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Abstract: 
 
An algorithm is presented for the transformation of retinal disparity into a 3D scene description based 
on head-centric disparity. This transformation accounts for general eye movements (including 
vergence and version movements supported by the mechatronic system), and since it operates directly 
on the response of a population of binocular energy neurons, it also solves the 2D correspondence 
problem by decoding the population response. Due to the complexity of the transformation, a learning 
approach has been used to determine the weights of a feedforward neural network. This same 
approach also enables learning a transformation for (limited) gaze estimation directly from the 
population response, which allows for dealing with inaccuracies of the motor system. In a final 
section, the feasibility of such an autocalibration procedure is demonstrated using real-world image 
pairs obtained with the robotic iCub-platform. 
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1 Executive Summary

This deliverable describes the methods and algorithms developed by K.U.Leuven and
University of Genoa regarding Task 2.2 (Interactive Depth Perception) of Work Package
2 (Active Stereopsis).

Task 2.2 is concerned with the extraction of depth (3D structure) by integrating retinal
disparity information across different eye movements. Transforming disparity from eye-
to head-centric coordinates, but also estimating disparity (and controlling vergence) relies
on accurate calibration information (in terms of the relative orientation of the eyes). In
the active systems considered in EYESHOTS, the motor feedback can not provide this
information (due to the limited precision) and therefore vision is used to improve upon
this. The procedures developed for this constitute the main part of both this deliverable
and deliverable 2.2a.

In deliverable 2.2a, we described, and provided software, for autocalibration methods
that can operate in the retinal as well as in the cortical domain. Certain aspects of the
previous methods are difficult to align with the experimental evidences reported in vari-
ous neurophysiological studies. Therefore, we have now applied these same principles to
develop a biologically plausible architecture. We no longer explicitly calculate retinal dis-
parity, but operate directly on the response of a population of binocular energy neurons.
Image warping operations have been omitted as well.

Using a learning approach a feedforward neural network has been developed that can
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directly transform this population response together with the gaze angles into a 3D scene
description based on head-centric disparity. Furthermore, the same architecture enables
the extraction of (a limited set of) gaze angles directly from these responses.

Since the mechatronic system is not available to us for demonstration purposes, we have
applied the autocalibration algorithm to real-world image streams obtained from the
iCub-platform [5]. This platform is also used to demonstrate the vergence mechanisms
from Task 2.1 and can operate co-jointly with these.

In particular, the methods proposed here can operate together with the vergence mech-
anisms presented in Task 2.1 in various ways. Improved calibration estimates can feed
directly in the convolutional network for vergence control presented in Deliverable 2.1,
but can also modulate the weights of the mechanism (also reported there) that integrates
the population responses into the vergence control.

2 Introduction

The binocular information obtained through the responses of populations of binocular
energy neurons in primary visual cortex, can be used to determine the relative locations
of corresponding points in the two eyes. This retinal binocular disparity is related to
distance but also depends on the orientation of the eyes (the gaze components). Com-
plex disparity patterns typically occur with both horizontal and vertical disparities. To
integrate information across different fixations, it is necessary to transform the retinal
disparity from an eye-centric into a head-centric frame of reference that does not depend
on eye position. A computational model has been proposed for this transformation [1]
where noisy oculomotor signals are improved on the basis of vertical disparity. In this
model, retinal and oculomotor signals of each eye are integrated before computing the
disparity. This approach is similar to a warping approach typically used in computer
vision methods and enables the system to deal with large eye movements that introduce
large disparities. It is however not supported by experimental evidence, since many cells
(in V1) are known to be sensitive to retinal disparity [6]. In this work we also rely on
such a biologically plausible computational sequence, where first retinal binocular corre-
spondences are found and only then transformed into a head-centric coordinate system.

The brain needs to perform a variety of coordinate transformations between eye-, head-,
and body-centered reference frames. A large number of computational and neurophysio-
logical studies have investigated this aspect. An early study points towards the central
role of a gain modulation mechanism, by which populations of neuron responses are mul-
tiplicatively modulated by another signal, e.g. an oculomotor signal [11]. The response
peak of individual neurons remains unchanged through such modulation, but arbitrary
transformations can be performed downstream, where the population responses are com-
bined. In that study, a black-box feedforward neural network approach, trained with
backpropagation, was used to learn the gain modulation weights. The obtained weights
were in close correspondence to those recorded experimentally. The transformation con-
sidered in [11] was much simpler than the problem considered here, since only monocular
retinal signals were used.
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Gain modulation has also been investigated in the context of disparity transformation
using basis function networks [3, 7, 8]. In that work, the responses of a population of
binocular neurons (simulated, not computed from images) are transformed from a retinal
to a head-centric frame of reference. The basis function approach simplifies learning,
since arbitrary transformations can be approximated using a linear combination of the
basis function responses. However, each signal that has to be included increases the
dimensionality of the problem, which becomes unmanageable very rapidly [8].

