local Fourier phase of

the images (but only on the interocular phase difference), binocular energy complex cells play
the role. Such “energy units” are defined as the squared sum ofa quadrature pair of simple
cells (see Fig. 2) and their response is defined as:
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r e t i n a

R i g h t
r e t i n a

C o r r e s p o n d i n g  p o i n t s

Figure 2: The complex cell response is constructed as the squared sum of a quadrature pair of
simple cells. The green and red pathways relate to the monocular “quadrature pair” of simple
cell RFs,gL andgR, respectively.

θ
∆ψrc(x) =θ

∆ψ r
2
s,0(x) +θ

∆ψ r
2
s,π/2(x) (19)

Linking phase-based and energy-based modelsFor any fixed orientation, if we character-
ize a “quadrature pair” of simple cells by a complex-valued RF (cf Eq. (4)):

h(x)
△
= hC(x) + jhS(x) = g(x;ψ) (20)

then we can write the expression of the response of the “quadrature pair” as:

Q(x) = IL ∗ gL(x) + IR ∗ gR(x) = IL ∗ g(x)ejψ
L

+ IR ∗ g(x)ejψ
R

=

= QL(x)ejψ
L

+QR(x)ejψ
R

.

The response of a complex “energy” cell is then

θ
∆ψrc(x) =

∣

∣

θ
∆ψrs,0(x) +θ

∆ψ rs,π/2(x)
∣

∣

2
=

∣

∣

∣
QL(x)ejψ

L

+QR(x)ejψ
R
∣

∣

∣

2

= (21)

=
∣

∣

∣
ejψ

L (

QL(x) +QR(x)ej∆ψ
)

∣

∣

∣

2

=
∣

∣QL(x) +QR(x)ej∆ψ
∣

∣

2
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where∆ψ = ψL − ψR. Therefore, complex cells’ responses depend on∆ψ only, instead
of onψL andψR individually.

Eq. (21) formally establishes the equivalence between phase-based techniques and energy-
based models [39]. Indeed, the maximum ofrc responses is obtained when the two phasors
QL andQR are aligned in the complex plane, that is when∆ψ compensates for the different
Fourier phases of the right and left image patches within thecell’s RF (cf. [28]).

Notwithstanding the formal equivalence between phase-based techniques and energy-based
models, the latters prove themselves more robust to noise and more flexible, since they can
intrinsically embed adaptive mechanisms both at coding anddecoding levels of the population
code. From algebraic and trigonometric manipulation we canderive the tuning curve of the
complex cell:

θ
∆ψrc(x) = |QL(x)|2 + 2|QL(x)Q∗R(x)| cos(δθk0 − ∆ψ) + |QR(x)|2. (22)

Accordingly, the stimulus disparity, along directionθ, to which the cell is tuned is:

δθpref(x) =
⌊∆ψ(x)⌋2π

k0

. (23)

Including position shift: hybrid models The position-shift model posits that there is a pop-
ulation of energy neurons with different receptive field position shifts. Accordingly we can
consider a family of binocular energy neurons whose right monocular subfield is shifted by
a set of distancesd compared to the retinal position of the left monocular subfield. Usually
position-shift are used in combination with phase-shift models to overcome the restriction on
the maximum disparity detectability stemmed by the fact that the phase shifts are unique only
between−π andπ. These hybrid models posit that there is a population of binocular energy
neurons with different RF positions and different RF phase shifts. In the following we will
restrict our analysis to phase-shift model only, and we willdeserve a model extention for future
work.

3.2.2 Characterization of the population of disparity detectors

Coding Disparity information is extracted from a sequence of stereo image pairs by using
a distributed cortical architecture that resorts to a population of simple and complex cells.
The population is composed of cells sensitive toNp × No vector disparitiesδ = (δH , δV )
with Np magnitude values distributed in the range[−∆,∆] pixels and alongNo orientations
uniformly distributed between0 andπ (see Fig. 3). For each simple cell we can control the
ocular dominance of the binocular receptive fieldh(x), its orientationθ with respect to the
horizontal axis and the interocular phase shift∆ψ along the rotated axis, which confers to
the cell its specific tuning to a disparityδθpref = ∆ψθ/k0, along the direction orthogonal toθ.
The spatial frequencyk0 and the spatial envelope are fixed on the basis of the design criteria
described in Section 3.1. The complex cell inherits the spatial properties of the simple cells,
and its responserijc (x) is given by Eq. (21): For each orientation, the population is, in this
way, capable of providing reliable disparity estimates in the range between−∆ and∆, where
∆ = ∆ψmax/k0 can be defined as the maximum detectable disparity of the population.
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Figure 3: The population of binocular receptive fields for each retinal location.

Fig. 4 shows examples of tuning curves obtained from the population network stimulated
with δH only, compared to the variety of tuning curves forδH , observed experimentally in V1
cortical cells [38].

Decoding Once the disparity along each spatial orientation have beencoded by the popu-
lation activity, it is necessary to read out this information, to obtain a reliable estimate. The
decoding strategy, the number of the cells in the populationand their distribution are jointly
related. To decode the population by a winners-take-all strategy, a large number of cells along
each spatial orientation would be necessary, thus increasing the computational cost and the
memory occupancy of the approach. To obtain precise featureestimation, while keeping the
number of cells as low as possible, thus an affordable computational cost, aweighted sum(i.e.,
a center of gravity) of the responses for each orientation iscalculated. Thecomponent disparity
δestθj

is obtained by:

δestθj
=

∑Np

i=1
∆ψi

k0 cos θj
rijc

∑Np

i=1 r
ij
c

(24)

Other decoding methods [40], such as themaximum likelihoodestimator, have been con-
sidered, but the center of gravity of the population activity is the best compromise between
simplicity, low computational cost and accuracy of the estimates.

