
 

 
 
 
Project no.:                                  FP7-ICT-217077 
Project full title:                          Heterogeneous 3-D Perception across Visual Fragments 
Project Acronym:                       EYESHOTS 
Deliverable no:                            D3.3a 
Title of the deliverable:              Working memory model 
 

Date of Delivery: 26 February 2010  
Organization name of lead contractor for this deliverable: WWU 
Author(s): F.H. Hamker and J. Vitay 
Participant(s): WWU 
Workpackage contributing to the deliverable: WP3 
Nature: Other (software module) 
Version: 1.1 
Total number of pages: 43 
Responsible person: Fred H. Hamker 
Revised by: Eris Chinellato, Angel Del Pobil 
Start date of project: 1 March 2008 Duration: 36 months  

 
Project Co-funded by the European Commission within the Seventh Framework Programme 

Dissemination Level 

PU Public    X 

PP Restricted to other program participants (including the Commission Services)  

RE Restricted to a group specified by the consortium (including the Commission Services)  

CO Confidential, only for members of the consortium (including the Commission Services)  
 
 
Abstract: 
 
This deliverable provides information and simulation results of the developed software module 
for our working memory model that allows to activate context information for the task at hand 
based on the association of previous events leading to reward. The software module is written in 
C++, using an artificial neural-network architecture (ANNarchy) library, developed in our lab. 
The deliverable is composed of three parts. The first part is a general introduction about how the 
deliverable is linked to the project. The second part contains a description of the theory and 
simulation results in form of a manuscript that has been submitted to the Journal “Frontiers in 
Computational Neuroscience” (present status: in revision) and the third part is a description of the 
developed software components and the ANNarchy library. 
 



General Introduction 
 
The EU project ''Eyeshots'' aims to establish a visuo-motor system grounded in the concept of 
''active fragmented vision''. According to this concept, perception generates dynamic cognitive 
interpretations of the scene, which does not imply a real metrical 3-D reconstruction of the 
observed space, but instead a loose representation of objects that are actively bound on time for 
the task at hand (in terms of affordance, salience, and planning of actions). We here describe a 
module that allows to establish goal directed vision, meaning to decide what aspects of a scene 
are important for the task at hand. The output of the model from work package 3.3 will be used in 
WP 3.2, where the top-down signal will bias competitive interactions to determine future gaze 
position. 
 
Vision requires high-level cognitive control in form of visual-visual and visual-reward 
associations, specifically when vision is embedded into a task that requires to interact with the 
environment. In our developed model, the representation of fragments are coordinated by the 
thalamus and basal ganglia in order to resolve conflict between competing systems and to 
schedule tasks in time related to the idea of a central selection device. While the cortex being 
more involved in learning specific correlations and exact computations, the basal ganglia with the 
thalamus coordinates these activations by activating specific loops in time.  
This task coordination in the basal ganglia can be learned based on stimulus-reward associations. 
Almost every task requires to hold previously visible information or the recall of memory as 
context information, but especially when the sharing of workspace is required. Such properties of 
cognitive vision systems are often referred to establishing a global workspace for specific task 
such as planning and action control. It has been generally suggested that this persistent activity 
requires the release of dopamine. However, the dopamine system is not specific enough to 
schedule events in time. We propose that the dopamine system is an arousal system that induces 
competition and supports short-term memory of salient stimuli by increasing the efficiency of 
recurrent interactions, but over time the basal ganglia will learn to schedule a task by activating 
specific thalamocortical loops. 
 
We initially planned to use an actor-critic model of the basal ganglia (Suri RE, Bargas J, Arbib 
MA. (2001) Modeling functions of striatal dopamine modulation in learning and planning. 
Neuroscience, 103:65-85), but due to limitations of this approach decided to develop a novel 
more flexible model which is described in the following manuscript.  
 
