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Abstract: 
 
An algorithm is presented for disparity estimation that does not require precise calibration 
information (related to the relative orientation of the cameras). This algorithm forms the basis for 
precise 3D depth estimation and for vergence control methods that are robust to imprecise motor 
feedback. Correspondence estimation and auto-calibration are performed simultaneously by this 
algorithm. The techniques involved can either operate directly on the camera (or retinal) input 
images, or be applied after a space-variant transformation (cortical mapping) of the input images. 
In both the retinal and cortical domain, greatly improved disparity estimates are obtained as 
compared to standard disparity or vector disparity (cf. optical flow) estimation algorithms. The 
algorithms are made available to the consortium in the form of a Matlab software package. 
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1 Executive Summary

This deliverable describes the methods and algorithms developed by K.U.Leuven
and University of Genoa regarding Task 2.2 (Interactive Depth Perception) of
Work Package 2 (Active Stereopsis). The resulting algorithms are made avail-
able as a Matlab software package that is described in Section 7 of this document.

Task 2.2 is concerned with the extraction of depth (3D structure) by integrating
disparity information across different eye movements. Transforming disparity
from eye- to head-centric coordinates, but also estimating disparity (and control-
ling vergence) relies on accurate calibration information (in terms of the relative
orientation of the eyes). In the active systems considered in Eyeshots, the mo-
tor feedback can not provide this information (due to the limited precision) and
therefore vision is used to improve upon this. The procedures developed for this
constitute the main part of this deliverable.

Two algorithms are presented. The first algorithm operates directly on images
received from the cameras (the retinal domain). It exploits initial calibration
estimates to improve disparity estimation using a variety of warping mechanisms
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operating in the spatial and orientation domain. These improved disparity
estimates are then in turn used to improve the calibration information. The
second algorithm uses the same concepts but operates in the cortical domain, on
images transformed using a space-variant log-polar mapping. The performance
of these algorithms is evaluated in different configurations (retinal, cortical, close
to vergence and far-away from vergence) and compared to standard algorithms.

The methods proposed here can operate together with the vergence mechanisms
presented in Task 2.1 in various ways. Improved calibration estimates can feed
directly in the convolutional network for vergence control presented in Deliv-
erable 2.1, but can also modulate the weights of the mechanism (also reported
there) that integrates the population responses into the vergence control.

The methods can also be configured to operate in the periphery only, which is
useful for steering vergence to locations memorized in terms of motor informa-
tion (WP1). In this situation, there is no need for small foveal disparities.

The corrected gaze information is returned in the form of a corrected fundamen-
tal matrix. This is used for the coordinate transforms in Task 2.2, but also for
the fine motor control in WP 1 that is required for the interactive exploration
of the fragment. This kind of feedback from the visual system is important for
the actual control of the robot eyes in Task 1.4, the requirements of which have
been discussed in Deliverable 1.1.

2 Introduction

In this report, we present methods that simultaneously solve the disparity es-
timation and auto-calibration problems. Unless images are rectified, both hor-
izontal and vertical disparities are present (vector disparity). We rely on the
measured vertical disparities (or more generally, deviations orthogonal to the
hypothesized epipolar lines) to update the estimated geometry. This procedure
can be closely integrated with the disparity estimation itself. Vertical disparity
has been used for this purpose before, either directly [6] or indirectly [13]. It
has not been considered together with correspondence estimation and using the
more general error signal relied upon here.