In this deliverable, we consider a problem of much higher complexity. We need to combine
a large number of signals, representing all six rotational degrees of freedom of a pair of
cameras. This represents a problem for the basis function approach. We also obtain
the neuron population responses directly from the images, by filtering with a biologically
plausible filterbank. The correspondence problem thus has to be solved as well (albeit
implicitly). In addition, we also investigate the possibility of directly estimating gaze
angles from the population responses (without oculomotor signal). This enables dealing
with the limited accuracy of the motor system and its feedback.

In the next section we first provide more details on the head-centric distance represen-
tation used in this work. Section 4 then details the choice of neural network and the
training procedure. The results obtained on head-centric disparity and gaze estimation
are shown in Section 5. Finally, in section 6, the autocalibration approach we developed
is demonstrated on real-world image pairs obtained with the iCub robotic platform.

3 From Retinal to Head-centric Disparity

The disparity pattern in images obtained from cameras in a rectified configuration (with
retinal planes coplanar and parallel to the baseline) is one dimensional, and the epipolar
lines are horizontal. A simple relation exists between this rectified disparity, δ, and the
distance, z:

δ = − b
z
, (1)

with b the distance between the two cameras (baseline). We define the head-centric
disparity as this rectified disparity. The gaze angles are expressed relative to this config-
uration. The retinal disparity pattern observed in general situations is highly complex,
since the projection of a 3D rotation is applied to each eye’s image [2]:

x′L = KL

(
e[ωL]×

)
K−1
L xL , (2)

x′R = KR

(
e[ωR]×

)
K−1
R xR , (3)

where K is the camera matrix representing the internal calibration, ω is a vector contain-
ing the three rotation angles, and x and x′ represent the pixel’s location (in homogeneous
coordinates) respectively before and after the transformation.

The transformation from retinal to head-centric disparity thus requires compensating
for the transformations induced by (2) and (3). Since we operate on the responses of
a population of binocular energy neurons, this transformation needs to be performed
together with correspondence estimation. We have decided not to perform these steps
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separately, but to rather directly modulate the responses so as to solve both problems at
the same time. The complexity of this modulation warrants a learning approach, which
is discussed in the next section.

4 Network Design and Training

As discussed above, gain modulation using basis function networks is not feasible here due
to the large number of oculomotor signals that need to be combined with the population
response. This leads to an explosion of dimensionality and a more efficient approach
is required. We use a traditional black-box approach based on multi-layer perceptrons.
Figure 1 provides an overview of the inputs and outputs and the network architecture
used in the head-centric disparity estimation and gaze estimation scenarios. In the first
scenario, the network combines the population response (which implicitly codes for retinal
disparity) with the oculomotor signals (the gaze angles) into the head-centric disparity.
In the second scenario, the network estimates the gaze angles directly from the population
response. The different components of Fig. 1 are explained in more detail in the next
sections.

4.1 Input Images and Target Data Generation

Due to the complexity of the transformation that needs to be learned, a large number
of examples are required. It is therefore not feasible to use real-world images, and even
the generation of rendered image pairs is prohibitive. We therefore generate textured
images using normally distributed random numbers, and warp these in different ways
to compose image pairs for our training dataset. A schematic overview of the image
generation procedure is provided in Fig. 2.

The randomly generated image serves as cyclopean image. A random disparity field
(corresponding to a smooth curved surface, see e.g. Fig. 3E) is applied to generate a stereo
pair obtained with frontoparallel cameras (rectified). This disparity field corresponds to
the head-centric disparity that is used as target data. Uniformly distributed randomly
generated 3D rotations are then applied to both images to generate the final image pair
corresponding to an arbitrary (but smooth) disparity field and random gaze angles. The
input and target data are shown in bold blue in Fig. 2. Although not used in the training,
the ground truth retinal vector disparity is also available. Figure 3 contains the image
pairs and retinal and head-centric disparity for five randomly selected examples from the
dataset.

4.2 Binocular Energy Neuron Population Response

The input images are first processed by a population of simple and complex cells. Each
simple cell has a binocular receptive field gL(x, y) + gR(x, y) defined by a pair of Gabor
functions:

g(x, y, ψ, θ) = e−(x2
θ+y

2
θ)/2σ

2

cos(2πkoxθ + ψ) (4)
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Figure 1: Training procedure and network architecture employed for head-centric dispar-
ity estimation (A) and gaze estimation (B).
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Figure 2: Training data generation. The randomly generated components are in italic
and the final input images and target data used for training the network are shown in
bold blue.

positioned in the corresponding points x = (x, y) of the left and the right images, rotated
by the same angle θ with respect to the horizontal axis, and characterized by the same
peak frequency k0 and spatial envelope σ, and by a proper binocular phase shift (∆ψ =
ψL − ψR), along the rotated axis xθ.

