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Abstract: 
We present two neural models for vergence angle control of a robotic head, a simplified and a more com-

plex one. Both models work in a closed-loop manner and do not rely on explicitly computed disparity, but 

extract the desired vergence angle from the post-processed (or raw) response of a population of disparity 

tuned complex cells, the actual gaze direction and the actual vergence angle. The first model assumes that 

the gaze direction of the robotic head is orthogonal to its baseline and the stimulus is a frontoparallel plane 

orthogonal to the gaze direction. The second model goes beyond these assumptions, and operates reliably in 

the general case where all restrictions on the orientation of the gaze, as well as the stimulus position, type 

and orientation, are dropped. 

Note: This deliverable is based on Deliverable 2.1 (dated 2009-09-09), which was updated with new results 

and extended with a model for Vergence-Version Control with Attention effects (VVCA, see Section 6). 

Version control is a subtask of WP2 ("Voluntary exploration"), but the VVCA model is a new concept 

since it integrates version and vergence control. It was originally not planned to be part of Deliverable 2.1. 

This work is still under development. 
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1 Executive summary

One of the objectives of Workpackage 2 is to develop a network-based vergence control
from a population of disparity-tuned complex cells. To this end, we investigated the
specialization of these disparity detectors at different levels in a hierarchical network
architecture to see the effect of learning specific coding and decoding strategies for active
vergence control and depth vision. The extraction of binocular features occurs through
a cortical-like population network, developed by partner UG. This network (referred in
this work as a disparity detector population or simply as a V1 population) provides a
distributed disparity representation to the vergence control network (VC-net).

Using the population responses the proposed VC-net is trained to produce angular
vergence control, which in turn is further executed by the oculomotor plant. We propose
two types of VC-net paradigms: a linear and a convolutional one. The conventional
convolutional network (LeNet5) architecture has been extended to increase its flexibility
by including new functionalities.

We conclude that:

1. The slow (closed loop) vergence eye movements can be controlled using convolu-
tional network even in the case when the gaze is oriented arbitrary.

2. A strategy for reading-out binocular energy population codes for short-latency
disparity-vergence eye movements can be devised. Specific features are: (i) wide
working range with a reduced number of resources (single scale), (ii) linear servos
with fast reaction times and satisfactory precision.

The further generalization of the network paradigm is explored, also with the aim
of including (i) kinematic (i.e., in terms of eye rotation velocity) vergence control, and
(ii) attentional signals (based on object properties) that might guide intentional explo-
ration of the selected object by performing version eye movements. To achieve the latter,
we are currently developing a vergence-version control model, the current status of which
we are reporting in Section 6 (note that, according to the Annex I, version control was
not intended to be part of this Deliverable). The results of research discussed in this
Deliverable were published in:

• N. Chumerin., A. Gibaldi, S.P. Sabatini, M.M. Van Hulle. Learning Eye Vergence
Control from a Distributed Disparity Representation. International Journal of
Neural System, vol. 20, no. 4, pp. 267–278, 2010.

• A. Gibaldi, M. Chessa, A. Canessa, S.P. Sabatini, and F. Solari. A cortical model
for binocular vergence control without explicit calculation of disparity. Neurocomp.,
73:1065–1073, 2010.

• A. Gibaldi, N. Chumerin, M.M. Van Hulle, S.P. Sabatini. Two Neural Models for
Instantaneous Vergence Control. The 4th International Conference on Cognitive
Systems, Zurich, Switzerland, January 27–28, 2010.
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• N. Chumerin, A. Gibaldi, S.P. Sabatini, M.M. Van Hulle. Convolutional Net-
work for Vergence Control. 2nd International Symposium on Applied Sciences in
Biomedical and Communication Technologies, Bratislava, Slovak Republic, Novem-
ber 24–27, 2009.

• M. Chessa, S.P. Sabatini, and F. Solari. A fast joint bioinspired algorithm for optic
flow and two-dimensional disparity estimation. In Proc. International Conference
on Computer Vision Systems (ICVS’09), Liege, Belgium, October 2009.

• A. Gibaldi, M. Chessa, A. Canessa, S.P. Sabatini, and F. Solari. A neural model
for binocular vergence control without explicit calculation of disparity. In Proc.
European Symposium on Artificial Neural Networks (ESANN’09), Bruges, Belgium,
April 2009.

2 Introduction

Vergence eye movements have the task to align both the left and the right eyes on the
same object, in order to allow for the fusion of the binocular image, and thus to produce
singleness of vision. Since the eyes are located in slightly different viewpoints, the image
of an object in the world is projected on the retinas at different positions, and this
difference is defined as retinal disparity, which is the cue used for vergence. In fact, both
eyes rotate in opposite directions according to the retinal disparity, depending on the sign
of the disparities either convergence or divergence is elicited (in Figure 1, by convention, a
positive vergence leads to convergence, and vice versa), so as to achieve and/or maintain
the singleness of vision. In this study, we consider a stereo setup consisting of a fixed
robotic head with a pair of eyes (see Figure 1). The task is to estimate, and then to
maintain the vergence angle that brings the fixation point, along the gaze direction, onto
the surface of the observed object.

Experimental evidence shows that, although depth perception and vergence eye move-
ments are based on the activity of complex cells of the primary visual cortex, the brain
adopts specific and separate mechanisms to combine binocular information and carry out
the two distinct tasks. Vergence control models that are based on a distributed popu-
lation of disparity detectors, usually require first the computation of the disparity map,
thus limiting the functionality of the vergence system inside the sensitivity range of the
population of cells specialized for depth perception. As for the control of vergence, larger
disparities have to be supported, while keeping a good accuracy around the fixation point
to achieve a stable fixation, alternative strategies might be employed. In this work, we
developed models that combine the population responses without taking a decision, but
extracting, directly from the population responses, a disparity-vergence response that
allows us to nullify the disparity in the fovea, even if the stimulus presented is far beyond
the disparity sensitivity range. The disparity-vergence response is obtained by a weighted
combination of the population response. First, the weights were computed in order to
obtain the desired set of disparity-vergence responses on which to base a ’dual-mode’
vergence control mechanism; then the weights were directly learned from examples of
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Figure 1: The geometry of the robotic head model. L and R are the nodal centers of
the eyes, O is the middle-point of the baseline LR; A is the actual fixation point, |OA| is
the actual distance and α is actual vergence angle; D is the desired fixation point, |OD|
is the desired distance and δ desired vergence angle. The gaze direction is defined as the
direction from point O to the fixation point A (and/or D), and depicted by a unit vector
g, which, in a headcentric coordinate system Oxyz, is specified by a pair of angles γ
(pan/yaw) and λ (tilt/elevation). The orientation of the left and right eye visual axes is

specified by the vectors vl =
−→
LA and vr =

−→
RA respectively.

the desired vergence behaviour. We tested the proposed model in a virtual environment
achieving stable fixation and small response time to a wide range of disparities. The
vergence movements produced are able bring and to keep the fixation point both on a
steady and on a moving stimulus. Section 3 and Section 4, respectively, report on the
basic population network of disparity detectors and the proposed ’dual-mode’ strategy
for binocular vergence, devised by UG. Section 5 reports on the two networks (linear and
convolutional) developed by K.U.Leuven to learn disparity-vergence behaviours on the
basis of the population responses.

3 Distributed representation of binocular disparity

3.1 Computational theory

3.1.1 Multichannel band-pass representation of the visual signal

An efficient (internal) representation is necessary to guarantee all potential visual infor-
mation can be made available for higher level analysis. At an early level, feature de-
tection occurs through initial local quantitative measurements of basic image properties
(e.g., edge, bar, orientation, movement, binocular disparity, colour) referable to spatial
differential structure of the image luminance and its temporal evolution (cf., linear cor-
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tical cell responses). Later stages in vision can make use of these initial measurements
by combining them in various ways, to come up with categorical qualitative descriptors,
in which information is used in a non-local way to formulate more global spatial and
temporal predictions. The receptive fields of the cells in the primary visual cortex have
been interpreted as fuzzy differential operators (or local jets [1]) that provide regularized
partial derivatives of the image luminance in the neighborhood of a given point x = (x, y),
along different directions and at several levels of resolution, simultaneously. Given the
2D nature of the visual signal, the spatial direction of the derivative (i.e., the orientation
of the corresponding local filter) is an important “parameter”. Within a local jet, the
directionally biased receptive fields are represented by a set of similar filter profiles that
merely differ in orientation.

Alternatively, considering the space/spatial-frequency duality [2], the local jets can be
described through a set of independent spatial-frequency channels, which are selectively
sensitive to a different limited range of spatial frequencies. These spatial-frequency chan-
nels are equally apt as the spatial ones. From this perspective, it is formally possible to
derive, on a local basis, a complete harmonic representation (phase, energy/amplitude,
and orientation) of any visual stimulus, by defining the associated analytic signal in
a combined space-frequency domain through filtering operations with complex-valued
band-pass kernels. Formally, due to the impossibility of a direct definition of the analytic
signal in two dimensions, a 2D spatial frequency filtering would require an association
between spatial frequency and orientation channels. Accordingly, for each orientation
channel θ, an image I(x) is filtered with a complex-valued filter:

f θA(x) = f θ(x)− if θH(x) (1)

where f θH(x) is the Hilbert transform of f θ(x) with respect to the axis orthogonal to
the filter’s orientation. This results in a complex-valued analytic image:

Qθ
A(x) = I ∗ f θA(x) = Cθ(x) + iSθ(x) , (2)

where Cθ(x) and Sθ(x) denote the responses of the quadrature filter pair. For each
spatial location, the amplitude ρθ =

√
C2
θ + S2

θ and the phase φθ = arctan(Sθ/Cθ) en-
velopes measure the harmonic information content in a limited range of frequencies and
orientations to which the channel is tuned.

In the harmonic space, it is in general an important requirement to have both the
spatial width of the filters and the spatial frequency bandwidth small, so that good local-
ization and good approximation of the harmonic information is realized simultaneously.
Gabor functions reaching the maximal joint resolution in space and spatial frequency do-
mains are specifically suitable for this purpose and are extensively used in computational
vision [2]. Different band-pass filters have been proposed as an alternative to Gabor
functions, on the basis of specific properties of the basis functions [3–10], or according to
theoretical and practical considerations of the whole space-frequency transform [11–16].
A detailed comparison of the different filters evades the scope of this report and numerous
comparative reviews can be already found in the literature (e.g., see [17–19]).