The matching procedure used in most dense stereo methods cannot be efficiently
adapted to changing camera geometry information. For this reason, nearly
all proposed systems separate the calibration and dense disparity estimation
stages. The calibration step is typically performed off-line, using feature-based
techniques. The image pairs are then rectified, and a dense matching proce-
dure is run for refinement [12]. Estimating the epipolar geometry from noisy
correspondences, possibly including many outliers, is problematic. To improve
calibration accuracy, either a special calibration object is used, or the informa-
tion of multiple image pairs is combined [20]. Epipolar geometry estimation is
also often stabilized by exploiting physical restrictions on the camera configu-
ration. Björkman and Eklundh [3] for example present a system for externally
calibrating a stereo pair by assuming fixation and no rotations around the line
of sight. Papadimitriou and Dennis [10] propose a self-rectification method that
focuses only on the removal of vertical disparities. It assumes a convergent
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camera system where only rotations around an axis parallel to the vertical axis
(pan) need to be compensated for. This reduces the problem and stabilizes the
camera geometry estimation. A real-time embedded system combining dispar-
ity estimation and self-rectification is presented in Gao et al. [8]. The system
corrects for vertical shifts only, but, as in the method we propose, both system
components are tightly coupled since the rectification is refined based on the
quality of the disparity measurements.

We first present the basic retinal domain algorithm in Section 3. All the ingre-
dients required in the cortical domain algorithm are introduced there: disparity
estimation, phase warping, epipolar geometry estimation, and finally combin-
ing disparity and calibration estimation. We also present results comparing the
performance to a standard algorithm. The algorithm is then adapted for oper-
ation in the cortical domain (Section 4) and results are presented comparing to
a standard vector disparity estimation procedure.

3 Auto-calibration in the Retinal Domain

The method uses phase differences for the estimation of stereo correspondence
in the absence of precise calibration information. To estimate possibly large 2D
correspondences, it uses the responses from a multiscale and multi-orientation
Gabor filterbank. Although this requires a computationally intense (but data-
parallel) filtering step, the matching itself is effortless (cf. gradient-based meth-
ods in optical flow). To avoid having to re-filter the images while gradually
improving the calibration, we propose to not actually rectify the images, but
rather to adjust the read-out of the filter responses. For this purpose, we in-
troduce a method to compensate for large orientation differences between left
and right image features. Since we use noisy correspondences to update the
epipolar geometry, we also present a simple alternation technique that increases
the robustness.

3.1 Phase-based Disparity Estimation

The proposed method extends a coarse-to-fine multi-orientation phase-difference
stereo disparity algorithm [15]. A closely-related optical flow algorithm has been
shown to be suitable for real-time implementation on graphics hardware (GPUs)
[11].

The stereo algorithm extracts phase using a bank of oriented Gabor filters. The
different orientations, θq, are evenly distributed and equal to qπ

K . We use a total
of K=8 orientations in our implementation and let q range from 0 to K−1.
For a specific orientation θq the spatial phase at pixel location x = (x, y)T is
extracted using 2D complex Gabor filters:

fq(x) = e−
x2+y2

2σ2 ejω0(x cos θq+y sin θq) , (1)

with peak frequency ω0 and spatial extension σ. The filterbank has been de-
signed with efficiency in mind and relies on 11×11 separable spatial filter kernels
that are applied to an image pyramid. For a more detailed description, see [14].
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The filter responses, obtained by convolving the image, I(x), with the oriented
filter from Eq. (1) can be written as:

Qq(x) = (I ∗ fq)(x) = ρq(x)ej φq(x) = Cq(x) + j Sq(x) . (2)

Here ρq(x) =
√
Cq(x)2 + Sq(x)2 and φq(x) = atan2

(
Sq(x), Cq(x)

)
are the am-

plitude and phase components, and Cq(x) and Sq(x) are the responses of the
quadrature filter pair. The ∗ operator depicts convolution. This basic algorithm
assumes rectified images. A stereo disparity estimate can thus be obtained from
each oriented filter response (at orientation θq) by projecting the phase differ-
ence on the epipolar line (the horizontal) in the following manner:

δq(x) =

[
φLq (x)− φRq (x)

]
2π

ω0 cos θq
=

[∆φq(x)]2π
ω0 cos θq

, (3)

where the [ ]2π operator depicts reduction to the ]− π;π] interval. In this way,
multiple disparity estimates are obtained at each location. These estimates can
be robustly combined using the median:

δ(x) = median
q

δq(x) . (4)

A coarse-to-fine control scheme is used to integrate the estimates over the differ-
ent pyramid levels [2]. A disparity map δk(x) is first computed at the coarsest
level k. To be compatible with the next level, it must be upsampled, using an
expansion operator X , and multiplied by two:

dk(x) = 2 · X
(
δk(x)

)
. (5)

This map is then used to reduce the disparity at level k+1, by warping the right
filter responses before computing the phase difference:

δk+1
q (x) =

[
φLq (x)− φRq (x′)

]
2π

ω0 cos θq
+ dk(x) , (6)

where x′ = (x+dk(x), y)T. In this way, the remaining disparity is guaranteed
to lie within the filter range. This procedure is repeated until the finest level is
reached.