For a specific orientation and phase shift, the simple cell response is obtained as follows:

rs(x, θ,∆ψ) = (IL ∗ gL)(x) + (IR ∗ gR)(x) , (5)

where the ∗ operator depicts convolution. The response of a complex cell rc is obtained
by summing the squared response of a quadrature pair of simple cells [9]:

rc(x, θ,∆ψ) = r2
s(x, θ,∆ψ) + r2

s(x, θ,∆ψ + π/2) . (6)

The filterbank has been designed with efficiency in mind and relies on 11×11 separable
spatial filter kernels [10]. We use a total of four orientations and three phase shifts (both
evenly distributed). Since the images are of resolution 26×26, each input sample has a
dimensionality equal to 26×26×4×3 = 8112. The training procedure can be made more
efficient by first decorrelating the input data. Using principal components analysis, we
reduce the dimensionality to 500, while retaining approximately 95% of the variance.

4.3 Network Architecture and Training Procedure

The neural network is designed and trained using Matlab’s Neural Network Toolbox. A
variety of learning algorithms are provided. Due to the size of the networks considered
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A left images

B right images

C horizontal retinal disparity

D vertical retinal disparity

E head-centric disparity

-0.5 0.5

Figure 3: Image pairs (A,B), 2D retinal (C,D) and 1D head-centric (E) disparity for five
samples (left to right) from the training set. The same scale is used for all the disparity
values, ranging from -0.5 up to 0.5 pixels.
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here, we use scaled conjugate gradient backpropagation for its modest memory require-
ments yet fast convergence [4].

For training, the dataset is randomly divided in three sets: a training, validation, and
test set. The training set is used for computing the gradient and updating the network
weights and biases. The error on the validation set is monitored during the training
process. Training is stopped when this validation error starts to rise. This technique
makes it less likely for the network to overfit the data. The test set error is not used
during training, but is used to compare different models.

We have always evaluated a large number of different networks, and only report here
on the performance obtained with the minimal size network. Larger networks always
decreased the training error only.

5 Results

5.1 Head-centric Disparity Estimation

We use a total of 3750 samples for training the network, which is randomly divided in
training (70%), validation (15%), and test set (15%). We then evaluate the performance
on a completely independent test set consisting of 1250 samples.

To demonstrate that the network is able to correctly apply gaze information, and to show
the importance of this information, we compare the performance of the network with
gaze information shown in Fig. 1A, to a network that only has access to the population
response (after PCA). The head-centric disparity map estimated with both networks is
shown in Fig. 4(B,C) together with the ground truth head-centric disparity (Fig. 4A)
for five typical samples from the test set. Note that the network without gaze input is
able to predict the general magnitude of the disparity field, but cannot estimate its fine-
structure. The network with gaze input performs the transformation with a much higher
precision. On the complete test set, the correlation coefficient between the estimates and
ground-truth is equal to 0.9192 without gaze input, and 0.9872 with gaze input.

5.2 Gaze Estimation

The flexibility of the neural network approach allows us to investigate the possibility
of estimating the gaze itself, or certain components of it, directly from the population
responses. This information can be used to correct the imprecise information avail-
able through proprioceptive feedback from the motor system, which enables better ver-
gence/version control and more precise correspondence estimation.

We now use the network shown in Fig. 1B. This is very similar to the previous network,
except that there is no longer gaze input, and the target has been reduced from the 10×10
head-centric disparity to (at most) six gaze angles.

Due to the complexity of the problem, we have now increased the size of the dataset to
15000 samples for training the network, which is again further divided in training (70%),
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A ground truth

B network with gaze input

C network without gaze input

-0.6 0.6

Figure 4: Ground-truth head-centric disparity (A) and head-centric disparity predicted
by a network with (B) and without (C) gaze input.
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Figure 5: Ground truth versus estimated gaze angle scatter plots for training scenarios
of different complexity. In the top row, only a single gaze parameter of the left eye is
changed: tilt (A), pan (B), or torsion (C). In the bottom row, all the left eye parameters
are changed in (D), and both left and right gaze parameters are changed in (E). Only
test set data is shown, and the correlation coefficient obtained on this set is indicated
above each figure.

validation (15%), and test set (15%). We then evaluate the performance on a completely
independent test set now consisting of 5000 samples.