Confidence values, based on local energy, are used to providea reliability measure for each
disparity estimate.

To decode the full (horizontal and vertical) disparity we can still rely on the intersection
of constraints (channel interaction) introduced in Section 3.1.2 that combine the population
estimates for each orientation channel.

Summarizing, on the basis of these principles, a cortical-like architecture for disparity es-
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Figure 4: (a) Distribution of the tuning curves obtained from the population network. The
distribution has been obtained forNp = 7 andNo = 8. (b) The distribution observed for
real V1 cortical cells [38]. The insets represent examples of disparity tuning curves fitted by
Gabor function. The model cells’ distribution and the tuning profiles closely resemble the
experimental ones.
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timation can be devised [41]. The overall scheme of the proposed architecture is shown in
Fig. (5). Three distinct levels of processing can be distinguished: (1) the distributed coding
of disparity across different orientation channels, (2) the decoding stage for each channel, and
(3) the estimation of the full disparity through channel interaction. If one wants to consider
several scales, coarse-to-fine strategies can be straightforwardly embodied,e.g., by including
in the scheme a refinement loop as re-entrant connections in the filtering stage (see [41] [42]).

Toward a generalized architecture for active stereopsis In active stereopsis, besides han-
dling horizontal and vertical disparities, we have to explicitly consider vergence mechanisms
in the processing loop. From this perspective, in the next Section, we address the problem of
the refinement of vergence, which does not necessarily implies first a refinement of the estima-
tion of the disparity map. Indeed, experimental evidences (seee.g., [43] [44] [45]) pointed out
that mechanisms guiding eye movements are in general different from those supporting depth
perception. We will see that, by specializing disparity detectors for vergence control, we can
obtain linear servos with fast reaction and precision that work over a wide range of disparities
with a reduced number of resources single scale).

4 Strategies for vergence without explicit calculation of dis-
parity

4.1 Reading binocular energy population codes for short-latency
disparity-vergence eye movements

As described in Section 3, the population of complex cells are, by construction, tuned to ori-
ented disparities,i.e., jointly tuned to horizontal (δH) and vertical disparities (δV ). In general,
indeed, the retinal disparity is a two-dimensional (2D) feature and the full decoding of the
population response would require the proper solution of the aperture problem [33]. This can
be achieved, by example, through the intersection of the constraints provided by the different
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disparity, its contribution to the HD and VD is calculated byprojections on the horizontal and
vertical lines. (Bottom): By assuming VD= 0, the orientation of the RF is used as a degree of
freedom to extend the sensitivity range of the cell to horizontal disparity stimuli (HD).

orientation channels (cf. [3]). If one proceedes in such a way, that is by recovering the full dis-
parity vector, the disparity detectability range would still be limited to±∆, and the horizontal
(vertical) component of the full disparity vector will thenused for the control of horizontal (ver-
tical) vergence. Unless one uses computationally expensive multiscale techniques for widening
the disparity detectability range, this approach would considerably limit the working range of
the vergence control. As for the control of vergence, largerdisparities have to be discriminated
while keeping a good accuracy around the fixation point for allowing finer refinement and
achieving stable fixations, alternative strategies might be employed to gain effective vergence
signals directly from the complex cell population responses, without explicit computation of
the disparity map. To this end, we can map the 2D disparity feature space into the 1D space
of the projected horizontal disparities, where the orientation θ plays the role of a parameter.
More precisely, by assumingδV = 0, the dimensionality of the problem of disparity estima-
tion reduces to one, and the orientation of the receptive field is used as a degree of freedom to
extend the sensitivity range of the cells’ population to horizontal disparity stimuli (see Fig. 6).
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In this way, each orientation channel has a sensitivity for the horizontal disparity that can be
obtained by the projection of the oriented phase differenceon the (horizontal) epipolar line in
the following way:

δθH =
∆ψ

2πk0cosθ
(25)

Fig.7a shows the horizontal disparity tuning curves obtained of the population for different
orientations of the receptive fields. To decode the horizontal disparity at a specific image point,
the whole activity of the population of cells, with receptive fields centered in that location, is
considered. By using a center-of-mass decoding strategy, the estimated horizontal disparity
δestH is obtained by:

δestH =

∑Np

i=1

∑No

j=1
∆ψi

2πk0 cos θj
rijc

∑Np

i=1

∑No

j=1 r
ij
c

(26)

whererijc denotes the response of the complex cell characterized by the i-th phase difference
and by the j-th orientation. The dashed line plots in Fig.7b-c show the resulting disparity curves
obtained by population decoding. The estimate of the disparity can be considered correct when
the stimulus disparity is within±∆.

By analyzing the tuning curves of the population (see Fig.7a) we observe that the peak
sensitivity of cells that belong to a single orientation channel is uniformly distributed in a range
that increases with the orientation angleθ of the receptive field, as the horizontal projection
of the frequency of the Gabor function declines to zero. Thus, applying the center of mass
decoding strategy, separately for each orientation, we canobtainj different estimates of the
disparity:

δestH,θj
=

∑Np

j=1
∆ψi

2πk0 cos θj
rijc

∑Np

i=1 r
ij
c

(27)

It is worthy to note that the increase of the sensitivity range, as the orientation of the receptive
fields deviates from the vertical, comes at the price of a reduced reliability and accuracy of
the measure (as an extreme case, horizontal receptive fieldsare unable to detect horizontal
disparities,i.e., δθ=0

H → ∞). In any case, the estimate of the disparity can be considered correct
in a range around[−∆,∆], only.