The manuscript describes the model for a general audience from the area of computational 
neuroscience. Thus, as an example we tested the model with well known tasks such as delayed 
match to sample (DMS) and delayed pair association (DPA). The model is not limited to these 
tasks and could in principle be used in any task that requires to link an input to a decision 
constrained by reward. However, as stressed in the manuscript the present version does not solve 
all aspects of reinforcement learning such as the temporal credit assignment. 
In the remaining funding period of Eyeshots (please refer to D3.3b which is due at month 36) we 
envisage to further improve this model and simulate it in the context of a particular Eyeshots 
scenario, such as a 3D scene containing different objects where a decision has to be made which 
of the objects is relevant for being fixated or grasped (i.e. leading to reward). 
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Abstract
Visual working memory tasks involve a network of cortical areas such as inferotemporal,
medial temporal and prefrontal cortices. We suggest here to investigate the role of the basal
ganglia in the learning of delayed rewarded tasks through the selective gating of thalamo-
cortical loops. We designed a computational model of the visual loop linking the perirhinal
cortex, the basal ganglia and the thalamus, biased by sustained representations in prefrontal
cortex. This model learns concurrently different delayed rewarded tasks that require to
maintain a visual cue and to associate it to itself or to another visual object to obtain re-
ward. The retrieval of visual information is achieved through thalamic stimulation of the
perirhinal cortex. The input structure of the basal ganglia, the striatum, learns to represent
visual information based on its association to reward, while the output structure, the sub-
stantia nigra pars reticulata, learns to link striatal representations to the disinhibition of the
correct thalamocortical loop. In parallel, a dopaminergic cell learns to associate striatal rep-
resentations to reward and modulates learning of connections within the basal ganglia. The
model provides testable predictions about the behavior of several areas during such tasks,
while providing a new functional organization of learning within the basal ganglia, putting
emphasis on the learning of the striatonigral connections as well as the lateral connections
within the substantia nigra pars reticulata. It suggests that the learning of visual working
memory tasks is achieved rapidly in the basal ganglia and used as a teacher for feedback
connections from prefrontal cortex to posterior cortices.

Keywords
basal ganglia; perirhinal cortex; visual working memory; reinforcement learning; memory
retrieval; delayed rewarded tasks; attention.
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1. Introduction

During object-based visual search, target templates stored in visual working memory (WM)
can bias attentional processing in visual areas to favorize the relevant objects (Desimone and
Duncan, 1995; Woodman et al., 2007). Visual WM can be investigated through a number of
different tasks in rats, primates or humans, among which change detection, recall procedures,
delayed matching to sample (DMS), delayed nonmatching to sample (DNMS) or delayed pair-
association (DPA) tasks are frequently used. These experiments have allowed to shed light
on the psychophysical mechanisms involved in visual WM (Luck and Vogel, 1997) as well
as to delineate the neural substrates subserving these functions (Ranganath, 2006). Visual
WM has several computational aspects: encoding of the relevant items (potentially in an
abstract manner), maintenance of the items through time in face of distractors, retrieval of
the sensory content of the item, abstraction of the underlying rule. It faces both a structural
credit assignment problem (which item to store and retrieve) and a temporal assignment
problem (how to link encoding in WM with the delayed delivery of reward).

Specific attention has been directed towards the prefrontal cortex which is well-known
to be involved in WM maintenance and manipulation in various modalities (Fuster and
Alexander, 1971; Funahashi et al., 1989). Prefrontal lesions do not totally eliminate visual
WM but impairs the ability to maintain it during long delays or in front of distractors
(Petrides, 2000; D’Esposito et al., 2006). Neurons in PFC exhibit robust object-specific
sustained activities during the delay periods of visual WM tasks like DMS or DNMS (Miller
et al., 1996). However the informational content of WM-related activities in PFC is still
unclear (Romanski, 2007). Inferotemporal (IT) neurons have been shown to encode object-
specific information (Nakamura et al., 1994) as they are located at the end of the ventral
visual pathway (Ungerleider and Mishkin, 1982). They have been shown to be critical
for visual WM (Fuster et al., 1981; Petrides, 2000) and also exhibit sustained activation
during the delay period, even if their responses can be attenuated or cancelled by intervening
distractors (Miller et al., 1993), what can be partly explained by feedback cortico-cortical
connections originating from PFC (Fuster et al., 1985; Webster et al., 1994).