3.2 Interpolating Phase Across Orientation

Phase-based methods have been shown to be robust to changes in contrast,
scale and orientation [7]. The robustness to orientation is very important in
the context of disparity estimation since textures or features on slanted surfaces
have a different orientation in the left and right images (orientation disparity).
This robustness is not sufficient for the method we propose here, since we need
to handle orientation differences that result from an arbitrary epipolar geometry
(e.g. due to rotations around the line of sight).

We propose to compensate for these orientation differences by changing the
read-out of the filter responses. Instead of computing phase differences from
identically-oriented filters in the left and right images (such as in Eq. (3)) we
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propose to shift the right filter responses across orientation. Since the filterbank
only covers a fixed set of orientations, we also introduce a simple mechanism
that allows for continuous shifts. For an arbitrary orientation disparity, we
linearly interpolate the filter responses using the responses at the nearest filter
orientations. Care must be taken here to correctly handle the sign of the sine-
filter.

To get the response at an arbitrary angle θ∗, we first determine the correspond-
ing and nearest neighbor filter indices. This implies discretizing the angle to a
multiple of π/K and reducing it to the range of the filterbank [0, π−π/K]:

q∗ =
(

θ∗

π/K

)
mod K , (7)

q− =
⌊
θ∗

π/K

⌋
mod K , (8)

q+ =
(⌊

θ∗

π/K

⌋
+ 1
)

mod K . (9)

A standard linear interpolation is then used to determine the responses. Note
that the filterbank only covers half the unit circle. The cosine-filters are sym-
metrical, which means that responses at orientations θ and θ+π are identical.
We can thus simply ignore the wrap-around when combining the responses:

Cq∗ = (1− qf )Cq− + qf Cq+ , (10)

where qf = q∗ − q−. The sine-filters however are not symmetrical. When
responses are requested at an angle θ outside the filterbank’s range, the sign of
the response at θ−π needs to be changed. Additionally, in case of wrap-around,
q+ is the index of the filter at angle 0 and the sign of its response has to be
changed as well:

Sq∗ = sign(π − θ∗)
{

(1− qf )Sq− + qf Sq+ (q+ 6= 0)
(1− qf )Sq− − qf Sq+ (q+ = 0) . (11)

The complex response then equals: Qq∗ = Cq∗ + j Sq∗ = ρq∗e
j φq∗ .

We next present a simple experiment to show the improvements that result
from this interpolation. We compute phase differences, ∆φ, at corresponding
locations of the venus image (see [16] and Fig. 3) and 2D rotated versions thereof.
Since we use corresponding locations, the ∆φ’s are expected to be equal to zero.
The standard deviation of the ∆φ’s for all locations and filter orientations are
shown in Fig. 1 for different image rotations. For a uniform distribution between
−π and π (ignoring periodicity) this standard deviation equals

√
(2π)2/12 ≈

1.8. Without correction (dotted line), the standard deviation reaches this level
at about 45◦. It is clear that simply selecting the nearest filter response (dashed
line) improves the results, but not as much as the proposed linear interpolation
mechanism (solid line). Note in particular how small the differences are between
the peaks and dips for the interpolation method. At the dips the image rotation
is a multiple of a filterbank orientation and no interpolation is required. This can
be considered as a baseline performance. The different baseline performances
at different angles are due to the different precision that can be obtained with
different filters (e.g. diagonal filters are less accurate than horizontal or vertical).
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Figure 1: Standard deviation of the phase differences between the left venus
image and 2D rotated versions thereof, considering all filter orientations and
corresponding locations. The standard case (dotted) considers the same filter
orientation whereas nearest neighbor (dashed) and linear (solid) use the known
image rotation to select the corresponding filter orientation.