Moreover, since the 1D tuning curves of the population were obtained under the assump-
tion of horizontal disparity only, when the vertical disparity in the images differs from zero,
the correctness of estimate of the actual component of the horizontal disparity has to be ver-
ified. We observe that (see Fig.7b and Fig.7c, top row), the disparity estimated by the whole
population is unaffected by non null vertical disparities,as well as the estimate obtained by
the orientationθ = 0 (vertically oriented cells are indeed , by definition, sensitive to horizontal
disparity only). On the contrary, the estimated disparity obtained forθ 6= 0 shows a dependence
on vertical disparity, that increases withθ (see Fig.7c, middle and bottom row), and leads to a
systematic error response.

4.1.1 Control signal extraction

A desired feature of disparity-vergence curves is an odd symmetry with a linear segment pass-
ing smoothly through zero disparity, which defines criticalservo ranges over which changes
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Figure 7: (a) Disparity tuning curves of complex cells at different orientations. (b) Estimated
horizontal disparity using single orientation channels inpresence of horizontal disparity only
(δV = 0). (c) Estimated horizontal disparity using single orientation channels in presence of a
fixed amount of vertical disparity (δV 6= 0). Dashed line plots refer to the horizontal disparity
estimates obtained by combining all the orientation channels.

in the stimulus horizontal disparity elicit roughly proportional changes in the amount of hori-
zontal vergence eye movements,∆α = pδH , whereα is the vergence angle. Starting from the
estimated disparity curves shown in Fig.7b, we can exploit the responses at different orienta-
tions to design linear servos that work outside the reliability range of disparity estimation. Yet,
we have to cope with the attendant sensitivity to vertical disparity, which is an undesirable ef-
fect that alters the control action. Hence, given a stimuluswith horizontal and vertical disparity
δH andδV , we want to combine the population responses in order to extract a vergence control
proportional to theδH to be reduced, regardless of any possibleδV . We demonstrate that such
disparity vergence response can be approximated by proper weighting of the population cell
responses where disparity tuning curves act as basis functions [46]. Due to these considera-
tions, the population responses are combined with two very specific goals: (1) to obtain signals
proportional to horizontal disparities, (2) to make these signals be insensitive to the presence
of vertical disparities. The disparity vergence response curvesrkv are obtained by a weighted
sum of the complex cell responses (see Fig.9):

rkv =

Np
∑

i=1

No
∑

j=1

wkijr
ij
c (28)
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Figure 8: TheυkH target curves to be approximated by the LMS minimization. Each of them is
designed to have a tuning to disparities of different magnitude.

where the indexk denotes the different kind of the desired vergence responsecurves. Referring
to a common classification [47] we divide the V1 cells in five categories: near (NE) and far
(FA) dedicated to coarse stereopsis, and tuned near (TN), tuned far (TF) and tuned zero (T0)
for fine stereopsis. The weightswkij are obtained through a recursive LMS algorithm. From
the control point of view, we assume that small values of vertical disparities do not affect the
disparity-vergence curves. Moreover, to mildly constraint the solution of the problem and, in
the meantime to ensure a good control stability, we pose the VD independence constraint for
HD ≃ 0, only. Under this assumption, we can design the disparity-vergence curves that define
the visual servos by considering the tuning curves obtainedseparately for VD=0 and HD=0
(i.e., the orthogonal cross-section of the oriented 2D disparitytuning curves of the binocular
energy model). More precisely, the profile of the desired vergence curveυkH (see Fig.8) is
approximated by a weighted sum of the tuning curves for horizontal disparityrc(δH ; θ,∆ψ).

To gain the insensitivity to vertical disparity we add a constraint term in the minimization
formula. This term ensures that the sum of the vertical disparity tuning curvesrc(δV ; θ,∆ψ),
weighted with the samewk, approximatesυkV . To overcome the difficulties of approximating
a constant with a combination of a limited number of periodicbasis functions, we impose
υkV to have a profile that is mildly constant as the one that can be obtained by summing the
tuning curves all together(υkV =

∑Np

i=1

∑No

j=1 r
ij
c (δV )). Hence, the weightswk are obtained by

minimizing the following functional:

E(wk) =

∥

∥

∥

∥

∥

Np
∑

i=1

No
∑

j=1

rijc (δH)wkij − υkH

∥

∥

∥

∥

∥

2

+ λ

∥

∥

∥

∥

∥

Np
∑

i=1

No
∑

j=1

rijc (δV )(wkij − 1)

∥

∥

∥

∥

∥

2

(29)

whereλ > 0 balances the relevance of the second term over the first. In our simulations we
fixed λ = 1 in order to give the same relevance to bothδH andδV . To test the functionality
of the model, at this stage, we used the same kind of stimuli adopted to compute the disparity
tuning curves of the cells, so that we expect the disparity vergence tuning curve to be the same
we drew from the minimization. The stimuli have a disparity varying in the same range used for
the tuning curves, and the control computed has the same shape of the desired curves (Fig.9b).
A drawback that arises is that if the image contrast is lowered, disparity vergence tuning curves
hold the same shape, but their gain is consequently lowered,with the effect that the speed of
the vergence movements is modulated by the image contrast. The estimated disparity does
not show this effect because the center of mass decoding strategy means to take a decision on
the disparity value, regardless to the contrast of the stimulus (cf. [35]). By analogy with the
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( a )
Figure 9: Extraction of the vergence control signals: each location of the left and right image
is filtered with a population of diparity detectors whose responserc is combined with five
different families of weightswk, in order to extract five signalsrFA, rTF , rT0, rTN andrNE,
tuned to disparities of different magnitudes. These signals are combined in a differential way,
io order to extract theLONG andSHORT controls, used to drive the vergence eye movements,
while therT0 works as a switch between them.