We have considered a discrete set of oriented Gabor filters with different angles θ. To
generate a filter with orientation θ (measured from the positive horizontal axis), we can
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rotate a vertically oriented filter by θ − 90◦ with respect to the filter’s center (positive
angle means counterclockwise rotation):

g(x, θ, ψ) = η · 1

2πσxσy
exp

(
− x2

θ

2σ2
x

− y2
θ

2σ2
y

)
cis(k0xθ + ψ) (3)

with {
xθ = x cos(θ − 90◦) + y sin(θ − 90◦)
yθ = −x sin(θ − 90◦) + y cos(θ − 90◦)

k0 denotes the radial peak frequency, ψ relates to the filter symmetry, and σ’s relates
to the spatial filter extension. The parameter η is a proper normalization constant (e.g.,
chosen to the unitary maximum condition or to the unitary energy condition). Equiva-
lently, the set of Gabor filters can be defined by a quadratic form as:

g(x, θ, ψ) = η · 1

2πσxσy
exp

(
−1

2
xTAx

)
cis(kT0 x + ψ) (4)

where k0 = (k0 sin θ,−k0 cos θ)T is the oriented spatial frequency vector1, and the
matrix A can be derived from a diagonal matrix D (corresponding to a vertically oriented
Gabor filter) by multiplication with the rotation matrix Θ:

A = ΘTDΘ =

(
sin θ cos θ
− cos θ sin θ

)(
σ−2
x 0
0 σ−2

y

)(
sin θ − cos θ
cos θ sin θ

)
. (5)

It is worth noting that the peak radial frequency k0 and the width σx of the Gaussian
envelope in the Gabor function are linked by the constant relative bandwidth factor β
(in octave)2 as:

σx =
1

k0

(
2β + 1

2β − 1

)
. (6)

Typically, β is chosen around 1 (β ∈ [0.8, 1.2]). The relative bandwidth constancy yields
self-similar filters across the scales: filters with different radial peak frequencies, but
identical orientation angle are simply geometrically scaled version of each other. The
aspect ratio σx/σy normally takes values between 0.25 and 1 and, together with the
radial peak frequency, defines the orientation bandwidth of the filter3. In the following,
to bind the orientation bandwidth of the filter to the presence of the sinusoidal term only,
we fix the aspect ratio to 1 (i.e., σx = σy = σ).

1The orientation of the Gabor filter in space and the orientation of the bandpass channel in the
frequency domain are related by θ = arg(k0) + π

2 .
2The relative bandwidth of a Gabor filter is defined as

β = log2

(
k0 + ∆k/2

k0 −∆k/2

)
= log2

(
k0σx + 1

k0σx − 1

)
when one chooses the cut-off frequency at one-standard-deviation of the amplitude spectrum of the
Gabor function (1/σx) to define the absolute bandwidth ∆k.

3The orientation bandwidth is the angle between two lines that pass through the frequency origin
and are tangent to the one-standard-deviation contour of the amplitude spectrum of the Gabor function.
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The values of all the design parameters have been chosen to have a good coverage of
the space-frequency domain, to guarantee a uniform orientation coverage and to keep the
spatial support to a minimum, in order to cut down the computational cost. Therefore,
we determined the smallest filter on the basis of the highest allowable frequency without
aliasing, and we doubled the sampling when the model analysis requires a higher precision
in the filter’s profile (or, from a different perspective, a larger spatial support in pixels).
[Note: this design strategy reveals itself particularly effective for economic multi-scale
analysis through pyramidal techniques [20]. Yet, for all the simulations conducted in this
work we considered a single scale, only]. Accordingly, we fixed the maximum radial peak
frequency (k0) by considering the Nyquist condition and a constant relative bandwidth β
around one octave, that allows us to cover the frequency domain without loss of informa-
tion. The result was a minimal 11 × 11 filter mask capable of resolving sub-pixel phase
differences. To satisfy the quadrature requirement all the even symmetric filters have
been “corrected” to cancel the DC sensitivity. The filters have been expressed as sums
of x-y separable functions to implement separate 1D convolutions instead of 2D convo-
lutions in a similar way that [21], with a consequent further drop of the computational
burden. For a detailed description of the filters used, see the Appendix A.

3.1.2 Phase-based disparity detection

Depth perception derives from the differences in the positions of corresponding points
in the stereo image pair projected on the two retinas of a binocular system. When
the camera axes are parallel, on the basis of a local approximation of the Fourier Shift
Theorem, the phase-based stereopsis defines the disparity δ(x) as the one-dimensional
(1D) shift necessary to align, along the direction of the horizontal epipolar lines, the
phase values of bandpass filtered versions of the stereo image pair IR(x) and IL[x +
δ(x)] [22]. In general, this type of local measurement of the phase results in stable, and
a quasilinear behaviour of the phase vs. space is observed over relatively large spatial
extents, except around singular points where the amplitudes ρ(x) vanishes and the phase
becomes unreliable [23]. This property of the phase signal yields good predictions of
binocular disparity by

δ(x) =
bφL(x)− φR(x)c2π

k(x)
=
b∆φ(x)c2π

k(x)
, (7)

where k(x) is the average instantaneous frequency of the bandpass signal, measured by
using the phase derivative from the left and right filter outputs:

k(x) =
φLx (x) + φRx (x)

2
. (8)

As a consequence of the linear phase model, the instantaneous frequency is generally
constant and close to the tuning frequency of the filter (φx ' k0), except near singularities

It is given by

Bθ = arctan

(
2β − 1

2β + 1

)
.
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where abrupt frequency changes occur as a function of spatial position. Therefore, a
disparity estimate at a point x is accepted only if |φx − k0| < k0µ, where µ is a proper
threshold [23].

Equivalently, the principal part of the interocular phase difference necessary to es-
timate the binocular disparity can be obtained directly, without explicit manipulation
of the left and right phase and thereby without incurring the ‘wrapping’ effects on the
resulting disparity map [24] (see also [25,26]):

b∆φc2π = arg(QLQ∗R) (9)

= atan2
(
Im(QLQ∗R),Re(QLQ∗R)

)
(10)

= atan2
(
CRSL− CLSR, CLCR+ SLSR

)
(11)

where QL = QL(x) = IL ∗ g(x, 0◦, ψ), QR = QR(x) = IR ∗ g(x, 0◦, ψ) and Q∗ denotes
complex conjugate of Q.

When the camera axes are moving freely, as it occurs in a binocular active vision
system, stereopsis cannot longer be considered a 1D problem and the disparities can
be both horizontal and vertical. Therefore, the 1D phase difference approach must be
extended to the 2D case.

Still relying upon the local approximation of the Fourier Shift Theorem, the 2D local
vector disparity δ(x) between the left and right images can be related/detected as a
phase shift kT (x)δ(x) in the local spectrum, where k(x) is the local (i.e., instantaneous)
frequency vector defined as the phase gradient:

k(x) = ∇φ(x) =

(
∂φ(x, y)

∂x
,
∂φ(x, y)

∂y

)T
(12)

with

φ(x) =
φL(x) + φR(x)

2
.

Given the 1D character of both the local phase and the instantaneous frequency, their
measures strictly depend on the choice of one reference orientation axis, thus preventing
the determination of the full disparity vector by a punctual single-channel measurement.
We will see that only the projected disparity component on the direction orthogonal to
the dominant local orientation of the filtered image can be detected.

Let us distinguish two cases. When the image (stimulus) structure is intrinsically
1D, with a dominant orientation θs (let us think of an oriented edge or of an oriented
grating with frequency vector ks = (ks sin θs, ks cos θs)

T , as extreme cases), the aperture
problem [27] restricts detectable disparity to the direction orthogonal to the edge (i.e.,
to the direction of the dominant frequency vector ks):

δθs(x) =
ks
ks

b∆φθs(x)c2π
k(x)

' ks
ks

b∆φθs(x)c2π
ks

(13)

where k(x) is the magnitude of the instantaneous frequency. That is, only the projection
δθs of the disparity δ onto the direction of the stimulus frequency ks is observed. A
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spatial disparity in a direction orthogonal to ks cannot be measured. For an intrinsic 1D
image structure, indeed, the spectrum energy is confined within a very narrow bandwidth
and it is gathered by the bandwidth (∆k,Bθ) of a single activated channel. This is a
realistic assumption for a relatively large number of orientation channels. Moreover, in
these condition, when the dominant frequency of the stimulus ks is unknown, it can be
approximated by k0, and thus Eq. (13) becomes:

δθs(x) ∼ k0

k0

b∆φθs(x)c2π
k0

. (14)

When the image structure is intrinsically 2D (let us think of a rich texture or a white
noise, as an extreme case), the visual signal has local frequency components in more than
one direction and the dominant direction is given by the orientation of the Gabor filter.
Similarly, the only detectable disparity by a band-pass oriented channel (∆k,Bθ) is the
one orthogonal to the filter’s orientation θ, i.e., the projection in the direction of the
filter’s frequency:

δθ(x) =
k0

k0

b∆φθ(x)c2π
k(x)

. (15)

Again, k(x) can be derived by Eq. (12) or approximated by the peak frequency of the
Gabor filter k0.

By considering the whole set of oriented filters, we can derive the projected disparities
in the directions of all the frequency components of the multi-channel band-pass represen-
tation, and obtain the full disparity vector by intersection of contraints [28], thus solving
the aperture problem. Without measurement errors, the vector disparity determined by
each orientation channel consists of projection δθ(x) in k0-direction and unknown or-
thogonal component (see Figure 2). The full disparity vector δ(x) can be recovered from
at least two projections δθ(x), which are not linearly dependent. The end points of the
vectors δθ(x) for fixed k0 are located on a circle through the origin and the end point
of δθ(x). Taking into account measurement errors of ∆φθ and , the redundancy of more
than two projections can be used to minimize the mean square error for δ(x):

δ(x) = argmin
δ(x)

∑
θ

cθ(x)

(
δθ(x)− kT0

k0

δ(x)

)2

. (16)

where the coefficent cθ(x) = 1 when the component disparity along direction θ for pixel
x is a valid component on the basis of a confidence measure, and is null otherwise. In
this way, the influence of erroneous filter responses is reduced.

3.2 Distributed models

The phase-based disparity estimation approach presented in Section 3.1.2 implies explicit
measurements, for each spatial orientation channel θ (and for any given scale) of the local
phase difference ∆φ in the image pairs, from which we obtain the direct measure of the
binocular disparity component δθ. Similarly, we can consider a distributed approach in
which the binocular disparity δ is never measured but implicitly coded by the population
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Figure 2:

activity of cells that act as “disparity detectors” - over a proper range of disparity values.
Such models are inspired by the experimental evidences on how the brain and, specifically,
the primary visual cortex (V1), implements early mechanisms for stereopsis. Using such
a distributed code it is possible to achieve a very flexible and robust representation of
binocular disparity for each spatial position in the retinal image.

3.2.1 Phase-shift and binocular energy models

An abundance of neurophysiological evidences report that the cortical cells’ sensitivity
to binocular disparity is related to interocular phase shifts in the Gabor-like receptive
fields of V1 simple cells [22, 29–33]. It is worth noting that models based on a difference
in the position of the left and right RFs (position-shift models) or hybrid approaches
have been proposed (we will discuss the consequences of this model extensions at the end
of this Section). The phase-shift model posits that the center of the left and right eye
RFs coincides, but the arrangements of the RF subregions are different. Formally, the
response of a simple cell with RF center in x and oriented along θ, can be written as:

θ
∆ψrs,ψ0(x) = IL ∗ hL(x; θ, ψ0 + ψL) + IR ∗ hR(x; θ, ψ0 + ψR) (17)

where

h(x) = h(x; θ, ψ) = η exp

(
− 1

2σ2
xTx

)
cos(kT0 x + ψ) (18)

is a real-valued RF (cf. Eq. (4)), ψ0 is a “central” value of the phase of the RF, and ψL

and ψR are the phases that characterize the binocular RF profile.
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Figure 3: The complex cell response is constructed as the squared sum of a quadrature
pair of simple cells. The green and red pathways relate to the monocular “quadrature
pair” of simple cell RFs, gL and gR, respectively.