3.3 Epipolar Geometry Estimation

The estimation of the epipolar geometry is well-understood, and a large number
of methods have been proposed [9]. Our goal is not to improve upon these
methods, but rather to present a method to refine a rough geometry estimate
on the basis of very noisy correspondences with a significant amount of outliers.
This initial estimate can be a sensible guess (e.g. assuming a rectified situation),
or can be derived from an inaccurate motor signal. The refinement should also
not be restricted to particular camera configurations (e.g. assuming fixation, or
only allowing for vergence). We only require that the intrinsic calibration of the
cameras is known.

Conceptually, the method corrects an erroneous epipolar geometry estimate by
applying 3D rotations to the hypothesized left and right camera orientations.
This is achieved in practice by warping the images or, more precisely, the fil-
ter responses (this avoids the need for re-filtering). The required 3D rotations
are derived from vector disparity deviations orthogonal to the currently hy-
pothesized epipolar lines. Vector disparity is similar to optical flow and can be
estimated from the phase differences at multiple orientations by allowing each
phase difference to constrain the projection of the vector disparity on the filter’s
orientation:

δ∗(x) = argmin
δ(x)

∑
q

(
[∆φq(x)]2π

ω0
− [cos θq, sin θq] δ(x)

)2

, (12)

Using these vector disparities, left and right correspondences x and x′ can be
hypothesized. The error vectors orthogonal to the right image epipolar line
connect the right image correspondence to the epipolar line and are equal to:

∆e(x) =

(
x′TFx

(Fx)2
1 + (Fx)2

2

)
[(Fx)1, (Fx)2]T , (13)

where x and x′ are now expressed in normalized homogeneous coordinates, and
F is the fundamental (or in this case the essential) matrix. These errors can
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be reduced by updating the epipolar geometry estimate. We do this by least-
squares fitting either a left (∆ω) or right (∆ω′) 3D camera rotation to these
errors using an approximate linear rotation model [1] (angle-axis representa-
tion):

∆ω′ = argmin
∆ω′

∑
x

[
|∆e(x)| −

(
B(x′)∆ω′

)T ∆e(x)
|∆e(x)|

]2

, (14)

∆ω = argmin
∆ω

∑
x

[
|∆e(x)|+

(
B(x)∆ω

)T ∆e(x)
|∆e(x)|

]2

, (15)

where

B(x) =
[

xy −1− x2 y
1 + y2 −xy −x

]
. (16)

Note that only the component of the rotation orthogonal to the epipolar lines
is constrained. The effects of these two 3D rotations can be very similar and
therefore estimating them simultaneously is very unstable. In that case only the
differential effects are considered and this typically results in very large updates
to the individual camera matrices. To overcome this we alternate between
Eqs. (14) and (15). In this way, the updates are constrained by the actually
measured error vectors ∆e. For consistency, we also only consider the errors in
the right image in both cases. On the basis of the estimated 3D rotations, the
left and right translation and rotation matrices are then updated as follows:

T(i+1) = ∆RTT(i) , (17)

R(i+1) = ∆RTR(i) , (18)

T′(i+1) = ∆R′TT′(i) , (19)

R′(i+1) = ∆R′TR′(i) . (20)

where ∆R = e[∆ω]× and ∆R′ = e[∆ω′]× . These can then be combined to con-
struct the updated fundamental matrix.

The algorithm proposed here is not guaranteed to converge to the global min-
imum. However, establishing dense correspondences is more important here
than having accurate epipolar geometry estimates. To disambiguate the latter,
it may be more sensible to exploit temporal information (dense correspondences
from multiple image pairs).

3.4 Combined Stereo and Auto-calibration

In the previous sections we have discussed how large 2D orientation differences
between left and right image features can be compensated for and how an initial
epipolar geometry estimate can be refined using vector disparity estimates. We
next explain how these two steps can be combined and assist each other.