formula used to decode the disparity, we can introduce the same normalization term to let the
system work in the proper way independently of the image contrast:

rkv =

∑Np

i=1

∑No

j=1w
k
ijr

ij
c

∑Np

i=1

∑No

j=1 r
ij
c

(30)

4.1.2 Signal Choice

With reference to the five categories of the disparity-vergence curves, it is plausible to think that
the first two generate the fast and coarse component and the others the slow and fine component
of the vergence movements. In practice the fast-coarse control is given byLONG= rNE − rFA,
while the slow-fine is given bySHORT= rTN − rTF (see Fig.9). TheSHORT control signal is
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Figure 10: The effectiveLONG, SHORT (a), and T0 (b) signals computed by the model stimu-
lated with a random dot stereograms (RDS). TheSHORT control is able to work in a linear and
precise manner for small disparities, while theLONG one works in a coarse but effective way
for larger disparities. Since theT0 signal is high for small disparities, it is able to act like a
switch between the two controls.

designed to proportionally generate, in a small range of disparities, the vergence to be achieved,
and allows a precise and stable fixation (Fig.9b). Out of its range of linearity, theSHORT signal
decreases and loses efficiency to the point where it changes sign, thus generating a vergence
movement opposite to the desired one. On the contrary for small disparities theLONG control
signal yields overactive vergence signal that make the system to oscillate, whereas for larger
disparities it provides a rapid and effective signal.

The role of therT0 signal, is to act as a switch between theSHORT and theLONG controls.
When the binocular disparities are small,rT0 is above a proper thresholdTH, and it enables
theSHORTcontrol (see white regions in Fig.9b). On the contrary, for large stimulus disparities,
rT0 is below the threshold and it enables theLONG control (see grey regions in Fig.9b).

A straightforward but meaningful effect that arises from calculating theSHORT and the
LONG controls in a differential way is a strong robustness to noise. If we add a Gaussian white
noise to the population response, both the decoding of the disparity and the computation of the
rkv signals, would be affected. Since the weightswk are normalized, it is easy to demonstrate
that the noise terms onrNE andrFA cancel each other while differentiating to compute the
LONG control, and so it happens for theSHORT one. Simulation results evidenced that, when
one adopts the differentialSHORT and LONG control signals, the S/N ratio is∼ 6dB higher
than the input S/N ratio for the complex cell responses.

4.2 Effects of vertical disparity

The optimized control we want to obtain from the proposed technique is a control of the hori-
zontal vergence that would be able to yield the same movementfor a given horizontal disparity
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Figure 11: The effectiveLONG (a), andSHORT (b) signals computed by the model stimulated
with a random dot stereograms (RDS) in the absence (solid line) and in presence (dashed line)
of a vertical disparity pedestal.

δH , without suffering any effect from the vertical disparityδV . Indeed if theδV constraint is
not taken into account in the minimization process used to obtain the weightsw (see Eq.29),
the resulting control shows a strong dependence on verticaldisparity, as it appears evident in
the disparity-vergence tuning curves shown in Fig.7 right column. The control loses the zero
crossing and its odd symmetry, which are instrumental features to ensure that at the steady
state, the eyes fixate on the closest surface along the axis offixation, not before, nor beyond.

Although, the regularization term we introduced in Eq.29 has the sake of forcing the control
to be insensitive to the vertical disparity, simulations with RDSs showed that the behaviour is
different from the expected one.

The problem of this approach is due to the fact that the minimization is computed by con-
sidering, for every complex cell, its responserijc to the horizontal and the vertical disparity
only, for the first and the second term of the functional, respectively. As a matter of fact, in
the functional in Eq.29, what we consider are the cross-sections for δH = 0 andδV = 0 of
the two-dimensional (2D) tuning profile that characterizeseach complex cell. Though, the 2D
disparity tuning profile of a binocular energy unit can be oriented by any angle, depending on
the orientation channel we consider, and it is separable forθ = 0 andθ = π/2 only.

Hence, the problem arises if a vertical disparity pedestal is added to the stimulus, the section
of the 2D profile one should consider, is the one at the imposedδV . Otherwise, the more the
filter is tilted from the vertical and the more theδV is, the most the tuning curves change,
producing the effect of making the decoding for vergence unreliable.