This problem is notoriously ambiguous, and only the essential matrix can be extracted
from image data. Therefore, we have explored a set of problems with gradually increasing
gaze complexity. The results are shown in Fig. 5. From this figure, we can see that the
performance is quite good when only one eye is considered at a time. In the top row, a
single gaze parameter is changed, while all the other remain zero. Both tilt (Fig. 5A) and
torsional (Fig. 5C) rotations are easy to predict, because they introduce a strong vertical
disparity pattern. Pan movements on the other hand are more difficult (Fig. 5B), because
they are more easily confused with the disparity pattern. This however should not affect
the precision of correspondence finding, and so is less relevant in this context.

The network is also able to simultaneously estimate all gaze parameters of a single eye
(Fig. 5D) with a performance similar to the worst single parameter performance. We also
examined the degree to which all gaze angles for both eyes can be predicted together,
but (as expected) this did not yield very good performance (Fig. 5E).

The ability to estimate gaze in the presence of complex disparity patterns, appears to be
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quite feasible following this approach for each eye, only. This means that also autocali-
bration is possible with this method, since in the computer vision approach we developed
earlier, we used an alternating approach to correct the gaze estimate by considering one
eye at a time. We next demonstrate this computer vision approach on real-world image
pairs obtained with the iCub robotic platform available to partner UG.

6 Demonstration on the iCub platform

We have applied our multiscale autocalibration algorithm to high resolution real-world
images obtained with the robotic iCub platform. This platform contains a robotic head
with a pair of cameras that can pan individually and have a common tilt. The platform
used here has a significant tilt offset between the cameras, and we demonstrate here how
our autocalibration algorithm can correct this.

Figure 6A contains three example stereo pairs shown as anaglyphs with the left image
in the red channel and the right image in the blue and green channels. The vertical
offset is clearly visible and very large 2D disparities occur in the image. We compare the
performance of the autocalibration algorithm to a standard two-frame optical flow algo-
rithm [10] that operates on the same multiscale, multi-orientation filterbank responses.
For each trial, the autocalibration algorithm was initialized with a (highly erroneous)
rectified configuration.

The horizontal component of the estimated vector disparity is shown in row B for the
autocalibration algorithm, and in row C for the optical flow algorithm. We determined
invalid estimates (the white regions) using a standard left/right check by running the
algorithms from the left to the right image and vice versa, and looking for inconsistent
estimates. If the vector difference between both estimates exceeds one pixel, the estimate
is considered unreliable and removed. Note that the autocalibration algorithm achieves a
much higher density on each occasion. The estimates are also of a much higher precision,
as can be seen by comparing rows D and E. Here the vertical component of the estimated
disparity is shown, and a much more regular pattern is observed in the autocalibration
estimates.

To further demonstrate the correctness of the proposed method, we also show the recov-
ered epipolar geometry in Fig. 7. The red epipolar lines in the right image (B) correspond
to the blue keypoints in the left image (A) and vice-versa. It’s clear that the estimated ge-
ometry is very precise everywhere in the image, and also largely different from a rectified
configuration.

Conclusion

We have presented an algorithm for the transformation from retinal to head-centric dis-
parity that operates directly on the response of a population of binocular energy neurons.
On the basis of an extensive data set consisting of stereo image pairs and oculomotor sig-
nals, a feedforward neural network was trained to both solve the correspondence problem,
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A stereo anaglyph

B horizontal autocalibrated disparity

C horizontal vector disparity

D vertical autocalibrated disparity

E vertical vector disparity

Figure 6: Disparity estimation results on stereo images obtained with the iCub platform.
Rows B and D contain the estimates obtained with autocalibration, and rows C and E
contain the estimates obtained with a standard vector disparity algorithm (cf. optical
flow). The horizontal disparities range from -15 (blue) up to 40 pixels (red) and the
vertical disparities range from 35 (blue) to 55 pixels (red).
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A B

Figure 7: Recovered epipolar geometry for the scenario of Fig. 6 (center column). Red
epipolar lines in the right image (B) correspond to the blue keypoints in the left image
(A) and vice-versa.

and perform the complex coordinate transformation required to obtain head-centric dis-
parity. Furthermore, the same network architecture was shown capable of extracting a
limited set of gaze parameters directly from the population responses. In this way, we
have demonstrated the suitability of this biologically-motivated vision-based approach
for improving the limited accuracy of the motor system. Finally, we have applied our
autocalibration approach to real-world image pairs obtained with the iCub-platform and
obtained greatly improved vector disparity estimates as compared to a standard two-
frame optical flow algorithm.
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