In the following we still consider a one dimensional disparity along the epipolar
line and refer to this measure as the epipolar disparity δ(x). It is the shift along
the epipolar line necessary to establish the correspondence after compensating
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Figure 2: The epipolar disparity for pixel x is the shift along the (dashed)
epipolar line required to reach the corresponding pixel x′, after compensating
for the vertical shift ∆t(x) towards the epipolar line. Its magnitude equals that
of the vector ∆a(x), but its sign is determined by Eq. (22)

for the vertical shift, ∆t(x), towards the epipolar line. The correspondence is
thus established as follows (see Fig. 2):

x′ = x + ∆t(x) + ∆a(x) , (21)

where

∆a(x) =
δ(x)√

(Fx)2
1 + (Fx)2

2

[
− (Fx)2, (Fx)1

]T
, (22)

∆t(x) =
[
0,
−x (Fx)1 − (Fx)3

(Fx)2
− y
]T

. (23)

We also compensate for the orientation disparity by shifting and interpolating
the right image filter responses by the angular difference between the left and
right epipolar lines:

θR = θL + atan2
(
(FTx′)2, (FTx′)1

)
− atan2

(
(Fx)2, (Fx)1

)
, (24)

with θL and θR the left and right filter orientations. Algorithm 1 summarizes
the proposed method.

The epipolar disparity is initialized to zero and the epipolar geometry to a sen-
sible guess (e.g. rectified) or based on a motor feedback signal. The algorithm1

then proceeds from coarse scales to fine scales. The previous scale estimate
is first doubled and upsampled. An inner loop is then started to update the
epipolar geometry on the basis of vector disparity estimates. All position and
orientation shifts that result from the disparity and geometry estimates are
compensated for by warping the right filter responses. The remaining errors are
used to estimate the left and right camera 3D rotations in an alternating fash-
ion. After a few iterations of this inner loop (±5), the one-dimensional epipolar
disparity is updated and the next finer scale is processed.

1It is worth noting that the combined stereo and auto-calibration could be also achieved
without an explicit decision on the direction along which to compute the disparity (epipo-
lar disparity), but exploiting the information embedded in a reliable estimate of the vector
disparity.

9



Algorithm 1 Combined Stereo and Auto-calibration
1: initialize epipolar disparity δ0(x) = 0
2: initialize T, R, T′, R′

3: for k = 1 to n scales do
4: initialize epipolar disparity δk(x) = 2δk−1(x)
5: compensate (warp) for epipolar and orientation disparity (Eqs. (21)–(24))
6: for i = 1 to n its do
7: update vector disparity (Eq. (12))
8: estimate incremental 3D rotation, alternating between the right

(Eq. (14))
and left camera (Eq. (15))

9: update T, R, T′, R′ and F (Eqs. (17)–(20))
10: compensate (warp) for epipolar and orientation disparity (Eqs. (21)–

(24))
11: end for
12: update epipolar disparity (Eq. (4))
13: end for
14: return epipolar disparity and epipolar geometry

3.5 Results

In this section we evaluate the proposed method on a synthetic image pairs
in terms of the quality of the epipolar disparity estimates. We compare the
proposed method to the standard algorithm presented in Section 3.1.

In this example we have constructed an unrectified synthetic image pair by
warping the left and right images of the venus stereo pair according to arbitrary
3D rotations of the left and right cameras. An anaglyph of the two images is
shown in Fig. 3(A). The left image is in the red channel, and the right image in
the green and blue channels. It can be seen that the images differ in terms of
horizontal and vertical shifts, rotations and stereo disparity. The ground truth
epipolar disparity is shown in Fig. 3(B).