Thus if theδV is set to0, the control is working in the conditions it is designed for,and
its effectiveness is the highest. In Fig.14a we show the evolution in time of the actual hori-
zontal disparity, when the vergence control to correct active. The value of each plot at the first
time step is the initial horizontal disparity step we imposed. The system is able to cope with
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Figure 12: (a) The profile of the response of the complex cell defined byθ = π/4, tested with
a RDS withδH andδV ranging from−3∆ and3∆. (b) Tuning curves for the same complex
cells, taken at different fixed vertical disparity, the blueone is forδV = 0 and the green one is
for δV = ∆. The empty circles highlight the position of the peak for each curve.
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Figure 13: 2D vergence tuning profiles for theSHORT and LONG control mode obtained as
weighted sums of the 2D disparity tuning profiles of the complex cells. The weights are derived
by Eq.29 and by Eq.30

disparity values ranging from−3∆ to 3∆and the control of vergence reduces to zero the stim-
ulus disparity. Moreover is highlighted when the system relies upon theSHORT control (filled
circles) and theLONG control (open circles). As expected, for small disparitiesthe working
mode is the former, while for larger disparities is the latter, depending on the threshold of the
T0 signal (see Fig.10b). At the same way if vertical disparity is small (see Fig.14b), the tuning
of the population responses is almost unaffected byδV , and the only visible effect is a slight
slow down of the vergence control. Increasing the value ofδV (see Fig.14c-d), besides a more
consistent slow down of the control, another drawback is thereducing of the range ofδH the
control is able to cope with. This effect is particularly evident on theLONG mode, because it
resort mainly on the cells whose orientation tuning largelydeviates from the vertical, thus being
more sensitive toδV . Fig.13 shows theSHORT andLONG controls obtained as weighted sums
of the 2D disparity tuning profiles of the complex cells, and in particular haw the two control
are slowed down byδV . Moreover the areas where the controls are unreliable is highlighted
with white lines.

4.3 Results

4.3.1 Test with Random Dot Stereograms

We tested the proposed model with synthetic stimuli consisting of random dot stereograms
(RDS) in which the stereo image pairs are shifted horizontally. Specifically, we applied hori-
zontal disparity steps varying from−3∆ to 3∆. The model works in a perception-action loop
in which the vergence movements are simulated reducing stepby step the disparity between
the left and right images by an amount proportional to the vergence control, computed both
through the estimation of the disparityδestH (see 26) and through the vergence signalsrkv (see
30) Fig.16 shows the percentage of vergence movement accomplished by the two mechanisms
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Figure 14: Evolution in time of the vergence control testes with a RDS. Fixed a vertical dispar-
ity pedestal, varing from0 to∆, each trace represent the evolution of the vergence strating from
a different value of horizontal disparity. It is clear that considering a small vertical disparity
(b), its effect on the horizontal vergence is negligible. Increasing it above a certain value (c)
and (d), the vergence control is slowed down and its range of effectiveness is reduced. Filled
and opend circles denote the action of theSHORT andLONG controls, respectively.
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Figure 17: (a) Simulated experimental setup, consisting ofthe eyes looking at a plane charac-
terized by a RDS pattern, and perpendicular to the binocularline of sight. (b) Behaviour of the
vergence control usingrkv vs δestH in case of a diverging step. Therkv control (solid line) is able
to reach the depth of the plane (dotted line) in all the cases presented, while theδestH control
(dashed line) produce a wrong movement for a depth step abovea certain threshold.

for different time steps. Because of the behaviour of the twomechanisms is symmetric with
respect to zero disparity, we show the positive semiaxis only. A percentage value higher than
100 indicates an overshoot of the movement, whereas a value lower than zero indicates a move-
ment in the opposite (i.e., wrong) direction. After the first time step (Fig.16 top row), if the
stimulus disparity is within∆, the behaviour is slightly better forδestH (white bars), whereas
outside this range it produces a vergence movement that is the opposite of the one requested.
Therkv signals (black bars) produce almost the same movement ofδestH for small disparity steps,
but they are able to achieve slow but effective vergence movements up to the limit of the tested
range. At the second time step (Fig.16 middle row), for disparity steps smaller than∆, both the
mechanisms reach the target, and for higher disparities thebehaviour is similar to the previous
time step. After10 time steps (Fig.16 bottom row), we observed thatδestH was able to work in
the proper way only for disparities within∆, whereasrkv was able to reach the target in all the
tested range.

4.3.2 Test with a frontoparallel plane

Considering a virtual environment in which the eyes, characterized by null version and eleva-
tion angle, and by a vergence angleα, look at a plane with a random dot texture (Fig.17a). The
plane is at a depthZ with respect to the cyclopic position, and perpendicular tothe binocular
line of sight. The interocular distance isb = 70mm, the nodal length isf0 = 17mm, and
the stimulus is projected onto the retinal plane, with a sizeof 6mm, thus considering a field
of view of almost20 degree. At the first time step the plane and the fixation point are at the
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sameZ, then the plane is moved to a new depth, and the vergence anglestarts to change step
by step, until the fixation point reaches the depth of the plane. Considering the position of
the eyes, the vergence variation is applied symmetrically:∆αR = −∆αL = − arctan( r

2f0
),

wherer is computed by considering the weighted average of the vergence responsesrkv or of
the estimated disparitiesδestH . The area where the average is computed, is a neighborhood of
the fovea of5◦, and its size is based on physiological experiments [48] that show that it is the
maximum extent of the retina where the disparity stimulus isintegrated to drive vergence eye
movements in humans.

The first test considers a fixed frontoparallel plane at a given distance, while the eyes are
fixating on the surface of the plane. The plane steps back and forth by an amount that varies
from trial to trial. Fig.17b shows that a control based on thedisparity computation produces the
correct change of the vergence angle (dotted lines), when the size of the step is restrained. On
the other hand, the implemented model is able to produce a faster change of the fixation point
(solid lines), and, even for larger depth steps, the model isable to ensure a reliable vergence
control. Moreover, once the fixation point has reached the plane in depth, the disparity in the
fovea is approximately zero and the system is able to ensure astable fixation.