In order to make the disparity tuning independent of the monocular local Fourier
phase of the images (but only on the interocular phase difference), binocular energy
complex cells play the role. Such “energy units” are defined as the squared sum of a
quadrature pair of simple cells (see Figure 3) and their response is defined as:

θ
∆ψrc(x) =θ

∆ψ r
2
s,0(x) +θ

∆ψ r
2
s,π/2(x) (19)

Linking phase-based and energy-based models For any fixed orientation, if we
characterize a “quadrature pair” of simple cells by a complex-valued RF (cf. Equation 4):

h(x)
4
= hC(x) + jhS(x) = g(x;ψ) (20)

then we can write the expression of the response of the “quadrature pair” as:

Q(x) = IL ∗ gL(x) + IR ∗ gR(x) = IL ∗ g(x)ejψ
L

+ IR ∗ g(x)ejψ
R

=

= QL(x)ejψ
L

+QR(x)ejψ
R

.

The response of a complex “energy” cell is then

θ
∆ψrc(x) =

∣∣θ
∆ψrs,0(x) +θ

∆ψ rs,π/2(x)
∣∣2 =

∣∣∣QL(x)ejψ
L

+QR(x)ejψ
R
∣∣∣2 = (21)

=
∣∣∣ejψL (QL(x) +QR(x)ej∆ψ

)∣∣∣2 =
∣∣QL(x) +QR(x)ej∆ψ

∣∣2
13



where ∆ψ = ψL−ψR. Therefore, complex cells’ responses depend on ∆ψ only, instead
of on ψL and ψR individually.

Equation 21 formally establishes the equivalence between phase-based techniques and
energy-based models [34]. Indeed, the maximum of rc responses is obtained when the
two phasors QL and QR are aligned in the complex plane, that is when ∆ψ compensates
for the different Fourier phases of the right and left image patches within the cell’s RF
(cf. [22]).

Notwithstanding the formal equivalence between phase-based techniques and energy-
based models, the latter prove themselves more robust to noise and more flexible, since
they can intrinsically embed adaptive mechanisms both at coding and decoding levels of
the population code. From algebraic and trigonometric manipulation we can derive the
tuning curve of the complex cell:

θ
∆ψrc(x) = |QL(x)|2 + 2|QL(x)Q∗R(x)| cos(δθk0 −∆ψ) + |QR(x)|2. (22)

Accordingly, the stimulus disparity, along direction θ, to which the cell is tuned is:

δθpref (x) =
b∆ψ(x)c2π

k0

. (23)

Including position shift: hybrid models The position-shift model posits that there
is a population of energy neurons with different receptive field position shifts. Accord-
ingly we can consider a family of binocular energy neurons whose right monocular subfield
is shifted by a set of distances d compared to the retinal position of the left monocular
subfield. Usually position-shift are used in combination with phase-shift models to over-
come the restriction on the maximum disparity detectability stemmed by the fact that
the phase shifts are unique only between −π and π. These hybrid models posit that there
is a population of binocular energy neurons with different RF positions and different RF
phase shifts. In the following we will restrict our analysis to phase-shift model only, and
we will deserve a model extension for future work.

3.2.2 Characterization of the population of disparity detectors

Coding Disparity information is extracted from a sequence of stereo image pairs by
using a distributed cortical architecture that resorts to a population of simple and complex
cells. The population is composed of cells sensitive to Np × No vector disparities δ =
(δH , δV ) with Np magnitude values distributed in the range [−∆,∆] pixels and along No

orientations uniformly distributed between 0 and π (see Figure 4). For each simple cell
we can control the ocular dominance of the binocular receptive field h(x), its orientation
θ with respect to the horizontal axis and the interocular phase shift ∆ψ along the rotated
axis, which confers to the cell its specific tuning to a disparity δθpref = ∆ψθ/k0, along the
direction orthogonal to θ. The spatial frequency k0 and the spatial envelope are fixed on
the basis of the design criteria described in Section 3.1. The complex cell inherits the
spatial properties of the simple cells, and its response rijc (x) is given by Equation 21: For
each orientation, the population is, in this way, capable of providing reliable disparity

14



Figure 4: The population of binocular receptive fields for each retinal location.

estimates in the range between −∆ and ∆, where ∆ = ∆ψmax/k0 can be defined as the
maximum detectable disparity of the population.

Figure 6 shows examples of tuning curves obtained from the population network,
compared to the variety of tuning curves observed experimentally in V1 cortical cells [33].

Decoding Once the disparity along each spatial orientation have been coded by the
population activity, it is necessary to read out this information, to obtain a reliable
estimate. The decoding strategy, the number of the cells in the population and their
distribution are jointly related. To decode the population by a winners-take-all strategy,
a large number of cells along each spatial orientation would be necessary, thus increasing
the computational cost and the memory occupancy of the approach. To obtain precise
feature estimation, while keeping the number of cells as low as possible, thus an affordable
computational cost, a weighted sum (i.e., a center of gravity) of the responses for each
orientation is calculated. The component disparity δestθj is obtained by:

δestθj =

∑Np
i=1

∆ψi
k0 cos θj

rijc∑Np
i=1 r

ij
c

(24)

Other decoding methods [35], such as the maximum likelihood estimator, have been
considered, but the center of gravity of the population activity is the best compromise
between simplicity, low computational cost and accuracy of the estimates.

Confidence values, based on local energy, are used to provide a reliability measure for
each disparity estimate.
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Figure 5: Basic scheme of the neuromorphic architecture for the computation of the 2D
disparity.

To decode the full (horizontal and vertical) disparity we can still rely on the inter-
section of constraints (channel interaction) introduced in Section 3.1.2 that combine the
population estimates for each orientation channel.

Summarizing, on the basis of these principles, a cortical-like architecture for disparity
estimation can be devised. The overall scheme of the proposed architecture is shown in
Figure 5. Three distinct levels of processing can be distinguished: (1) the distributed
coding of disparity across different orientation channels, (2) the decoding stage for each
channel, and (3) the estimation of the full disparity through channel interaction. If
one wants to consider several scales, coarse-to-fine strategies can be straightforwardly
embodied, e.g., by including in the scheme a refinement loop as re-entrant connections
in the filtering stage (see [36, 37]).

Toward a generalized architecture for active stereopsis In active stereopsis, be-
sides handling horizontal and vertical disparities, we have to explicitly consider vergence
mechanisms in the processing loop. From this perspective, in the next Section, we ad-
dress the problem of the refinement of vergence, which does not necessarily implies first
a refinement of the estimation of the disparity map. Indeed, experimental evidences (see
e.g., [38–40]) pointed out that mechanisms guiding eye movements are in general differ-
ent from those supporting depth perception. We will see that, by specializing disparity
detectors for vergence control, we can obtain linear servos with fast reaction and preci-
sion that work over a wide range of disparities with a reduced number of resources single
scale).
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(a)

(b)

Figure 6: (a) Distribution of the tuning curves obtained from the population network,
compared to (b) the observed for real V1 cortical cells [33].
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Figure 7: Each complex cell is, by construction, tuned to an oriented disparity δθ, i.e.,
each cell is jointly tuned to horizontal (HD) and vertical (VD) disparities. (Top): For
each oriented disparity, its contribution to the HD and VD is calculated by projections on
the horizontal and vertical lines. (Bottom): By assuming VD= 0, the orientation of the
RF is used as a degree of freedom to extend the sensitivity range of the cell to horizontal
disparity stimuli (HD).

4 Strategies for vergence without explicit calculation

of disparity

4.1 Reading binocular energy population codes for short-
latency disparity-vergence eye movements

As described in Section 3, the population of complex cells are, by construction, tuned
to oriented disparities, i.e., jointly tuned to horizontal (δH) and vertical disparities (δV ).
In general, indeed, the retinal disparity is a two-dimensional (2D) feature and the full
decoding of the population response would require the proper solution of the aperture
problem [27]. This can be achieved, by example, through the intersection of the con-
straints provided by the different orientation channels (cf. [28]). If one proceeds in such
a way, that is by recovering the full disparity vector, the disparity detectability range
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would still be limited to ±∆, and the horizontal (vertical) component of the full dispar-
ity vector will then used for the control of horizontal (vertical) vergence. Unless one uses
computationally expensive multiscale techniques for widening the disparity detectability
range, this approach would considerably limit the working range of the vergence control.
As for the control of vergence, larger disparities have to be discriminated while keeping
a good accuracy around the fixation point for allowing finer refinement and achieving
stable fixations, alternative strategies might be employed to gain effective vergence sig-
nals directly from the complex cell population responses, without explicit computation
of the disparity map. To this end, we can map the 2D disparity feature space into the
1D space of the projected horizontal disparities, where the orientation θ plays the role of
a parameter. More precisely, by assuming δV = 0, the dimensionality of the problem of
disparity estimation reduces to one, and the orientation of the receptive field is used as
a degree of freedom to extend the sensitivity range of the cells’ population to horizontal
disparity stimuli (see Figure 7). In this way, each orientation channel has a sensitivity
for the horizontal disparity that can be obtained by the projection of the oriented phase
difference on the (horizontal) epipolar line in the following way:

δθH =
∆ψ

2πk0cosθ
(25)

Figure 8a shows the horizontal disparity tuning curves obtained of the population for
different orientations of the receptive fields. To decode the horizontal disparity at a
specific image point, the whole activity of the population of cells, with receptive fields
centered in that location, is considered. By using a center-of-mass decoding strategy, the
estimated horizontal disparity δestH is obtained by:

δestH =

∑Np
i=1

∑No
j=1

∆ψi
2πk0 cos θj

rijc∑Np
i=1

∑No
j=1 r

ij
c

(26)

where rijc denotes the response of the complex cell characterized by the i-th phase differ-
ence and by the j-th orientation. The dashed line plots in Figure 8b-c show the resulting
disparity curves obtained by population decoding. The estimate of the disparity can be
considered correct when the stimulus disparity is within ±∆.

By analyzing the tuning curves of the population (see Figure 8a) we observe that
the peak sensitivity of cells that belong to a single orientation channel is uniformly
distributed in a range that increases with the orientation angle θ of the receptive field, as
the horizontal projection of the frequency of the Gabor function declines to zero. Thus,
applying the center of mass decoding strategy, separately for each orientation, we can
obtain j different estimates of the disparity:

δestH,θj =

∑Np
j=1

∆ψi
2πk0 cos θj

rijc∑Np
i=1 r

ij
c

(27)

It is worthy to note that the increase of the sensitivity range, as the orientation of the
receptive fields deviates from the vertical, comes at the price of a reduced reliability and
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Figure 8: (a) Disparity tuning curves of complex cells at different orientations. (b) Es-
timated horizontal disparity using single orientation channels in presence of horizontal
disparity only (δV = 0). (c) Estimated horizontal disparity using single orientation chan-
nels in presence of a fixed amount of vertical disparity (δV 6= 0). Dashed line plots refer
to the horizontal disparity estimates obtained by combining all the orientation channels

accuracy of the measure (as an extreme case, horizontal receptive fields are unable to
detect horizontal disparities, i.e., δθ=0

H → ∞). In any case, the estimate of the disparity
can be considered correct in a range around [−∆,∆], only.

Moreover, since the 1D tuning curves of the population were obtained under the
assumption of horizontal disparity only, when the vertical disparity in the images differs
from zero, the correctness of estimate of the actual component of the horizontal disparity
has to be verified. We observe that (see Figure 8b and Figure 8c, top row), the disparity
estimated by the whole population is unaffected by non null vertical disparities, as well
as the estimate obtained by the orientation θ = 0 (vertically oriented cells are indeed
, by definition, sensitive to horizontal disparity only). On the contrary, the estimated
disparity obtained for θ 6= 0 shows a dependence on vertical disparity, that increases with
θ (see Figure 8c, middle and bottom row), and leads to a systematic error response.