The medial temporal lobe (MTL, composed of perirhinal - PRh -, entorhinal - ERh - and
parahippocampal - PH - cortices) also plays an important also not essential role in visual
WM. Compared to IT, a greater proportion of neurons in PRh and ERh exhibit sustained ac-
tivation during the delay-period (Nakamura and Kubota, 1995) and are robust to distractors
(Suzuki et al., 1997). They are especially crucial when visual objects are novel and complex
(Ranganath and D’Esposito, 2005). Particularly, PRh cells are more strongly involved in
visual recognition when it requires visual WM processes (Lehky and Tanaka, 2007). They
are reciprocally connected with IT neurons and can provide them with information about
novelty or category membership since they can rapidly encode relationship between visual
features (Murray and Bussey, 1999; Rolls, 2000), as well as the association of objects to
reward (Mogami and Tanaka, 2006). Ranganath (2006) provided a complete account of the
functional relationship between IT, PFC and MTL in visual WM. He considers that the vi-
sual aspects of the remembered object are maintained in the ventral pathway at various levels
of complexity (low-level features in V1 or V4, object-related representations in IT) through
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sustained activation of cells. Top-down activation of these neurons by MTL would provide
them with information about novelty and help to reconstruct a coherent mental image of
the objects composing the visual scene, thanks to the link between MTL and hippocampus.
Top-down activation by PFC helps the ventral stream to maintain representations in face of
distraction and also allows stimulus-stimulus associations (like in the delayed pair-association
task) in IT (Gutnikov et al., 1997).

A structure that is absent in this scheme but that is nevertheless very important in visual
WM is the basal ganglia (BG), a set of nuclei in the basal forebrain. Human patients with
BG disorders (such as Parkinson’s disease) show strong deficits in delayed response tasks
(Partiot et al., 1996). Several experiments have recorded visual WM-related activities in
various structures composing the BG, especially the striatum (STR) (Hikosaka et al., 1989;
Mushiake and Strick, 1995; Lewis et al., 2004; Chang et al., 2007). Almost all cortical areas
send projections to the input nuclei of BG (STR and the subthalamic nucleus STN), while
the output nuclei of BG (the internal segment of globus pallidus GPi and the substantia nigra
pars reticulata SNr) tonically inhibit various thalamic nuclei, allowing selective modulation of
corticothalamic loops (Parent and Hazrati, 1995). The BG are organized through a series of
closed loops, which receive inputs from segregated cortical regions and project back to them
quite independently (see Haber (2003) for a review). The number and functional domain
of these loops is still an open issue (Alexander et al., 1986; Lawrence et al., 1998; Nambu
et al., 2002), but two of them are of particular relevance for our model. The executive
loop involves the dorsolateral part of PFC (dlPFC), the head of the caudate nucleus (a
region of the dorsal striatum), GPi-SNr and the mediodorsal nuclei of thalamus (MD). The
structures involved in this loop have all been shown to be involved in WM processes in
various modalities and provide a basis for the maintenance and manipulation of items in
cognitive tasks (see Frank et al. (2001) for a review about the functional requirements of
WM). The visual loop involves the inferotemporal and extrastriate occipital cortices, the
body and tail of the caudate nucleus, SNr and the ventral-anterior nucleus of the thalamus
(VA) (Middleton and Strick, 1996; Seger, 2008). This loop is particularly involved in visual
categorization and visual discrimination, but also sends output to premotor areas to link
category learning with appropriate behavior. In addition to IT neurons, the body of the
caudate nucleus is involved in visual WM tasks, what suggests a role of the entire visual
loop in visual WM (Levy et al., 1997).