The second test considers a frontoparallel plane whose position in depth varies continuously
in time as a ramp and a sinusoid. The slope of the ramp is variedfrom 0.5 cm per time step to
a pure step (Fig.18a). While for small values only theSHORT control is enabled, in the other
cases the initial part of the vergence is produced by theLONG one, and the interplay between
the two controls is very similar to the one observed in the transient and sustained components
of the physiological responses [5]. In support of this hypothesis, in case of both a divergent
and a convergent ramp, the simulated vergence movements arequalitatively very similar to the
results obtained in physiological experiments. In the sameway, the frequency of the sinusoid
that controls the depth of the plane was varied between7 and38 time steps, and again the
simulated results (Fig.18b) are qualitatively similar to the experimental data [5]. Increasing
the frequency, it is evident a transition from a slow and smooth tracking of the plane, due to
the SHORT control, to a combination of theLONG andSHORT controls. When the frequency
becomes too high, the system is no more able to follow the stimulus in depth.

5 Network Paradigms for vergence control

In this section we present a modular architecture (see subsection 5.1) and two networks for
learning vergence control: a linear (subsection 5.2) and a convolutional one (subsection 5.3).
Training and evaluation are also discussed.

5.1 Vergence control model

For the vergence control paradigm modeling we used the setupshown on Fig. 19. This setup
consists of the vergence simulator module, the disparity detector population module (described
in Section 3.2) and the vergence control network module. Thevergence simulator consists of a
robotic head model and a ray-tracing engine. The robotic head model has the same parameters
as in subsection 4.3.2 (the baselineb = 70 mm, the focal lengthf0 = 17 mm and field of view
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Figure 18: (a) Vergence response in time to diverging ramps with different slopes, and (b)
to sinusoids characterized by different periods. The dotted line represents the depth of the
stimulus and the solid one is the depth of the fixation point.
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Figure 19: The scheme of the experimental setup for vergencecontrol model training.

≈ 20◦) and can be controlled externally by the gaze direction (version) and the vergence angle.
Using the robotic head model and scene information the ray-tracing engine renders left and
right views (see Fig. 20), which then are fed to the disparitydetector population module. In
order to speed up the simulations we decided to work with a single-scale architecture of the
disparity detector population and use images of low-resolution (41 × 41).

The response of the population through the postprocessing module reaches the vergence
control network (VC-net). The actual gaze direction and actual vergence are used as an ad-
ditional input to the VC-net. The output of the VC-net is a parameter controlling the actual
vergence, which in this work is the vergence angle. Obviously, given a gaze direction, which in
our case is fixed, there is only one value of the vergence angle, which brings the fixation point
onto the surface of the attended object. The VC-net is expected to approximate this value as
close as possible given the input data.

The postprocessing of the population response was different for the two considered VC-
nets. In the case of the linear network, the postprocessing was defined as a 2D pooling over
first two (spatial) dimensions of the population response (see subsection 5.2).

On the one hand, the pooling operation reduces the amount of data to process, but on the
other hand, it has a major drawback as it discards the spatialinformation about the disparity
encoded in the population response. The simulations shows that, in the simplified case, this is
still acceptable, but not in general case (see subsection 5.2).

That is why, in the general when the linear network has an unpredictable systematic error,
we do not do any pooling directly, but let the convolutional network to do this in the first two
layers (see subsection 5.3). In this case, it is convenient to consider the postprocessing as an
identical operator.
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(a) (b) (c)

Figure 20: An example of a synthetic scene layout (a) used by the vergence simulator to render
corresponding left (b) and right (c) eye views.

5.1.1 Vergence control database

The vergence simulator was used also for the creation of avergence database, which has been
used for training and testing of the vergence control network. The database contains a set of
synthetic scenes and a set of samples. Each synthetic scene consists of several simple (plane
triangle, cube, tetrahedra etc.) textured objects placed into room-like environment (see Fig. 20).
All the textures (real-world images, checkerboard-like images, random noise etc.) we used,
were corrupted by 5% Gaussian noise in order to obtain a better response from the population.
Samples of the database consist of thegaze direction, the actual vergence angle, the stereo
pair (left and right eyes images), thepopulation responsefor the stereo pair and thedesired
vergence angle. The actual vergence angle is a distorted (with Gaussian noise) version of the
desired one.

With the database it is easy to prepare training pairs. As theinput data vector is constructed
from the gaze direction, the actual vergence angle and postprocessed population response are
computed. The output consists of only one parameter: the desired vergence angle.

5.2 Linear servo network

The first attempt in the modeling of a network for vergence control was done with the simplest
possible network that reproduces the results from section 4using learning from examples taken
from the vergence database.

5.2.1 Vergence angle vs. distance to the fixation point

Given a robotic head baselineb and a gaze direction vectorg = (gx, gy, gz)
T , (‖g‖ = 1) it is

possible to infer the distanced to the fixation point (from the middle of the head’s baseline)
using the vergence angleα:

d =
b

2

(

s+
√
s2 + 1

)

, wheres =
1

tanα
√

1 − g2
x

(31)

32



andvice versa:

α = arccos

(

vTl vr

‖vl‖ · ‖vr‖

)

, where

vr = d ·g + (b/2, 0, 0)T , and

vl = d ·g − (b/2, 0, 0)T .

(32)

From the equations 31 and 32, one can see that by considering afixed gaze direction and fixed
baseline, the vergence angle is equivalent to the distance to the fixation point (nevertheless they
have a nonlinear relationship). We used the deviation of theactual distance to the fixation point
from the desired one as an additional measure of vergence performance. From our point of
view, this measure is more natural compared to the deviationof the vergence angle.