4.1.1 Control signal extraction

A desired feature of disparity-vergence curves is an odd symmetry with a linear segment
passing smoothly through zero disparity, which defines critical servo ranges over which
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Figure 9: The υkH target curves to be approximated by the LMS minimization. Each of
them is designed to have a tuning to disparities of differen magnitude.

changes in the stimulus horizontal disparity elicit roughly proportional changes in the
amount of horizontal vergence eye movements, ∆α = pδH , where α is the vergence angle.
Starting from the estimated disparity curves shown in Figure 8b, we can exploit the
responses at different orientations to design linear servos that work outside the reliability
range of disparity estimation. Yet, we have to cope with the attendant sensitivity to
vertical disparity, which is an undesirable effect that alters the control action. Hence,
given a stimulus with horizontal and vertical disparity δH and δV , we want to combine
the population responses in order to extract a vergence control proportional to the δH to
be reduced, regardless of any possible δV . We demonstrate that such disparity vergence
response can be approximated by proper weighting of the population cell responses where
disparity tuning curves act as basis functions. Due to these considerations, the population
responses are combined with two very specific goals: (1) to obtain signals proportional to
horizontal disparities, (2) to make these signals be insensitive to the presence of vertical
disparities. The disparity vergence response curves rkv are obtained by a weighted sum of
the complex cell responses (see Figure 10):

rkv =

Np∑
i=1

No∑
j=1

wkijr
ij
c (28)

where the index k denotes the different kind of the desired vergence response curves.
Referring to a common classification [41] we divide the V1 cells in five categories: near
(NE ) and far (FA) dedicated to coarse stereopsis, and tuned near (TN ), tuned far (TF )
and tuned zero (T0 ) for fine stereopsis. The weights wkij are obtained through a recursive
LMS algorithm. From the control point of view, we assume that small values of vertical
disparities do not affect the disparity-vergence curves. Moreover, to mildly constraint
the solution of the problem and, in the meantime to ensure a good control stability, we
pose the VD independence constraint for HD ' 0, only. Under this assumption, we
can design the disparity-vergence curves that define the visual servos by considering the
tuning curves obtained separately for VD=0 and HD=0 (i.e., the orthogonal cross-section
of the oriented 2D disparity tuning curves of the binocular energy model). More precisely,
the profile of the desired vergence curve υkH (see Figure 9) is approximated by a weighted
sum of the tuning curves for horizontal disparity rc(δH ; θ,∆ψ).

To gain the insensitivity to vertical disparity we add a constraint term in the mini-
mization formula. This term ensures that the sum of the vertical disparity tuning curves
rc(δV ; θ,∆ψ), weighted with the same wk, approximates υkV . To overcome the difficulties
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of approximating a constant with a combination of a limited number of periodic basis
functions, we impose υkV to have a profile that is mildly constant as the one that can be

obtained by summing the tuning curves all together (υkV =
∑Np

i=1

∑No
j=1 r

ij
c (δV )). Hence,

the weights wk are obtained by minimizing the following functional:

E(wk) =

∥∥∥∥∥
Np∑
i=1

No∑
j=1

rijc (δH)wkij − υkH

∥∥∥∥∥
2

+ λ

∥∥∥∥∥
Np∑
i=1

No∑
j=1

rijc (δV )(wkij − 1)

∥∥∥∥∥
2

(29)

where λ > 0 balances the relevance of the second term over the first. In our simulations
we fixed λ = 1 in order to give the same relevance to both δH and δV . To test the
functionality of the model, at this stage, we used the same kind of stimuli adopted to
compute the disparity tuning curves of the cells, so that we expect the disparity vergence
tuning curve to be the same we drew from the minimization. The stimuli have a disparity
varying in the same range used for the tuning curves, and the control computed has the
same shape of the desired curves (Figure 10b). A drawback that arises is that if the image
contrast is lowered, disparity vergence tuning curves hold the same shape, but their gain
is consequently lowered, with the effect that the speed of the vergence movements is
modulated by the image contrast. The estimated disparity does not show this effect
because the center of mass decoding strategy means to take a decision on the disparity
value, regardless to the contrast of the stimulus (cf. [30]). By analogy with the formula
used to decode the disparity, we can introduce the same normalization term to let the
system work in the proper way independently of the image contrast:

rkv =

∑Np
i=1

∑No
j=1w

k
ijr

ij
c∑Np

i=1

∑No
j=1 r

ij
c

(30)

4.1.2 Signal Choice

With reference to the five categories of the disparity-vergence curves, it is plausible to
think that the first two generate the fast and coarse component and the others the slow
and fine component of the vergence movements. In practice the fast-coarse control is
given by long= rNE − rFA, while the slow-fine is given by short= rTN − rTF (see
Figure 10). The short control signal is designed to proportionally generate, in a small
range of disparities, the vergence to be achieved, and allows a precise and stable fixation
(Figure 10b). Out of its range of linearity, the short signal decreases and loses efficiency
to the point where it changes sign, thus generating a vergence movement opposite to the
desired one. On the contrary for small disparities the long control signal yields overactive
vergence signal that make the system to oscillate, whereas for larger disparities it provides
a rapid and effective signal.

The role of the rT0 signal, is to act as a switch between the short and the long
controls. When the binocular disparities are small, rT0 is above a proper threshold TH,
and it enables the short control (see white regions in Figure 10b). On the contrary, for
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Figure 10: Extraction of the vergence control signals: each location of the left and right
image is filtered with a population of disparity detectors whose response rc is combined
with five different families of weights wk, in order to extract five signals rFA, rTF , rT0, rTN

and rNE, tuned to disparities of different magnitudes. These signals are combined in a
differential way, in order to extract the long and short controls, used to drive the
vergence eye movements, while the rT0 works as a switch between them.
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Figure 11: The effective long, short (a), and T0 (b) signals computed by the model
stimulated with a random dot stereograms (RDS). The short control is able to work in
a linear and precise manner for small disparities, while the long one works in a coarse
but effective way for larger disparities. Since the T0 signal is high for small disparities,
it is able to act like a switch between the two controls.

large stimulus disparities, rT0 is below the threshold and it enables the long control (see
grey regions in Figure 10b).

A straightforward but meaningful effect that arises from calculating the short and
the long controls in a differential way is a strong robustness to noise. If we add a
Gaussian white noise to the population response, both the decoding of the disparity
and the computation of the rkv signals, would be affected. Since the weights wk are
normalized, it is easy to demonstrate that the noise terms on rNE and rFA cancel each
other while differentiating to compute the long control, and so it happens for the short
one. Simulation results evidenced that, when one adopts the differential short and long
control signals, the S/N ratio is ∼ 6dB higher than the input S/N ratio for the complex
cell responses.

4.2 Effects of vertical disparity

The optimized control we want to obtain from the proposed technique is a control of the
horizontal vergence that would be able to yield the same movement for a given horizontal
disparity δH , without suffering any effect from the vertical disparity δV . Indeed if the
δV constraint is not taken into account in the minimization process used to obtain the
weights w (see Equation 29), the resulting control shows a strong dependence on vertical
disparity, as it appears evident in the disparity-vergence tuning curves shown in Figure 8
right column. The control loses the zero crossing and its odd symmetry, which are
instrumental features to ensure that at the steady state, the eyes fixate on the closest
surface along the axis of fixation, not before, nor beyond.
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Figure 12: The effective long (a), and short (b) signals computed by the model stim-
ulated with a random dot stereograms (RDS) in the absence (solid line) and in presence
(dashed line) of a vertical disparity pedestal.

Although, the regularization term we introduced in Equation 29 has the sake of forcing
the control to be insensitive to the vertical disparity, simulations with RDSs showed that
the behaviour is different from the expected one.

The problem of this approach is due to the fact that the minimization is computed
by considering, for every complex cell, its response rijc to the horizontal and the vertical
disparity only, for the first and the second term of the functional, respectively. As a
matter of fact, in the functional in Equation 29, what we consider are the cross-sections
for δH = 0 and δV = 0 of the two-dimensional (2D) tuning profile that characterizes each
complex cell. Though, the 2D disparity tuning profile of a binocular energy unit can
be oriented by any angle, depending on the orientation channel we consider, and it is
separable for θ = 0 and θ = π/2 only.

Hence, the problem arises if a vertical disparity pedestal is added to the stimulus, the
section of the 2D profile one should consider, is the one at the imposed δV . Otherwise,
the more the filter is tilted from the vertical and the more the δV is, the most the tuning
curves change, producing the effect of making the decoding for vergence unreliable.

Thus if the δV is set to 0, the control is working in the conditions it is designed for,
and its effectiveness is the highest. In Figure 15a we show the evolution in time of the
actual horizontal disparity, when the vergence control is active. The value of each plot
at the first time step is the initial horizontal disparity step we imposed. The system is
able to cope with disparity values ranging from −3∆ to 3∆ and the control of vergence
reduces to zero the stimulus disparity. In the figure it is also highlighted on each trace
when the system relies upon the short control (filled circles) and the long control (open
circles). As expected, for small disparities the working mode is the former, while for larger
disparities is the latter, depending on the threshold of the T0 signal (see Figure 11b). At
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Figure 13: (a) The profile of the response of the complex cell defined by θ = π/4, tested
with a RDS with δH and δV ranging from −3∆ and 3∆. (b) Tuning curves for the same
complex cells, taken at different fixed vertical disparity, the blue one is for δV = 0 and
the green one is for δV = ∆. The empty circles highlight the position of the peak for
each curve.

26



short control long control

Hor izontal dispari ty [∆ units]

Ve
rt
ic
al

d
is
p
ar
it
y
[∆

u
n
it
s]

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Hor izontal dispari ty [∆ units]

Ve
rt
ic
al

d
is
p
ar
it
y
[∆

u
n
it
s]

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(a) (b)

Figure 14: Response profile of the short and long vergence controls to a 2D vector
disparity, ranging in the interval [−∆,∆] for both the horizontal and vertical components.
The profile is obtained as a weighted sum of the 2D disparity tuning profiles of the complex
cells, using the weights derived by Equation 29 and by Equation 30.

the same way if vertical disparity is small (see Figure 15b), the tuning of the population
responses is almost unaffected by δV , and the only visible effect is a slight slow down
of the vergence control. Increasing the value of δV (see Figure 15c-d), besides a more
consistent slow down of the control, another drawback is the reduction of the range of δH
the control is able to cope with. This effect is particularly evident on the long mode,
because it resort mainly on the cells whose orientation tuning largely deviates from the
vertical, thus being more sensitive to δV . Figure 14 shows the short and long controls
obtained as weighted sums of the 2D disparity tuning profiles of the complex cells, and
in particular haw the two control are slowed down by δV . Moreover the areas where the
controls are unreliable is highlighted with white lines.