What remains unknown is how these two loops can interact together in order to subserve
visual WM functions in the context of efficient behavior. Previous models have particularly
addressed the updating of working memory content as part of the executive BG loop (e.g.
Brown et al. (1999) or O’Reilly and Frank (2006)). We here focus on how such memory
content can be used to bias the visual loop allowing for a goal-directed memory recall in
the context of rewarded tasks such as DMS, DNMS or DPA. This model is composed of the
visual loop linking PRh with BG and the thalamus, while the executive loop is abstracted
to sustained activation in dlPFC, and is alternatively presented with specific combinations
of visual cues and tasks symbols that allow the system to perform actions leading to the
delivery of reward (as proposed by Gisiger and Kerszberg (2006). Our emphasis is on the
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reward-modulated self-organization of connectivity between distributed populations. The
model provides hypotheses about how sustained representations in dlPFC can bias learn-
ing in the visual loop so that object-related activities in the ventral visual pathway can be
retrieved through thalamic stimulation in the context of a particular cognitive task to pro-
vide anticipatory top-down signals for the visual system as observed physiologically (Naya
et al., 2003; Takeda et al., 2005). In particular, the self-organization in model relies on the
competitive selection of relevant cortical representations in the output structures of the BG.

2. Material and Methods

2.1. Architecture of the model

Each structure used in this model is composed of a set of dynamical neurons, whose mem-
brane potential is governed by a time-dependent differential equation and transformed into
a mean firing rate through a non-linear transfer function. These neurons therefore exchange
a real instantaneous value instead of spikes, as it saves considerably computational costs and
allows to use efficient learning rules that are not yet available for spiking neurons. Although
we do not capture some biophysical details, this paradigm is sufficiently complex to show
the emergence of dynamic behaviors through the interaction of distributed computational
units (Rougier, 2009). The differential equation that rules the evolution of the activity of
each neuron is discretized according to the Euler method with a time-step of 1 ms and is
evaluated asynchronously to allow stochastic interactions between functional units (Rougier
and Vitay, 2006).

Biological details gave us some insights on the choice of certain parameters, such as the
time constants for the different neurons, as we know for example that striatal cells are faster
than cortical cells (Plenz and Aertsen, 1996). Other parameters have been set to bring
the model into a functionally meaningful range. Control simulations showed that minor
variations on their values do not change qualitatively the results presented here.

The architecture of the model is depicted in Fig. 1A. Visual inputs are temporally
represented in the perirhinal cortex (PRh), each cell firing for a particular visual object.
These perirhinal representations project to the prefrontal cortex (dlPFC) where they are
actively maintained for the duration of the task. These sustained activations in dlPFC are
artificially controlled by a set of gating signals, leaving unaddressed the temporal credit
assignment problem. PRh and dlPFC both project extensively to the caudate nucleus (CN),
which learns to represent them in an efficient manner according to the task requirements.
Depending on reward delivery in the timecourse of learning, each active striatal cell learns
to integrate perirhinal and prefrontal information in a competitive manner due to inhibitory
lateral connections. This mechanism leads to the formation through learning of clusters of
striatal cells that represent particular combinations of cortical information depending on
their association to reward. These CN cells send inhibitory projections to the SNr, whose
cells are tonically active and learn to become selective for specific striatal patterns. This
learning between CN and SNr is also dependent on reward delivery. Learning of the lateral
connections between SNr cells additionally allows to limit the number of simultaneously
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(A) (B)

Figure 1: (A) Architecture of the model. Pointed arrows denote excitatory connections and
rounded arrows denote inhibitory ones. Circular arrows within an area represent lateral
connections between the cells of this area. (B) Timecourse of the visual inputs presented to
the network. Top: rewarded trials like DMS, DNMS or DPA. Bottom: delay conditioning.

inhibited SNr cells. These cells in SNr tonically inhibit thalamic cells (VA) which have
reciprocal connections with PRh. The connections from SNr to VA and between VA and
PRh are not learned but focused (one-to-one connection pattern), meaning that the inhibition
of one SNr cell leads to the thalamic stimulation of a unique cell in SNr. A dopaminergic
cell (SNc) receives information about the received reward (R) and learns to associate it with
striatal activities. Its signal modulates learning at the connections between cortical areas
(PRh and dlPFC) and CN, between CN and SNr, as well as within SNr. We now present in
detail each structure and the differential equations followed by their neurons.