5.2.2 Postprocessing of population response

As it has been mentioned above, we have defined the postprocessing of the population response
(rc = {rijc }ij , whererc is a four dimensional arraynr × nc × No × Np, nr is the number of
rows,nc is the number of columns,Np is the number of phase shifts andNo is the number
of orientations) for the linear network as two-dimensionalspatial pooling over the first two
dimensions ofrc with a two-dimensional Gaussian kernelGσ:

Pij = Gσ ∗ rijc , (33)

whererijc is (two-dimensional) population response map fori-th orientation andj-th phase
shift. The kernelGσ has the same sizenr × nc as the size of a population response maprijc , so
the result of the convolution is a scalar valuePij.

This step drastically reduces the amount of data to process.After pooling, the network
has to process only a two-dimensional (No × Np) pooled population response instead of four-
dimensional (nr × nc ×No ×Np) array.

5.2.3 Training

We consider two cases for the experiment: asimplifiedand ageneralcase. The simplified case
is shown on Fig. 17a: the gaze direction of the robotic head isorthogonal to its baseline and
the stimulus is a frontoparallel plane, thus, also orthogonal to the gaze direction. The stimulus
is allowed to move only in depth. In the general case, all restrictions on the orientation of the
gaze, as well on the stimulus position, type and orientation, are dropped. One of the examples
is shown on Fig. 20 with the only difference in the resolutionof the rendered images (for the
simulation we used much lower resolution).

For each experiment case we have prepared several vergence databases with the number of
synthetic scenes ranged from 100 to 1000 and the number of samples from 200 to 4000.

The input vector for the linear VC-net was constructed as a concatenation of the pooled
population response (56 values), the gaze direction (2 values) and the actual vergence (1 value),
so its dimensionality is 59. The output is a prediction of thevergence angle, which is a scalar

33



value. Due to the linearity of the network, there was no reason to introduce any hidden layers,
so the linear VC-net consisted of only one linear unit. This simplest possible vergence control
network has only 60 parameters (including bias), which can be learned either directly (using
robust linear regression) or iteratively (using gradient descent) from the training database. Not
surprisingly, both training approaches produced almost identical solutions on the same training
data in the simplified case.

5.2.4 Evaluation and results

For the evaluation of the VC-net, we have adopted the methodology described in subsec-
tion 4.3.2 with the next differences:

• the stimuli are allowed to move in the direction of the gaze (not only in Z direction),

• the rendered stimuli cover 60-100% of the image area (allowing for depth discontinu-
ities),

• in the general case the stimuli can be not only 2D plane rectangles but also 3D primitives
(cubes or tetrahedrons),

• in the general case the stimuli can have arbitrary position and orientation inside the
workspace.

The first item is very important for the general case, when thegaze direction is not necessarily
parallel to the Z-axis.

Three standard tests (ramp, sinusoid and staircase) were carried out for the simplified as
well as the general case. The typical results of the performance, measured in terms of distance
to the fixation point, are shown on Fig. 21.

The results of the evaluation of the linear VC-network show,that in the simplified setup,
it can produce an accurate and robust vergence control usingspatially pooled population re-
sponses. The relative error (distance-based as well as angular measure) was always less then
1% in all tests of the simplified scenario (see Fig. 21a).

But in the general case this approach has unpredictable systematic error, which in our tests
was up to 7% (see Fig. 21b). The large magnitude of the vergence error of the linear network
in the general case can be explained, from our point of view, by the presence of the vertical
disparity asymmetric patterns (due to the arbitrary orientation and position of the stimuli) and
by the disparity discontinuities (caused by the limited size of the stimuli). In the simplified
scenario, the vertical disparity information is symmetrically spread over the spatial dimensions
of the population response, and is discarded in the preprocessing stage by spatial pooling. This
does not happen in the general case, so the pooled populationresponse is biased by the residual
vertical disparity, and linear network, in turn produces a biased vergence control signal.

This situation motivated us to investigate a more complex paradigm for the vergence con-
trol, which should be able to recognize particular patternsin the population responses in the
general case, and produce a proper vergence control signal.For this purpose we have chosen a
convolutional network [49, 50, 51], as it has proved to be oneof the best paradigms for object
recognition.
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(a) Simplified scenario
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(b) General case scenario

Figure 21: A typical examples of the depth-based performance plots for a linear vergence
control network in the simplified (a) and general case (b) scenarios.
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Figure 22: An example of typical convolutional network. Thearchitecture (number of layers
and/or feature maps) of the network can differ, depending onthe complexity of the task.

5.3 Convolutional network

The first convolutional network(CN) appeared in the work of Fukushima in [49] and was
called Neocognitron. The basic architectural ideas behindthe CN (local receptive fields, shared
weights, and spatial or temporalsubsampling) allow such networks to achieve some degree of
shift and deformation invariance and at the same time reducethe number of training parameters.

Since 1989, Yann LeCun and co-workers have introduced in [1]a series of convolutional
networks with the general nameLeNet, which contrary to the Neocognitron use supervised
training. In this case, the big advantage is that the whole network is optimized for the given task,
making this approach usable for real-world applications. LeNet have been successfully applied
to character recognition nonlinear-dimensionality reduction of image-sets [52] and even to ob-
stacle avoidance in an autonomous robot [53].