Both the standard and proposed stereo algorithm were applied to this image
pair using five scales. The results obtained with the standard algorithm are
shown in Fig. 3(C). A simple left/right consistency check has been performed
here to remove unreliable estimates. If the difference is more than one pixel,
the estimate is considered unreliable and removed. The same procedure can
be applied to the proposed algorithm. In the right-to-left stage, the estimated
geometry can be re-used. The results obtained with the proposed method are
shown in Fig. 3(D). The method was initialized assuming a rectified situation.
Within each scale, the epipolar geometry estimation typically converges after
five updates. Therefore five internal iterations were performed here. Clearly,
a much larger number of consistent estimates are found than in (C), and the
estimates closely resemble the ground-truth epipolar disparity.
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Figure 3: Ground truth epipolar disparity (B) and consistent estimates obtained
with the standard (see Eq. 4) (C) and proposed (D) method on a synthetically
generated image pair (A).
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4 Auto-calibration in the Cortical Domain

We now present an extension of the algorithm that also includes a space-variant
mapping from the retinal to the cortical domain using the log-polar transforma-
tion [17]. The filtering and correspondence estimation steps are now performed
in the cortical rather than in the retinal domain [18]. However, the errors with
respect to the (hypothesized) epipolar geometry, the geometry updates, and the
corrections (from the estimated correspondences to the hypothesized epipolar
lines) are still computed/performed in the retinal domain.

4.1 Central Blind-spot Model

Many mappings from retinal to cortical domain have been proposed, mainly
differing in the way they deal with the singularity in the center. We use the
Central blind-spot (CBS) model [4]. Design rules for this model can be found
in [19].

According to the CBS-model, the forward mapping from cortical to retinal co-
ordinates is defined as:

(ρ, θ) , (
√
x2 + y2, arctan−y

x
) (25)

(ξ, η) , (loga

(
ρ

ρ0

)
, θ) , (26)

with ρ0 the size of the blind spot. This results in the following inverse mapping:

x = aξρo cos η (27)
y = −aξρo sin η . (28)

The integer-valued coordinates (for discrete images) are (u, v) = (bξc, bq · θc),
with q = S

2π for an image consisting of R rings, u ∈ [1, R], and S sectors,
v ∈ [1, S]. The logarithmic factor, a, is determined on the basis of the number
of rings, R, and the size of the blind spot: a = exp

(
log
(
ρmax
ρ0

)
/R
)

. The
number of sectors is chosen so that the receptive fields have an aspect ratio
approximately equal to one: S = round

(
2π
a−1

)
. The mapping is thus completely

determined on the basis of the size of the Cartesian image, the number of rings
R and the blind spot radius ρ0.

An example transformation is shown in Fig. 4. The original (retinal) image
is shown in Fig. 4(A), and the transformed (cortical) image in Fig. 4(B). The
pixel size is the same in both images to show the compression factor achieved.
Figure 4(C) contains the retinal image obtained by transforming the cortical
image (B) back to the retinal domain using interpolation. This makes it clear
how the precision is retained in the fovea (except of course in the blind spot),
and gradually reduces towards the periphery.
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A B C

Figure 4: Example illustrating the transformation of an image from retinal (A)
to cortical (B) coordinates using the central blind-spot model. The size of pixels
is the same in both images. Image (C) contains the cortical image mapped back
to the retinal domain.

4.2 Cortical Correspondence Estimation

As shown in [18], the same technique as presented in Section 3.1 can be applied
to estimate correspondences in the cortical domain with good precision. This
means applying the same filterbank directly to the cortical domain (which saves
considerable computational resources), and estimating correspondences by inte-
grating the oriented phase differences into a vector disparity estimate (Eq. 12).

The precision is improved by means of some minor modifications to deal with
the periodicity of the η-domain during the filtering and warping operations.

Due to the much smaller image size, we use a smaller number of scales in the
coarse-to-fine estimation (only three in the remainder).

4.3 Modified Algorithm

We now discuss the modifications required to apply Algorithm 1 to the cortical
domain. The modified algorithm is summarized in Algorithm 2.

This algorithm only differs from the retinal domain algorithm in that the fil-
tering and correspondence estimation are done in the cortical domain. The
updates to the epipolar geometry, and the corrections of the estimated vector
disparities to the current epipolar geometry estimates are still performed in the
retinal domain. This does require intermediate coordinate transformations. To
transform vectors between the two domains, the transformation equations from
Section 4.1 are simply applied to the vectors’ start- and endpoints.