4.3 Results

4.3.1 Test with Random Dot Stereograms

We tested the proposed model with synthetic stimuli consisting of random dot stere-
ograms (RDS) in which the stereo image pairs are shifted horizontally. Specifically,
we applied horizontal disparity steps varying from −3∆ to 3∆. The model works in
a perception-action loop in which the vergence movements are simulated reducing step
by step the disparity between the left and right images by an amount proportional to
the vergence control, computed both through the estimation of the disparity δestH and
through the vergence signals rkv . Figure 17 shows the percentage of vergence movement
accomplished by the two mechanisms for different time steps. Because of the behaviour
of the two mechanisms is symmetric with respect to zero disparity, we show the pos-
itive semiaxis only. A percentage value higher than 100 indicates an overshoot of the
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Figure 15: Evolution in time of the vergence control testes with a RDS. Fixed a vertical
disparity pedestal, varying from 0 to ∆, each trace represent the evolution of the vergence
starting from a different value of horizontal disparity. It is clear that considering a small
vertical disparity (b), its effect on the horizontal vergence is negligible. Increasing it
above a certain value (c) and (d), the vergence control is slowed down and its range of
effectiveness is reduced. Filled and opend circles denote the action of the short and
long controls, respectively.
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Figure 16: Horizontal vergence velocity (deg/timestep) in presence of a vertical disparity
pedestal of increasing magnitude.
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mated disparity δestH (white bars), and the rkv signals to control the vergence. The stimulus
used is a RDS with a disparity step in the range from −3∆ to 3∆. Only the positive
axis is represented because the response is symmetric around zero disparity. The graphs
represent the status of the system after 1, 2 and 10 time steps. At each step the rkv signals
are able to reach the target in the whole range tested, while δestH yields a wrong control
for disparities larger than ∆.
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Figure 18: (a) Simulated experimental setup, consisting of the eyes looking at a plane
characterized by a RDS pattern, and perpendicular to the binocular line of sight. (b) Be-
haviour of the vergence control using rkv vs δestH in case of a diverging step. The rkv control
(solid line) is able to reach the depth of the plane (dotted line) in all the cases presented,
while the δestH control (dashed line) produce a wrong movement for a depth step above a
certain threshold.

movement, whereas a value lower than zero indicates a movement in the opposite (i.e.,
wrong) direction. After the first time step (Figure 17 top row), if the stimulus disparity
is within ∆, the behaviour is slightly better for δestH (white bars), whereas outside this
range it produces a vergence movement that is the opposite of the one requested. The rkv
signals (black bars) produce almost the same movement of δestH for small disparity steps,
but they are able to achieve slow but effective vergence movements up to the limit of
the tested range. At the second time step (Figure 17 middle row), for disparity steps
smaller than ∆, both the mechanisms reach the target, and for higher disparities the
behaviour is similar to the previous time step. After 10 time steps (Figure 17 bottom
row), we observed that δestH was able to work in the proper way only for disparities within
∆, whereas rkv was able to reach the target in all the tested range.

4.3.2 Test with a frontoparallel plane

Considering a virtual environment in which the eyes, characterized by null version and
elevation angle, and by a vergence angle α, look at a plane with a random dot texture
(Figure 18a). The plane is at a depth Z with respect to the cyclopic position, and
perpendicular to the binocular line of sight. The interocular distance is b = 70mm, the
nodal length is f0 = 17mm, and the stimulus is projected onto the retinal plane, with a
size of 6mm, thus considering a field of view of almost 20 degree. At the first time step the
plane and the fixation point are at the same Z, then the plane is moved to a new depth,
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and the vergence angle starts to change step by step, until the fixation point reaches the
depth of the plane. Considering the position of the eyes, the vergence variation is applied
symmetrically: ∆αR = −∆αL = − arctan( r

2f0
), where r is computed by considering the

weighted average of the vergence responses rkv or of the estimated disparities δestH . The
area where the average is computed, is a neighborhood of the fovea of 5◦, and its size
is based on physiological experiments [42] that show that it is the maximum extent of
the retina where the disparity stimulus is integrated to drive vergence eye movements in
humans.

The first test considers a fixed frontoparallel plane at a given distance, while the eyes
are fixating on the surface of the plane. The plane steps back and forth by an amount
that varies from trial to trial. Figure 18b shows that a control based on the disparity
computation δest produces the correct change of the vergence angle (dotted lines), when
the size of the step is restrained. On the other hand, the implemented model is able
to produce a faster change of the fixation point (solid lines), and, even for larger depth
steps, the model is able to ensure a reliable vergence control. Moreover, once the fixation
point has reached the plane in depth, the disparity in the fovea is approximately zero
and the system is able to ensure a stable fixation.

The second test considers a frontoparallel plane whose position in depth varies con-
tinously in time as a ramp and a sinusoid. The slope of the ramp is varied from 0.5 cm
per time step to a pure step (Figure 19a). While for small values only the short control
is enabled, in the other cases the initial part of the vergence is produced by the long
one, and the interplay between the two controls is very similar to the one observed in the
transient and sustained components of the physiological responses [43]. In support of this
hypothesis, in case of both a divergent and a convergent ramp, the simulated vergence
movements are qualitatively very similar to the results obtained in physiological experi-
ments. In the same way, the frequency of the sinusoid that controls the depth of the plane
was varied between 7 and 38 time steps, and again the simulated results (Figure 19b) are
qualitatively similar to the experimental data [43]. Increasing the frequency, it is evident
a transition from a slow and smooth tracking of the plane, due to the short control, to a
combination of the long and short controls. When the frequency becomes too high, the
system is no more able to follow the stimulus in depth. To demonstrate that the vergence
control is independent of the image contrast, the first and the second test were repeated
with the same RDS texture, but with different levels of contrast. The denominator term
in Equation 30 has the effect of a divisive normalization, thus the response of each dis-
parity detector is rescaled with respect to the stimulus contrast (cf. [44]). Thereby the
vergence control, being derived from a linear summation of the responses of the disparity
detectors, is not affected by the stimulus contrast too. It is worth noticing that an RDS
image has constant energy in the frequency domain, thus it produces an optimal response
of the filters; for a real image it is not guaranteed. The contrast normalization allows us
to maintain the vergence control effective even if the texture of the plane is a real image.
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Figure 19: (a) Vergence response in time to diverging ramps with different slopes, and
(b) to sinusoids characterized by different periods. The dotted line represents the depth
of the stimulus and the solid one is the depth of the fixation point.
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Figure 20: The block diagram of the framework used in vergence control model training
and testing (see text).

5 Network Paradigms for vergence control

In this section, we present a modular architecture (see Section 5.1) and two networks for
learning vergence control: a linear (Section 5.3.2) and a convolutional one (Section 5.3.3).
The training of the proposed vergence control networks is briefly discussed in the same
sections (5.3.2 and 5.3.3). In more details we discuss the evaluation experiments (Sec-
tion 5.5) and the results (Section 5.6).

5.1 Vergence control framework

For the vergence control paradigm modeling, we have used the framework shown in
Figure 20. This setup consists of the vergence simulator module, the disparity detec-
tor population module, the population response post-processing module and the vergence
control network (VC-net) module.

The main goal of the vergence simulator is to generate a stereo image (left and right
eye views) based on the actual state of the robotic head: the vergence angle and the gaze
direction (see Figure 1), and information about the 3D environment.

The stereo image generated by the simulator is processed by the disparity detector
population, to produce the population response. Depending on which vergence control
network is used, the population response is then directed to either the population response
post-processing block, which is producing the post-processed population response (the
linear VC-net case), or directly to the vergence control network module (the convolutional
VC-net case). The (raw/post-processed) population response, together with the actual
values of the gaze direction and the vergence angle, are fed into the vergence control
network module, the main module of the model. The goal of the VC-net is to produce
a new vergence angle, to get the fixation point onto the surface of the object of interest,
without changing the gaze direction.
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5.1.1 Vergence database

For training the VC-net, we have prepared a vergence database. The database consists of
two tables: a table of synthetic scenes, and a table of vergence samples (see Figure 21).
For efficient memory usage, the scenes were allowed to be reused in several vergence sam-
ples. There are two types of synthetic scenes in the vergence database, which correspond
to the simplified- and general case scenarios, respectively. The simplified case scenes con-
tain only one type of object-stimulus, a fronto-parallel rectangular patch perpendicular
to the gaze direction in the primary position (see Figure 22a). The stimulus in this case
is large enough to completely cover the field of view of both cameras.

The general case scenes consist of several simple (plane rectangular patch, cube,
pyramid, tetris-like etc.) textured objects, randomly placed into a room-like virtual
environment with several light sources (see Figure 22b). The object sizes are chosen
randomly allowing for depth discontinuities.

Vergence samples consist of the gaze direction, the actual vergence angle, the stereo
pair (left and right eyes’ images), the population response for the stereo pair and the
desired vergence angle. The actual vergence angle is a distorted (with Gaussian noise)
version of the desired one. The actual vergence angle is expected to become as close to
the desired vergence angle as possible, when running the control model.

Each vergence sample in the database can be considered as a training pair. The
input part is constructed from the post-processed (or raw) population response, the gaze
direction and the actual vergence angle; the output consists of only one scalar parameter
– the desired vergence angle. The vergence database used for the VC-net training consists
of 1000 synthetic scenes and 5000 samples. The balance between general and simplified
scenes (as well as for the samples) has been set to 50/50%. Real-world images were used
as textures for the objects. To reduce the influence of a possible overfitting to particular
textures on the results of the evaluation, we have used non-overlapping sets of textures
for the training- and test experiments. An early stopping technique (with 10% of the
training data for validation) was used to prevent overfitting during training. To achieve
a fair comparison, both VC-nets were trained using the same training data.

5.1.2 Vergence simulator

The vergence simulator module consists of the renderer and the ideal robotic head model
(RHM) with fixed neck. In this model, the robotic head is assumed to be fixed and the
eyes to rotate around their nodal points. We selected this model because it is easy to
implement, and eventually to replace by a real tilt-pan stereo setup.

Given a RHM baseline b, i.e., the distance between the nodal points, the gaze direction
is defined by γ and λ, the pan/yaw and tilt/elvation angles, considering the coordinates
centered in the cyclopean point O in the middle of the baseline b, as in [45]. The actual
vergence angle α is defined as the angle between the left and right visual axes vl and vr
(see Figure 1). In this study, we used the same parameters of the RHM as in [46] (the
baseline b = 70 mm, the focal length f0 = 17 mm and field of view ≈ 20◦). The RHM,
developed by UG-Dist module takes as input the vergence angle and the gaze direction to
produce the exact position and orientation of both eyes/cameras, needed for the renderer.
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Table of scene structures

scene index: 1
number of objects: K

number of lights: L

…

Table of vergence samples

sample index: 1

head position, head 
orientation, gaze direction
vergence state:

left eye view, right eye view, 
population response, …

pointer to a scene structure

desiredactual
fixation point location, vergence 
angle, distance to fixation point, …

object Kobject 2object 1
tag, type, center position, size, 
orientation, material, mapping 
style, …

light Llight 2light 1
tag, type, position, orientation, 
color, …

Figure 21: Schematic structure of the vergence database.

The renderer, in turn, produces the stereo image, observed by the left and right eyes
(see Figure 22), using the position/orientation of the eyes, and the geometric description
of the scene, provided by the scene 3D data block.

To make sure that the disparities are not too large and can be properly handled by
the disparity detector population, we decided to render the retinal projections with low
resolution i.e., we obtain images of 41× 41 pixels for a field of view of ≈ 20◦. Note that
the resolution could be higher, but consequently to allow the population to cope with
the same range of disparities, the receptive fields of the disparity detectors should be
larger, which would significantly increase the computational cost and, thus, slow down
the simulations.

5.2 Post-processing module

5.2.1 Disparity detectors population module

Disparity information can be extracted from a stereo image pair by using a distributed
cortical architecture discussed in great details in Section 3. In this work, we consider only
a single-scale architecture of the disparity detector population, but the population can be
readily extended to the multiscale mode, without conceptually changing our framework,
but which will be computationally much more expensive.