2.1.1. Perirhinal cortex

The input of our model is a high-level visual area with mnemonic functions which is able to
bias processing in the ventral visual stream. In general, the area TE of the inferotemporal
cortex is a potential candidate, but we particularly focused on PRh, as it has been shown to
be preferentially involved in recognition tasks that require visual WM (Lehky and Tanaka,
2007). We previously designed a detailed computational model of PRh that is able to
learn object-related representations in clusters of cells based on partial information (Vitay
and Hamker, 2008). These clusters linked through lateral connections are able to exhibit
sustained activation when the dopamine (DA) level in the network is within an optimal
range. The visual information that they contain can also be easily retrieved through a
partial stimulation coming from the thalamus. We hypothesize that this memory retrieval
through thalamic stimulation under an accurate level of DA can be a basis for the guidance
of visual search.

Here, we reduced the size of PRh to 8 cells, each of them representing a particular object
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that is presented to the network (see section 2.2 for the description of these objects). In
our previous model, PRh contained hundreds of cells and each object was represented by a
cluster of different cells. Each cell i has a membrane potential mi(t) and an instantaneous
firing rate uPRh

i (t) which are governed by the following equations:

τ ·
dmi(t)

dt
+ mi(t) = Vi(t) + WVA

i · uVA
i (t) +

∑

j∈PRh

WPRh
i,j · uPRh

j (t) + ε(t) (1)

uPRh
i (t) = (mi(t))

+ (2)

where τ = 20 ms is the time constant of the cell, Vi(t) its visual input (see section 2.2)
and WVA

i = 0.5 the weight of a connection coming from the corresponding thalamic cell
whose firing rate is uVA

i (t). ε(t) is an additional noise whose value varies uniformly at each
time-step between −0.3 and 0.3. The transfer function used for perirhinal cells is simply
the positive part of the membrane potential ()+. Each perirhinal cell additionally receives
inhibitory lateral connections from the seven neighboring perirhinal cells with a fixed weight
of WPRh

i,j = −0.3 to induce competition between the perirhinal cells.

2.1.2. Dorsolateral prefrontal cortex

We do not model explicitly the executive loop and rather use a very simple WM represen-
tation in dlPFC, including mechanisms of updating and resetting. Future work will address
these questions in the context of WM gating in the executive loop (Frank et al., 2001; Gruber
et al., 2006). The dlPFC is here composed of 8 cells which keep track of activity in PRh
through temporal integration:

τ ·
dmi(t)

dt
= G(t) · WPRh

i · (uPRh
i (t) − 0.5)+ (3)

udlPFC
i (t) =











0 if mi(t) < 0

mi(t) if 0 ≤ mi(t) ≤ 1

1 if mi(t) > 1

(4)

where τ = 10 ms is the time constant of the cell and G(t) a gating signal allowing the
entry of an item in working memory. Each dlPFC cell receives only one connection from a
PRh cell with the weight WPRh

i = 1.0. As soon as the activity of a PRh cell exceeds 0.5,
it is integrated in the corresponding prefrontal cell, whose activity saturates to a maximum
value of 1.0 thanks to the transfer function and stays at this value even if the perirhinal
stimulation ends. The gating signal G(t) is manually set to a value of 1.0 when objects have
to be maintained in WM and to a value of 0.0 otherwise. The activity of the prefrontal cells
is manually reset to zero at the end of a trial.
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2.1.3. Ventral-anterior thalamus

The portion of the ventral-anterior nucleus of the thalamus we consider here is represented
by eight cells that are reciprocally connected with PRh. Its 8 cells send and receive a
connection with only one perirhinal cell, forming segregated thalamocortical loops. In a
more biologically detailed model, we would have to take into account the difference in the
number of cells between VA and PRh, as well the more diffuse pattern of connections from
thalamus to cortex. However, this simplification is justified by our previous detailed model
of PRh, where we have shown that a thalamic cell can activate a functional cluster of cells
representing a single object (Vitay and Hamker, 2008). The membrane potential and firing
rate of these thalamic cells are ruled by the following equations:

τ ·
dmi(t)

dt
+ mi(t) = WPRh

i · uPRh
i (t) + W SNr

i · uSNr
i (t) + M + ε(t) (5)

uVA
i (t) = (mi(t))

+ (6)

where τ = 15 ms and M = 0.8. In addition to the connection coming from one PRh cell
with a weight of WPRh

i = 0.5, a thalamic cell also receives an inhibitory connection from one
cell of SNr with a weight of W SNr

i = −0.7.