One other difference between the two algorithms is that we do not (yet) com-
pensate for orientation differences in the cortical domain.
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Algorithm 2 Combined Stereo and Auto-calibration in the Cortical Domain
1: initialize cortical vector disparity to zero
2: initialize T, R, T′, R′

3: for k = 1 to n scales do
4: double the previous scale cortical vector disparity
5: compensate (warp) for cortical vector disparity
6: update cortical vector disparity
7: compute retinal orthogonal epipolar deviations
8: for i = 1 to n its do
9: estimate incremental 3D rotation, alternating between right and left

camera
10: update T, R, T′, R′ and F
11: end for
12: project retinal vector disparity on updated epipolar lines
13: transform to cortical vector disparity (using vector endpoints)
14: end for
15: return cortical vector disparity and epipolar geometry

5 Results

We again use the venus stereo pair to construct two different scenarios, and
examine the improvements in disparity and geometry estimation with the pro-
posed algorithm in the cortical domain. In both scenarios, we use three scales
and initialize the geometry to a rectified situation (horizontal epipolar lines).

The first scenario is concerned with a camera setup close to vergence (in the
image center), but disturbed by small inaccuracies in the hypothesized camera
geometry (rectified). The anaglyph for this situation is shown in Fig. 5(A).
Note that the disturbances result in epipolar lines that are clearly not hori-
zontal (see e.g. how the ‘V’ of Venus has shifted upwards). The disturbances
involve 3D rotations along all axes. The magnitude of the retinal ground truth
vector disparity is shown in Fig. 5(B), which confirms that the center is close to
vergence. The cortical image pair is shown in Fig. 5(C,D), with cortical ground
truth vector disparity in Fig. 5(E). The results obtained with and without the
proposed auto-calibration technique are shown in Fig. 5(F) and (G) respectively.
Figure 5(G) was obtained by computing vector disparity directly in the corti-
cal domain using a coarse-to-fine refinement procedure (similar to an optical
flow algorithm). Note how the auto-calibration greatly improves the results and
more closely resembles the ground-truth, particularly in the outer regions of the
fovea (the central columns in Fig. 5C–G). The improved estimates there can
then be used to further refine vergence. The mean and standard deviation of
the errors (vector differences w.r.t. ground-truth) for the two methods can be
found in Table 1 and confirm this improvement.

We also considered a very different scenario, far away from vergence and with
large errors in the hypothesized geometry (again rectified). The anaglyph for
this situation is shown in Fig. 6(A). It is clear from the magnitude of the retinal
ground truth vector disparity in Fig. 6(B) and the cortical images in Fig. 6(C,D)
that the fovea contains very different image parts and that the vector disparities
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Figure 5: Improvements of auto-calibration over vector disparity in a scenario
close to vergence with small errors in the geometry estimates. (A) Left and right
retinal image anaglyph showing non-horizontal epipolar lines. (B) Magnitude
of retinal ground truth vector disparity. (C) Left and (D) right cortical images.
(E) Magnitude of cortical ground truth vector disparity. Magnitude of cortical
vector disparity estimated with (F) and without (G) auto-calibration.
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Figure 6: Improvements of auto-calibration over vector disparity in a scenario
away from vergence with large errors in the geometry estimates. (A) Left and
right retinal image anaglyph showing non-horizontal epipolar lines. (B) Mag-
nitude of retinal ground truth vector disparity. (C) Left and (D) right cortical
images. (E) Magnitude of cortical ground truth vector disparity. Magnitude of
cortical vector disparity estimated with (F) and without (G) auto-calibration.

are much greater everywhere (and again clearly not horizontal as in a rectified
situation) than in the previous scenario. As before, the results obtained with
and without the proposed auto-calibration technique are shown in Fig. 6(F)
and (G) respectively. Again we see that the proposed method greatly improves
the results. This is also measured quantitatively in Table 1. We did use the
prior knowledge about the lack of vergence in this situation, and did not use
orthogonal disturbances in the fovea (step 7 in Algorithm 2) to update the
geometry. Instead we only relied on peripheral errors here. Using foveal errors
worsened the results but did not make the algorithm fail.