5.3 Post-processing module

ssec:post-processing The post-processing of the population response is used only for the
linear VC-net, and comprises a two-dimensional convolution over the first two (spatial)
dimensions of the population response, using a two-dimensional Gaussian kernel Gσ:

Pij = Gσ ∗ rijc , (31)

36



(a) (b)

(c) (d)

Figure 22: Examples of simplified (a) and general case (b) synthetic scenes used by the
simulator to render the corresponding stereo images (c,d).

where rijc is the population response map for the i-th orientation and the j-th phase shift.
The kernel Gσ has the same size nr × nc as the size of a population response map rijc , so
the result of the convolution is a scalar value Pij.

On the one hand, this step drastically reduces the amount of data to further process.
Indeed, after pooling, the network has to process only a two-dimensional (No × Np)
pooled population response instead of a four-dimensional (nr × nc × No × Np) array,
where Np is the number of phase shifts, and No the number of orientations. But, on
the other hand, the pooling has a major drawback as it discards the spatial information
about the disparity encoded in the population response. The results of simulations (see
Section 5.6 revealed that, in the general case scenario, this discarding could lead to a
degraded vergence accuracy.

The convolutional network works directly on the population response, and the post-
processing is done in the first two layers of the convolutional network.

5.3.1 Vergence control module

This module is the main module of the model. The purpose of it is to convert the post-
processed population response together with the actual vergence, and the gaze direction,
into a new vergence angle. Virtually, this module can be represented by any kind of
paradigm, but in this workpackage we discuss only a linear network and a convolutional
network.
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Figure 23: Linear VC-net and its inputs.

5.3.2 Linear network

The first attempt in developing a network model for vergence control was with the sim-
plest possible solution consisting of only a single linear unit (see Figure 23).

The simulations revealed (see Section 5.6) that even this simple network is able to
produce accurate angular vergence control in some restricted situations (e.g., in the sim-
plified case). The input vector for the linear VC-net was constructed as a concatenation
of the pooled population response (56 values), the gaze direction (2 values) and the actual
vergence (1 value), so its dimensionality is 59. The output is a prediction of the vergence
angle, which is a scalar value. Due to the linearity of the network, there was no reason
to introduce any hidden layers, so the linear VC-net consisted of only one linear unit.
This simplest possible vergence control network has only 60 parameters (including bias),
which can be learned either directly (using linear regression or its robust modification),
or iteratively (using gradient descent), from the training database.

5.3.3 Convolutional network

Convolutional networks (CNs) appeared in the 80s and became popular in Computer
Vision [47–49] mainly due to efforts of Yann LeCun and co-workers [50]. All CNs have
common architectural features: local receptive fields, shared weights, and spatial or tem-
poral subsampling, which allow them to achieve some degree of shift- and deformation
invariance and, at the same time, reduce the number of training parameters.

A typical convolutional network is a feed-forward network of layers of three types:
convolutional (C-layer), subsampling (S-layer) and fully-connected (F-layer). The C-
layers and S-layers usually come in pairs and are interleaved, and F-layers come at the
end (see Figure 24). The output of a C-layer is organized as a set of feature maps.
Each feature map contains the output of a set of neurons with local receptive fields. All
neurons in the feature map share the same weights, so the feature map is responsible for a
particular local visual feature, encoded in the weights of these neurons. The computation
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Figure 25: Convolutional VC-net and its inputs.

of a feature map starts with a 2D convolution of the input with a fixed kernel defined
by the neuron’s weights. A feature map can have inputs from several feature maps of
the previous layer. In order to condense the extracted features, and to make them more
invariant with respect to spatial deformations, the C-layer is typically followed by an
S-layer which performs a local averaging and subsampling. Each neuron in a F-layer just
adds a bias to the weighted sum of all inputs and then propagates the result through a
nonlinear transfer function (RBF or sigmoid).

The network is trained in a supervised manner using backpropagation. For the efficient
training of large CNs, LeCun and colleagues proposed a modification of the Levenberg-
Marquardt algorithm [51].

The architecture of the convolutional network, used for our experiments is shown in
Figure 25. The main challenge in this approach was the amount of data: the population
response consists of 56 (8× 7) maps of resolution 41× 41 (rendered image resolution), so
the input of the network has 94136 (41× 41× 8× 7) components. In order to be able to
train the network with such high dimensional input data, we had to reduce the number
of training parameters. The first (convolutional) layer is a fixed set of (nontrainable)
Gaussian kernels of size 19 × 19 with standard deviation 6. The second (subsampling)
layer has also 56 feature maps size of which was set to 3× 3.

39



 

 

1.2
1.4
1.6
1.8

 

 

−0.5

0

0.5

 

 

−0.5
0
0.5
1

 

 

−0.2

0

0.2

(a) (b) (c) (d)

Figure 26: Typical examples of horizontal (a,c) and vertical (b,d) disparity maps for the
simplified (a,b) and general case (c,d) synthetic scenes. In the simplified case (a,c), the
disparity maps have the same symmetrical patterns, and differ only by the magnitude of
the disparity. In the general case (b,d), the disparity maps usually have discontinuities,
and are not symmetrical.

5.4 Vergence performance measures

Given the RHM, from the gaze direction vector g, (‖g‖ = 1), it is possible to infer the
actual distance d = |OA| to the fixation point A from the middle of the head’s baseline
O using the actual vergence angle α (see Figure 1):

d =
b

2

(
s+
√
s2 + 1

)
, where

s = cotα cos γ
(32)

and vice versa:

α = arccos

(
vTl vr

‖vl‖ · ‖vr‖

)
, where

vl = d · g + (b/2, 0, 0)T , and

vr = d · g − (b/2, 0, 0)T .

(33)

where vl and vr are the visual axes of respectively the left and right eye. From the
equations (32) and (33), one can see that, by considering a fixed gaze direction g and a
fixed baseline b, the vergence angle α ∈ (0;π) can be diffeomorphically mapped into the
distance to the fixation point d (nevertheless the mapping is nonlinear).

In our experiments α ∈ (4◦, 10◦) and, it follows from (32), even for a small vergence
angle α (more distant stimulus), the deviation leads to a significant change of d. In this
case, the deviation of the actual distance to the fixation point d from the desired one,
more adequately reflects the accuracy of the vergence model, than the deviation of the
corresponding vergence angles. Due to this anisotropy of the distance uncertainty, we
prefer the distance-based measure for the assessment of the model performance over the
angular-based.
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5.5 Experiments

To evaluate both VC-nets, as already mentioned, we consider two cases for the exper-
iment: a simplified and a general case. An example of the simplified case is shown in
Figure 22(a,c): the gaze direction of the robotic head is orthogonal to its baseline, and
the stimulus is in the frontoparallel plane which is also orthogonal to the gaze direc-
tion. In the general case, all restrictions on the orientation of the gaze, as well as the
stimulus position, type and orientation, are dropped. One of the examples is shown in
Figure 22(b,d).

A series of 100 vergence maintenance experiments have been carried out for both
VC-nets, for both scenarios. Each experiment consisted of 100 steps during which the
randomly generated stimulus was moving along the gaze direction, changing its distance
(from 400 mm to 900 mm) to the head in a particular manner. We have considered three
patterns of the stimulus motion-in-depth: ramp, sinusoid and staircase. Pretrained VC-
nets were allowed to control the actual vergence angle to keep the fixation point as best
as possible on the surface of the stimulus. During each experiment, the actual and the
desired values of the vergence angle, and the distance to the stimulus were stored for each
time step, for further analysis.

5.6 Results

The results of the evaluation experiments described in Section 5.5 of both VC-networks
in both considered scenarios are presented in Figure 27, Figure 28 and Table 1. Each
panel of Figure 27 and Figure 28 contains: 1) the desired (ground truth) distance to
the stimulus curve depicted by the solid green curve, 2) the mean (averaged across all
experiments) actual distance to the stimulus curve depicted by the dashed red curve, and
3) the variance (standard deviation across all experiments) of the actual distance margins
depicted by the dotted black curve.

The performance of the VC-net can also be assessed using the ratio of the distance-
based error variance to the corresponding desired distance. The smaller this ratio is,
the lower the relative (distance) error is produced by the network. Table 1 contains the
minimal, mean, median and maximal values of this ratio (in percent) for each experiment
type and each stimulus.

From Figure 27 and Table 1, it can be clearly seen that both networks perform rel-
atively well in the simplified scenario: the mean actual distance curve almost coincides
with the desired one, and the variance in both cases is relatively small. For the general
case scenario, the situation is different. The linear VC-net (Figure 27b) shows a much
larger variance and a general tendency to over(under)shoot towards the “average” depth
of the scene (at approximately 600 mm). The convolutional VC-net (Figure 28b) also
shows a relatively larger variance, but the mean actual distance is closer to the ground
truth than in the linear VC-net case. The effect of the anisotropy of the distance uncer-
tainty, mentioned in Section 5.4, is noticeable in Figure 27 and Figure 28: the further
the stimulus is, the larger mistakes made by the VC-net.
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(a) Linear VC-net, simplified scenario.
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(b) Linear VC-net, general case scenario.

Figure 27: Results of the depth-based performance plots for linear VC-net in both sce-
narios.
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(a) Convolutional VC-net, simplified scenario.
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(b) Convolutional VC-net, general case scenario.

Figure 28: Results of the depth-based performance plots for convolutional VC-net in both
scenarios.

43



Table 1: Variance of distance-based error relatively to desired distance.

VC-net
Experiment
scenario

Stimulus type
Error variance ratio (%)

min mean median max

Linear

Simplified case
Ramp 2.6828 3.8921 3.6172 6.2715
Sinusoid 2.8904 5.2275 5.2840 7.5772
Staircase 2.6566 5.4345 5.2589 10.6765

General case
Ramp 6.4996 8.4466 8.1057 12.9288
Sinusoid 6.2622 10.0322 9.9448 22.1558
Staircase 7.1387 10.6848 9.9420 31.9260

Convolutional

Simplified case
Ramp 2.4841 3.7045 3.6237 5.8980
Sinusoid 2.2913 4.8870 4.9034 8.6034
Staircase 2.1722 4.3578 3.6502 13.2121

General case
Ramp 4.0339 6.4378 5.7930 12.7739
Sinusoid 4.8622 6.9828 6.8680 10.6242
Staircase 3.9617 6.5304 6.2880 13.7682

5.7 Discussion

The larger magnitude of the vergence error of the linear network Figure 27 in the general
case, compared to the simplified case, can be explained, from our point of view, mainly by
the disparity discontinuities, and possibly by the presence of the vertical disparity asym-
metric patterns. The disparity discontinuities are usually caused by the limited size of the
stimuli, which do not entirely cover the field of view in both eyes, or by the non-convex
shape of the stimuli (e.g., tetris-like objects). The horizontal and vertical disparities in
the simplified case (see Figure 26(a,b)) have very simple symmetrical patterns, while in
the general case, these patterns are not so simple and usually not symmetrical (see Fig-
ure 26(c,d)). This irregularity of the disparity is caused by the arbitrary orientation and
location of the object surface, as well as by the depth discontinuities, and the not always
convex shape of the stimulus-object.