A typical convolutional network is a feed-forward network of layers of three types:con-
volutional (C-layer),subsampling(S-layer) andfully-connected(F-layer). The C-layers and
S-layers usually come in pairs and are interleaved, and F-layers come at the end (see Fig. 22).
The output of a C-layer is organized as a set offeature maps. Each feature map contains the
output of a set of neurons with local receptive fields. All neurons in the feature map share the
same weights, so the feature map is responsible for a particular local visual feature which is
encoded in the weights of these neurons. The computation of afeature map starts with a 2D
convolution of the input with a fixed kernel defined by the neuron’s weights. A feature map can
have inputs from several feature maps of the previous layer.In order to condense the extracted
features and make them more invariant with respect to spatial deformations, the C-layer is typ-
ically followed by an S-layer which does a local averaging and subsampling. Each neuron in
a F-layer just does summation of bias with all weighted inputs and then propagates the sum
through a nonlinear transfer function (RBF or sigmoid).

The network is trained in a supervised manner using backpropagation. For the efficient
training of large CNs, LeCun and colleagues proposed a number of tricks and a modification
of the Levenberg-Marquardt algorithm [54].
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5.3.1 Extended convolutional network

For the modeling of CN-based vergence control we have developed our own version of the
convolution network in MATLAB. This network can be considered as an extension of LeCun’s
LeNet because it has the next features:

• any directed acyclic graph can be used for connecting the layers of the network;

• the network can have any number of arbitrarily sized input and output layers;

• the neuron’s receptive field (RF) can have an arbitrary stride (step of local RF tiling),
which means that in the S-layer, RFs can overlap and in the C-layer the stride can differ
from 1;

• any layer or feature map of the network can be switched from trainable to nontrainable
(and vice versa) mode even during training;

• new layer type: M-layer.

The M-layer works similarly to the C-layer with the only difference in the subsampling opera-
tion s(x, a) = a

∑

i xi is replaced by a softmax-like M-operation:

m(x, a) =

∑

i xie
axi

∑

i e
axi

, (34)

where the receptive field is denoted byx = (x1, x2, . . . , xn). This functionm(x, a) has been
chosen because its properties:

• m(x, a) ≈ max{xi}i, if a is a large positive (e.g.a = 100);

• m(x, a) ≈ min{xi}i, if a is a large negative (e.g.a = −100);

• m(x, a) =

∑n
i=1 xi
n

, if a = 0.

5.3.2 Convolution network design

The idea behind the use of the convolutional network as a vergence controller consist in an
assumption that this powerful network, after proper training, will be able to recognize disparity
patterns directly from the population responses, and convert them into a proper vergence sig-
nal. The architecture of the convolutional network, used for our experiments, is CSFF and is
depicted on Fig. 23. The main challenge in this approach was the amount of data: the popula-
tion response consists of 56 (7× 8) maps of resolution41× 41 (rendered image resolution), so
the input of the network has 94136 (41 × 41 × 8 × 7) components. In order to be able to train
the network with such high dimensional input data, we had to reduce the number of the train-
ing parameters. The first (convolutional) layer was set as fixed (nontrainable) with Gaussian
kernels of size19 × 19 with standard deviation 6. The second (subsampling) layer has also 56
feature maps size of which was set to3 × 3.
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Figure 23: Convolutional network (and its input) used for the vergence control.

5.3.3 Evaluation and results

For the evaluation of the convolutional network we have usedexactly the same tests as for
the linear network (see subsection 5.2). The performance was very similar in both scenarios
(see Fig. 24). The average relative error (in distance-based measure) for both scenarios is
less than 1%. Comparing the performances of two the networks, it is possible to say that the
convolutional one has a more pronounced inertia with respect to the linear one, but it still is
able to handle the general case tasks with an acceptable accuracy and robustness. But, on the
other hand, vergence control based on the convolutional network is much more computationally
expensive than linear-based.

6 Conclusions

Most of the conventional vergence control models, are basedon the minimization of the hori-
zontal disparity.

Conversely, we proposed to avoid the explicit computation of the disparity map and extract
the vergence control signal directly from the population response, over the “foveal” region, of
a cortical-like network organized as a hierarchical arraysof binocular complex cells. With the
specific design approach followed to implement the distributed architecture, we demonstrated
that we can take full advantage of the flexibility and adaptability of distributed computing to
specialize disparity detectors for vergence control and depth vision.

On this ground, a neural network paradigm has been proposed for building disparity-
vergence control. Specifically, an increasing complexity strategy in the learning process
is adopted: starting from the simplest one-unit architecture we increased the number of
units/layers until an acceptable level of generalization error is reached.

Although the model only resorts to a population of neurons ina single scale, we demon-
strated that, using a convolutional network, accurate and fast vergence control can be achieved
in a closed loop, for different orientations of the gaze.

In this direction of the development of the vergence controlnetworks, our next steps of
investigation are the following:
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(a) Simplified scenario

0 10 20 30 40 50 60 70 80 90 100
800

900

1000

Time steps

600

800

1000

D
is

ta
nc

e 
to

 th
e 

fix
at

io
n 

po
in

t (
m

m
)

800

900

1000

 

 

desired
actual

(b) General case scenario

Figure 24: A typical examples of the depth-based performance plots for a convolutional ver-
gence control network in the simplified (a) and general case (b) scenarios.

39



• we can allow the first (C-)layer of the convolutional networkto be trained (in a supervised
or unsupervised manner);

• we can replace the disparity detector population by additional non-trainable layers of the
convolutional network;

• we can include dynamic (i.e., spatiotemporal) disparity tuning and attentional signals
(based on object properties) that might guide intentional exploration of the selected ob-
ject.
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