To demonstrate that the algorithm is capable of making large corrections to a
hypothesized camera geometry, we also show the recovered epipolar geometry
for the second scenario in Fig. 7. This figure shows corresponding epipolar lines
for a few selected key points. The blue points in the left image (A) correspond
to the epipolar lines in the right image (B) and vice versa. Note that very large
changes have been made considering that the algorithm started with a rectified
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auto-calibration vector disparity
scenario mean std mean std

close to vergence 1.03 1.40 1.70 2.44
away from vergence 3.43 4.28 10.72 10.20

Table 1: Mean and standard deviation (in pixels) of the magnitude of the vector
differences between ground truth and estimated vector disparity

A B

Figure 7: Recovered epipolar geometry for the scenario of Fig. 6. Red epipolar
lines in the right image (B) correspond to the blue keypoints in the left image
(A) and vice-versa.

situation, and that the epipolar lines are quite accurate (even in the fovea).

6 Future Extensions

The next steps will first require modification of the procedures to the population-
based methods for disparity estimation [5]. These are conceptually very similar
to the phase-difference approach from Section 3.1, but allow the application of
very specific (gain) modulation procedures. These gain modulation mechanisms
will be used to transform the responses from eye- to head-centered coordinates.
In addition, the population responses also allow for a closer interaction with the
vergence mechanisms developed in Task 2.1.

7 Package Description

A Matlab package implementing the methods described in this report is avail-
able on request to the consortium. This package contains a wide variety of
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supporting functions that perform Gabor filtering, correspondence estimation
based on phase differences, the log polar mapping using the central blind-spot
model (contributed by UGE), etc. The main functionality discussed in this
report is provided through the following two main functions:

function [Dv,cal] = ret_autocalib(Il,Ir,cal,n_scales)

% [DV,CAL] = RET_AUTOCALIB(IL,IR,CAL,N_SCALES) performs
% simultaneous disparity estimation and auto-calibration using
% images in the retinal domain
%
% The function accepts as input:
%
% IL : the left retinal image
% IR : the right retinal image
% CAL : structure containing the initial calibration
% information
% CAL.KL : left calibration matrix (referential)
% CAL.KR : right calibration matrix
% CAL.RL : left camera rotation
% CAL.TL : left camera translation
% CAL.RR : right camera rotation
% CAL.TR : right camera translation
% N_SCALES : number of scales used in the image pyramid
% (default = 4)
%
% and returns:
%
% DV : the vector disparity (complex numbers)
% CAL : the updated calibration structure
%

function [Dv,cal] = cort_autocalib(Il,Ir,cal,n_scales,bsm,fovea)

% [DV,CAL] = CORT_AUTOCALIB(IL,IR,CAL,N_SCALES,BSM,FOVEA) performs
% simultaneous disparity estimation and auto-calibration using
% images in the cortical domain
%
% The function accepts as input:
%
% IL : the left cortical image
% IR : the right cortical image
% CAL : structure containing the initial calibration
% information
% CAL.KL : left calibration matrix (referential)
% CAL.KR : right calibration matrix
% CAL.RL : left camera rotation
% CAL.TL : left camera translation
% CAL.RR : right camera rotation
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% CAL.TR : right camera translation
% N_SCALES : number of scales used in the image pyramid
% (default = 3)
% BSM : structure defining the central blind-spot model
% BSM.RR0 : retinal row coordinate of the
% image center
% BSM.CC0 : retinal column coordinate of the
% image center
% BSM.R0 : size of the blind spot
% BSM.A : logarithmic factor
% BSM.S : number of sectors
% FOVEA : foveal region to exclude when updating geometry
%
% and returns:
%
% DV : the vector disparity (complex numbers)
% CAL : the updated calibration structure
%

In addition, a number of examples are provided to illustrate the intended use
of the package.
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