For the linear VC-net, in the simplified scenario, the vertical disparity is symmet-
rically spread over the spatial dimensions of the population response, and is discarded
in the preprocessing stage, due to spatial pooling. This does not always happen in the
general case, so the pooled population response is biased by the residual vertical dispar-
ity, which in turn leads to a bias in the vergence angle, at convergence. This situation
motivated us to investigate a more complex paradigm for vergence control, one which
should be able to recognize particular patterns in the population responses in the general
case, and produce a proper vergence control signal. The idea behind the use of the con-
volutional network, as a vergence controller, relies on the assumption that this powerful
network, after proper training, will be able to recognize disparity patterns directly from
the population responses, and convert them into the desired vergence angle.

There is also an interesting phenomenon that we discovered during testing: when
the stimulus is too far from the actual fixation point, leading to too large disparities for
the population to handle, both networks, in the majority of the cases, choose the proper
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direction of the vergence control. In this case, the fixation point will not land on the
surface of the stimulus-object after the first iteration, but after a few more iterations. This
effect can explain the larger error variation for the staircase stimulus (see Figure 27–28,
third plot in each panel) compared to the other stimuli: the VC-net is not able to
handle large distance steps in one-shot manner and extra iterations are needed. The first
iteration, in this case, systematically undershoots, causing a larger distance error, which
explains the ”spikes” in the error variance curves around the depth steps (in staircase
experiments).

We also should discuss some limitations of the proposed models. As our models
heavily depend on the quality of the population response, all the limitations of the local
distributed disparity methods (poor performance on homogenous textures, short range
of the disparity) apply to the proposed models as well. To reduce the effect resorted by
these limitations, we suggest to avoid large objects with homogenous textures, and to
replace the filters in the population by ones with a larger support, in order to tackle large
disparities.

Both proposed models use iterative training based on input images and, therefore,
there is a possibility that training will overfit the models on representing the textures
used during training. Unfortunately, completely eliminating this possibility, as well as
to prove the opposite statement (about the independence from textures), is not possible.
One way to avoid this problem, is to consider a large variety in textures in the training
set.

6 Vergence-Version Control with Attention Effects

(work in progress)

In order to integrate the efforts of WP1, WP2 and WP3 into one model working on
one simulation platform (SIMULINK), the partners from T.U.Chemnitz, University of
Genoa and K.U.Leuven have developed the Vergence/Version Control with Attention
effects (VVCA) model. The purpose of the VVCA model is to simulate vergence and
version control in the presence of an attention signal.

As it shown in Figure 29, the model consists of:

1. Environment simulator, that generate the image stereo pair.

2. Robotic head model, a kinematic model of the eye movement for a pan-tilt and a
tendon-driven binocular head.

3. Disparity representation, a model of area V1 for obtaining a distributed represen-
tation of retinal disparity.

4. Object-recognition system (ORS) that generates a saliency map (FEFmovement)
to drive the version on an object.

5. Eye movement system (EMS) that generates the control signals for the robotic head
in order to produce version (based on saliency) and vergence (based on disparity
information) eye movements.
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Figure 29: The block-diagram of the proposed VVCA model.

6.1 Image processing workflow

The image processing workflow is schematically shown in Figure 30. The renderer pro-
duces a stereo image, with resolution 384× 384 pixels, which corresponds to the angular
field of view of 40◦ × 40◦. Then, the image processing flow is split into two streams:

• Narrow view stream: the image is cropped to the only central (foveal) part of
the input image. This foveal part has a resolution of 192 × 192 pixels, which
approximately corresponds to a 20◦ × 20◦ of the original field of view. This stream
is involved in the slow (closed loop) stage of vergence.

• Broad view stream: the input image is downsampled/resized to the resolution of
192 × 192 pixels, which corresponds to a 40◦ × 40◦ field of view (the same as the
original image). This stream is used by the ORS, the version control system and
the fast (open loop) stage of the vergence control system.

Images processed in such a way are fed into the V1 block, which in turn produces
inputs for the EMS and ORS blocks. In this case, the V1 processing technically remains
the same for both streams, while the meaning of the results is a bit different. On the
one hand, in the broad stream, the angle of view is relatively wide, which is beneficial
for the planning and execution of the saccadic and/or large vergence movements. On
the other hand, in the narrow stream, the angular resolution is relatively high, which is
important for a fine tuning of the eye orientation during the slow (closed loop) vergence.
This double-scale strategy can be considered as the first step towards space-variant visual
processing.
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6.2 Environment

The Environment module consists of a 3D scene description module and a Renderer block
that, given the position, orientation and optical characteristics of the cameras, is able to
render the image seen by them.

3D scene description block. The 3D scene description block contains the informa-
tion about the peripersonal space observed by the robot (or its model). Depending on
the renderer, this information can be represented in different formats (i.e., MATLAB
structure, VRML data). The 3D scenes used are:

• real-world scenes in VRML format, generated from the acquisitions of a 3D laser
scanner (UG-Dibe);

• synthetic word scenes, generated by a simulator that considers a peripersonal space
populated by synthetic textured objects (cubes, pyramids,. . . ), that can be used
both for vergence eye movements and for the object-based saliency (K.U.Leuven);

• vergence test scenes, made up with a simple textured plane that moves along the
line of sight at different gaze direction, in order to verify the effectiveness of the
vergence control (UG-Dibe).

Renderer block. The main goal of the renderer is to produce stereo images for both
eyes according to the actual state of the head (position and orientation of the eyes). The
Environment module benefits from the possibility to change the renderer which at the
moment is a ray-tracing engine provided by K.U.Leuven, but in future can be replaced
by any other renderer, i.e., the stereo-generator being developed by UG-Dibe partner,
capable to handle more complex scenarios, such as the 3D laser scanner acquisitions. To
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this aim, the C++ virtual reality generator developed by UG-Dibe, has been modified in
order to facilitate the intraprocess communication between the C++ and the MATLAB
modules. The position of the eyes/cameras generated by the robotic head model can
be passed to the renderer block that generate the stereo images and the ground truth
disparity maps. Eventually, when the model is tested, the renderer can be replaced by
the real stereo camera setup.

6.3 Robotic head model (RHM)

The Robotic Head Model (RHM), developed by UG-Dist, takes as input rotational veloc-
ities for both eyes and provides the exact position and orientation of the both cameras
(eyes) to the renderer.

The robotic head is composed of a bio-inspired ocular model and a pan-tilt platform
commonly used in robot vision. The oculomotor plant is composed of:

• Head block;

• Eye block;

• Extra Ocular Muscles (EOMs) block.

The pan tilt system is composed of:

• Head block;

• Pan-tilt block;

• Joint velocities block.

For each block, a custom graphical interface (with the MATLAB GUI) has been
developed to configure the parameters of the block.

Head block. The Head block models the human head. Here, we assume that the head
is fixed with respect to the reference frame called world. The head is modeled like a rigid
body regardless the mass, the dimensions and the inertia of the body. The outputs of
this block are:

• The position of the head with respect to the world frame;

• The rotation matrix of the head with respect to the world frame;

• The left and right eye position and orientation with respect to the head frame.

With the graphical interface the user can configure a set of parameters:

• The initial orientation and position of the head with respect to the world frame;

• The initial position and orientation of the two cameras (eye or pan-tilt) with respect
to the head frame (fixation point, camera angles, vergence and version elevation
angles).
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Pan-tilt block. The pan-tilt block, models a pan-tilt system, which can be represented
as a kinematic chain with two degrees of freedom. This system is composed of a revolute
joint with one rotational degree of freedom about the x axis (tilt joint), a second revolute
joint with one rotational degree of freedom about the y axis (pan joint) and the end-
effector. For each joint and for the end-effector, a frame that identifies the position and
orientation of the joints and of the end-effector in the space is defined. In the case of
an ideal pan-tilt system the joints and the end-effector are coincident and there is no
translational movement of the end-effector, for a given rotation, with respect to the tilt
joint. Conversely, in the case of a real pan-tilt system, the end-effector has a translational
movement with respect to the tilt joint. This block takes as inputs velocities for the two
joints, the rotation matrix of the head with respect to the world reference frame, and the
position vector of the head with respect to the world reference frame. The outputs of
this block are the position and orientation matrix of the end-effector with respect to the
world reference frame and the Jacobian matrix of the pan tilt system. The parameters
of this block are the initial positions of the pan joint and of the end effector.

Joint velocities block. This block is used to compute the SVD (Singular Value De-
composition) of the pan-tilt kinematic chain. Thus, from the Jacobian matrix and from
the desired angular velocities of the end-effector the joint velocities are computed for an
ideal pan-tilt system.

Oculomotor plant The oculomotor plant is composed of the head, the two eyeballs
and the extra ocular muscles that drive each eye in a particular position. The Head block
is the same as the one used in the pan-tilt system. The Eye block models the human eye
and takes as inputs the four recti muscle forces and the output is the orientation matrix of
the eye with respect to the head reference frame. With the graphical interface it is possible
to configure the mechanical (inertia, mass, elasticity and viscosity) and the geometrical
(muscle’s insertion point, soft pulley’s positions) parameters of the eye. The EOMs block
models the four recti-muscles. Each muscle is modeled as a parallel combination of an
active state tension generator, an elastic element and a viscosity element connected to
a series elastic element. This block takes in inputs the neurological control signals and
the outputs are the four muscle forces. Through the graphical interface the user can
configure the mechanical parameters of the four recti muscles.

6.4 Disparity representation (V1)

Primary Visual Area (V1). In the V1 block the disparity is represented by the
response of a population of binocular energy complex cells, and is used both for the object-
based saliency and for vergence eye movements. The population of disparity detectors
is created by Gabor filters characterized by a spatial frequency that defines the range
of detectable disparity, the orientation of the filter, which defines the orientation of the
disparity, and the phase shift between the left and right filters, which defines the specific
disparity tuning of each cell along its orientation. These parameters can be changed to
adapt the population to the purpose to be achieved.
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6.5 Object Recognition System (ORS)

The main function of the ORS (in the context of VVCA) is to process stereo images
produced by the renderer (or by the cameras) and compute the position of the object
of interest (in the form of saliency maps), which then can be used for saccade planning.
The detailed description of the ORS can be found in Deliverable 3.2.

6.6 Eye Movement System (EMS)

The Eye Movement System (EMS) part consists of two subsystems that produce the
kinematic (i.e., in terms of rotation velocity) control for version and for the vergence eye
movements.

The work of the EMS can be split into several stages:

1. Scene (re)analysis.

2. Version control.

3. Vergence control.

(a) Fast (open loop) vergence.

(b) Slow (closed loop) vergence.

6.6.1 Scene analysis stage

In this stage, the EMS waits for the input from the ORS in terms of the FEFmovement
map. As soon as the FEFmovement map indicates a target position, the EMS estimates
the vertical (δv) and the horizontal (δh) angular dislocations of the object of interest
(represented in the FEFmovement map as a blob) from the center of the binocular view.
If |δv| > Θv or |δh| > Θh (where Θv and Θh are preestimated thresholds), then the actual
gaze direction is too far from the object of interest, therefore, a decision about a saccade
is made and the EMS proceeds to the version stage. Otherwise, the object of interest is
positioned approximately in the center of the (binocular) view, and therefore only the
vergence is needed to refine the fixation, the EMS proceeds to the vergence stages starting
from the fast vergence stage.

6.6.2 Version control stage

In this stage, the version control subsystem plans and executes (in an open loop manner)
a saccade towards the object of interest.

In the VVCA version control subsystem, we assume that the rotation speed dynamics
during the saccade is encoded by a special neural mechanisms saccade related burst neu-
rons (SRBNs), which are triggered by the initial vertical (δv) and horizontal (δh) angular
dislocations of the object of interest, estimated in the previous stage (see Section 6.6.1).
Depending on the amplitudes and signs of δv and δh, the SRBNs generate rotational
speed profiles, which, in turn, are further executed by the oculomotor system. In the
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VVCA, we consider a pan-tilt setup, and thus at least three SRBNs are needed for the
saccade planning:

• Left eye pan SRBN;

• Right eye pan SRBN and

• Common tilt SRBN.

All of these SRBNs produce speed profiles of approximately equal duration and, there-
fore, must have some interactions during the saccade planning phase. These interactions
are implemented in the so-called stretching mechanism, which introduces an appropriate
rescaling (in the amplitude as well as in the time domain) of the speed profiles in order
to ensure that the saccade will land as close as possible on the planned location and with
a trajectory that will not be too curved.

The saccade is considered to be finished when the rotational speed of each eye drops
below a threshold Θω ≈ 1 ◦ s−1. After the saccade is finished, the EMS proceeds to the
first stage to re-analyze the scene and to decide whether a second (corrective) saccade is
needed.

6.6.3 Vergence control stage

This stage is reached when the object of interest is located approximately in the center
of the binocular view, but the fixation point could still be too far from the surface of
the object. In this case, the disparity detector population response (broad stream) is
analyzed to make a decision which type of vergence is needed: fast or slow? The fast
vergence is selected if the pooled energy of the (broad stream) of V1 output is above the
energy threshold (ΘE), otherwise EMS proceeds with the slow vergence stage.

Fast vergence. It is commonly believed that the vergence system switches to the fast
mode when it is stimulated by a relatively fast moving stimulus or by a stimulus with a
large target disparity. Like in the case of saccades, during the fast vergence phase, the eye
rotation speed is still too high to involve the visual feedback into the vergence control.
That is why we use a similar (to version) approach to model the vergence related rotation
speed, by also employing vergence related burst neuron (VRBN). VRBN is triggered by
the initial vergence error estimated by the VC-network, which works on top of the V1
broad view stream response.

Depending on the amplitude and sign of the input, the VRBN generates a vergence
speed (ωα) signal which, in turn, is translated into the left and right eye rotation speed
signals (ωLE/h, ωRE/h), and which executed further by the oculomotor system. Two
possible mechanisms of translating ωα into (ωLE/h, ωRE/h) are discussed in Section 6.6.4.
A few examples of the vergence velocity profiles generated by the proposed VRBN are
shown in Figure 31.

After the fast vergence stage is finished (if it applies), the execution control resorts
to the slow vergence stage.
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Figure 31: Examples of VVCA fast vergence velocity profiles generated by VRBN. Each
profile is generated as a response on the input vergence error (depicted near the velocity
peaks and measured in degrees). The vergence velocity peaks are indicated by green
bullets on each curve. Convergence profiles are shown in blue, divergence are shown in
red. For the sake of clarity, the velocity evolution is shown for a time span from 0 to 1 s,
but for the large input vergence errors, the generated velocity profile could be up to 3 s
long.
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Slow vergence. Relying on the fact that the slow vergence velocity highly correlates
with the vergence error [52], we model the slow vergence response as a linearly scaled
vergence error: ωα = k(δ − α), where the scaling coefficient k is estimated based on the
experimental data from [52].

For the vergence error estimation, we use a vergence control network similar to the one
of the fast vergence stage. The difference between these two VC-nets is that the fast VC-
net operates on the broad view stream, and the slow VC-net uses the narrow view stream
(see Section 6.1 for details). This strategy allows the VVCA vergence subsystem to tackle
large disparities for the fast vergence and to be more precise in the slow vergence stage.
Due to the well established (and fixed) interfaces with the other modules (V1, RHM),
the slow VC-net can easily be represented by any of the full feedback vergence networks
discussed in Section 4 and Section 5.

6.6.4 Parameterization of the binocular gaze direction

The definitions of gaze direction and vergence angle depend on the parameterization of
binocular eye movements, thus the vergence control signal depends on the choice of the
parameterization, too. If we define the cyclopean coordinate center O in the middle
point of the baseline, the gaze direction g, (‖g‖ = 1) is described by the two angles of
azimuth γ and elevation λ, and the left and right visual directions can be parameterized
by the gaze direction and the distance of the fixation point (see Equation 33), or by the
vergence angle α. Since a pure vergence movement is defined to keep the gaze direction
fixed (γ = const and λ = const), the left pLE/h and right pRE/h pan rotation angles, for
a pure vergence movement, are:

pLE/h = arctan

(
sinα + k sin γ

k cos γ

)
,

pRE/h = pLE/h − α, where

k = cosα cos γ +
√

1− (cosα sin γ)2

(34)

The vergence velocity control can be derived from (34) by a differentiation with respect
to time:

ωLE/h =
d

dt
pLE/h,

ωRE/h =
d

dt
pRE/h.

(35)

We can observe that the vergence control given in Equation 34 and Equation 35 become
symmetric (ωLE/h = −ωRE/h = α/2) if the gaze direction is orthogonal to the baseline
and, thus, γ = 0 (e.g., in the simplified scenario described in Section 5.5).

On the other hand, if we define the binocular azimuth angle as the average gaze
azimuth γ = 1

2
(pLE/h + pRE/h) [45], we can accordingly define the locus of points at the

same vergence angle (α = pLE/h − pRE/h) as the Vieth-Müller circle passing through the
optical centers L and R and the fixation point A as in Figure 1. In this case, the cyclopean
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coordinate center O lies at the back of the Vieth-Müller circle. This parameterization
have the advantage of allowing a linear mapping of the horizontal retinal disparity into
the vergence control, which can be applied symmetrically, for any azimuth angle γ.

Considering the cyclopean coordinate center at the back of the Vieth-Müller circle,
means that the origin of the gaze direction vector changes with α, so that the fixation
point A is not exactly the same point in space, but the difference between the two control
strategies for the different parameterizations decreases rapidly with the vergence angle.

We decided to adopt the parameterization in terms of version and vergence angles,
because these variables are convenient to define conjunctive eye movements from pure
gaze shifts at a fixed vergence, and disjunctive eye movements for pure vergence at a
fixed version, without requiring information about the actual azimuth angle, γ.

6.6.5 Disparity-vergence analysis

The characteristics of the proposed vergence control subsystem can be presented in the
form of a so-called main sequence. We use the most common main sequence peak vergence
velocity versus the initial vergence error for the disparity-vergence analysis of the vergence
subsystem in VVCA. The initial vergence error (or target disparity in some sources)
is defined as the difference between the desired vergence angle and the actual one, or
(δ − α) using the notation of Figure 1, thus, the positive vergence error corresponds
to the convergence and the negative one corresponds to divergence. The framework
proposed in Section 5.1 was ported to the SIMULINK environment, and adapted to the
VVCA model, for the observation and/or control of the necessary parameters during the
experiments. The simplified scenario (the gaze is directed straight ahead, the 3D scene
consists of a fronto-parallel plane) was chosen for the considered analysis. In this case
there are only two parameters to control: the distance to the stimulus and the distance
to the fixation point. Randomly selecting these two parameters from the range between
300 mm and 1000 mm we obtain the initial vergence error and the corresponding peak
velocity. If the initial vergence error is low enough for the fast vergence stage to be
skipped (EMS starts directly from the slow stage), the initial vergence velocity is treated
as the peak vergence velocity. The results of the disparity-vergence analysis are presented
in Figure 32.

7 Conclusions

Binocular energy units are now consolidated models of complex cells in area V1 as demon-
strated by numerous recent works that propose architectural variants to enrich their func-
tionality, or that adopt them to describe complex perceptual behaviors. Similarly, in the
biologically inspired computer vision literature there exist several examples of neuromor-
phic (i.e., distributed) approaches that are successfully used for challenging conventional
solutions to computer vision problems, by introducing sophisticated interpretations of
biologically plausible operations.

Most of the conventional vergence control models [52–60] are based on the mini-
mization of the horizontal disparity. Although the performances of these models were
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Figure 32: VVCA vergence subsystem main sequence: (peak) velocity of eye vergence
versus initial vergence error in response to step vergence stimuli. Closed circles are from
fast vergence phase and open circles are from slow vergence phase. Similarly to Figure 31,
blue color corresponds to convergence and red color to divergence.
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promising, they have never been largely employed in real-world applications. With the
specific design approach followed to implement the distributed architecture, we demon-
strated that we can take full advantage of the flexibility and adaptability of distributed
computing to specialize disparity detectors for vergence control and depth vision.

Following an approach similar to [61], we propose to avoid the explicit computation of
the disparity map, and to extract the desired vergence angle directly from the population
response, over the “foveal” region, of a cortical-like network organized as hierarchy of
arrays of binocular complex cells [62]. A neural network paradigm has been chosen for
this type of conversion/extraction procedure. Although the paradigm only resorts to
a population of neurons in a single scale, we demonstrate that, using a neural network
paradigm, accurate and fast vergence control can be achieved in a closed loop, for different
orientations of the gaze.

Comparison of the performances of the linear and the convolutional VC networks
leads us to a conclusion that, in the simplified case, both networks demonstrate very
similar performances. Yet, the convolutional VC-net performs better than the linear one
in a more general scenario where any assumption on the scene structure and restrictions
on the gaze direction are dropped. The improved performances of the convolutional
network comes at the price of a higher number of iterations, which, unfortunately, make
convolutional networks much more computationally expensive than the linear-based one.

As an extension of the discussed in Section 4 and Section 5 vergence models, we pro-
pose the Vergence-Version Control with Attention effects (VVCA) model. Even though
it is still being developed, it already contains some improvements with respect to the
discussed earlier vergence control paradigms:

• VVCA provides kinematic eye movement control (i.e., control in terms of rotation
velocities);

• VVCA incorporates version control based on an object-related attention signal;

• VVCA is able to reproduce realistic eye movement trajectories.
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Figure 33: The resulting 11 × 11 quadrature pair of Gabor filters for ω0 = π/2 and 8
orientations.

A Appendix - Filter design specification

Gabor filters - A Gabor oriented filter along an angle θ with respect to the horizontal
axis is defined by:

f θGabor(x, y) = e−
x2+y2

2σ2 ejω0(x cos θ+y sin θ)

where ω0 is the peak frequency of the filter and σ determines its spatial extension. The
spatial window has been chosen as four times σ. At the highest scale (i.e., 11×11 pixels)
ω0 = π/2 and σ = 2.67. Following [21], we implemented the oriented filters as sums of
separable filters. By exploiting symmetry considerations, all eight even and odd filters
(see Figure 33) can be constructed on the basis of twenty-four 1D convolutions. The
1D filters are modified by enforcing zero DC sensitivity on the resulting 2D filters in
which they take part, and by minimizing the difference with the theoretical 2D Gabor
filters. Specific care have been paid to adjust the coefficients of each filter function so
that the even and odd symmetry is respected. To this purpose, a constrained non-linear
multivariable minimization is adopted.

All the filters have been normalized prior to their use in order to have constant energy.
The corresponding rosette-like frequency representation of the filters used is shown in
Figure 34, for three different scales (octaves).

Figure 34: The rosette-like diagram of the multichannel frequency representation ob-
tained by the Gabor filters for three different scales. Contours correspond to half-width
cut-off frequencies, and each corona is separated by an octave scale.
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