2.1.4. Caudate nucleus

The caudate nucleus of the striatum learns to represent the cortical information in PRh and
dlPFC in an efficient manner based on dopaminergic signaling of reward-related information
in SNc. Although some evidences suggest that the DA level can even influence the firing
rate of striatal cells (Nicola et al., 2000), we here exclusively focus on the effect of DA on
the synaptic learning of corticostriatal connections (Di Filippo et al., 2009). The striatum is
mostly composed of medium spiny neurons that integrate cortical information and directly
inhibit several structures such as the substantia nigra or the globus pallidus. These cells
have also lateral inhibitory connections, either directly or through fast-spiking interneurons
(Tepper et al., 2008). CN contains here 64 cells ruled by the following equations:

τ ·
dmi(t)

dt
+ mi(t) =

∑

j∈Cx

WCx
i,j (t) · uCx

j (t) +
∑

j∈CN

WCN
i,j · uCN

j (t) + M + ε(t) (7)

uCN
i (t) = (mi(t))

+ (8)

where τ = 10 ms and M = 0.3. Each striatal cell receives inhibitory lateral connections
from the 63 other striatal cells with a weight of WCN

i,j = −0.2. The corticostriatal connections
WCx

i,j (t) coming either from PRh or dlPFc are learned according to a homeostatic covariance
learning rule:
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η ·
dWCx

i,j (t)

dt
= (DA(t) − DA) · (uCN

i (t) − CN)+ · (uCx
j (t) − Cx)

−αi(t) · ((u
CN
i (t) − CN)+)2 · WCx

i,j (t) (9)

where η = 100 is the rate of learning, DA(t) represents the synaptic level of DA (consid-
ered equal to the activity of the SNc cell), DA the baseline activity of the SNc cell, uCN

i (t)
the firing rate of the striatal cell, CN the mean firing rate of the CN cells, uCx

j (t) the firing

rate of the cortical cell, Cx the mean firing rate of the considered cortical area and αi(t)
a cell-dependent regularization factor. The weights are randomly initialized with a value
between −0.1 and 0.1.

The first part of the right term of Eq. 9 is a classical Hebbian learning rule (correlation
between the activities of the presynaptic and postsynaptic cells) modulated by the DA level.
The positive function applied to the striatal activity ensures that only the cells which are
significantly activated compared to the rest of the population will update their selectivity
for cortical patterns. The exact influence of DA on corticostriatal learning is still a matter of
debate and depends on the type of dopaminergic receptor (D1 or D2) involved, the state of the
membrane potential of the striatal cell (”up” and ”down” states) and on the cortical patterns
(Calabresi et al., 2007). We do not model in detail these mechanisms and consider that a
phasic burst of DA (transient activity of the SNc cell above its baseline) globally favorizes
long-term potentiation (LTP) of corticostriatal synapses, while DA depletion (activity below
baseline) globally induces long-term depression (LTD) of the same synapses (Reynolds and
Wickens, 2000).

The second part of the right term of Eq. 9 performs a homeostatic regularization of the
corticostriatal synapses. Its shape is similar to the classical Oja learning rule (Oja, 1982) to
avoid an infinite increase of the weight values, but the difference is that the regularization
factor αi(t) is not fixed but varies with the activity of the cell (Vitay and Hamker, 2008).
Homeostatic plasticity allows cells to adapt their learning behavior to ensure stability (Tur-
rigiano and Nelson, 2004). In our case, we want to avoid that the striatal cells fire too much
in order to save energy, by scaling down proportionally the weights of all the connections.
αi(t) therefore becomes positive when the firing rate of the cell exceeds a defined threshold
uMAX:

τ ·
dαi(t)

dt
+ αi(t) = (uCN

i (t) − uMAX)+ (10)

with τ = 20 ms and uMAX = 1.0. In addition to dynamically and locally normalizing
the afferent connections to the cells, this homeostatic regularization term also allows to
sharpen the selectivity of the cell. Homeostatic plasticity has been observed in the nucleus
accumbens, a part of the striatum (Ishikawa et al., 2009).
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2.1.5. Substantia nigra pars compacta

The dopaminergic cells contained in SNc have the property to respond to the delivery of
unexpected rewards by a phasic burst of activity above baseline (Mirenowicz and Schultz,
1994). However, in conditioning tasks, the amplitude of this response to primary rewards
gradually decreases through learning and is transferred to the appearance of the conditioned
stimulus (Pan et al., 2005). In addition, when reward is omitted, these dopaminergic cells
show a phasic depletion of activity (below baseline) at the time reward was expected (Schultz
et al., 1997). Several theories have tried to explain this behavior related to reward expecta-
tion, including an analogy with the error signal of the temporal difference (TD) algorithm of
reinforcement learning (Suri and Schultz, 1999) or more biologically detailed models (Brown
et al., 1999; O’Reilly et al., 2007). The TD analogy considers that DA phasic activation or
depletion at the time of reward delivery or conditioned stimulus appearance are due to a
unique mechanism. The more biologically detailed approaches contrarily highlight the role
of afferent structures in the different components of this behavior: the phasic activation to
primary rewards may be due to excitatory connections coming from the pedunculopontine
tegmental nucleus, and its amplitude is gradually decreased by the learning of the reward
expectation through inhibitory connections coming from the striatum. In these models, the
DA phasic activation for the appearance of a conditioned stimuli is provoked by different
mechanisms than for the delivery of primary rewards. The depletion in DA activity when
reward is omitted is controlled by an external timing mechanism, presumably computed
by an intracellular calcium-dependent mechanism in striatal cells (Brown et al., 1999) or
by an external signal computed in the cerebellum (O’Reilly et al., 2007). We followed the
assumptions of these models, but did not model explicitly this timing signal.

We used only one cell in SNc, which receives information about the received reward R(t)
and learns to predict its association with striatal representations through learnable inhibitory
connections. The activity of this cell is ruled by the following equations:

τ ·
dm(t)

dt
+ m(t) = R(t) + P (t) ·

∑

j∈CN

WCN
j (t) · uCN

j (t) + DA (11)

DA(t) = (m(t))+ (12)

where τ = 10 ms, DA = 0.5. The reward R(t) (set to 0.5 when received, 0.0 otherwise)
and the timing of its occurrence P (t) (set to 1.0 when expected, 0.0 otherwise) are external to
the neuronal model. When reward is delivered, R(t) will drive the activity of the cell above
its baseline but this effect will be reduced by the learning of the inhibitory connections
between the striatum and SNc. When reward is expected but not delivered, the striatal
inhibition will force the cell to exhibit an activity below baseline. The connections between
CN and SNc are learned according to the following rule:
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η ·
dWCN

j (t)

dt
= −f(DA(t) − DA) · (uCN

j (t) − CN)+ (13)

f(x) =

{

x if x > 0

5 · x else.
(14)

where η = 10000. The weights are initialized with a value of 0.0, so that striatal rep-
resentations have initially no association to reward. When DA(t) is above baseline (reward
has been delivered), the inhibitory connections are further decreased, which means that the
striatal representation increases its associative value. When DA(t) is below baseline (reward
has been omitted), the same striatal representation decreases its association to reward. This
dopaminergic signal is used to modulate learning in CN and SNr.

2.1.6. Substantia nigra pars reticulata

The output nuclei of the BG (GPi and SNr) have the particularity to be tonically active
(with an elevated firing rate of 25 Hz at rest and pause in firing when inhibited by striatal
activity). They send inhibitory projections to ventral thalamic nuclei as well as various sub-
cortical structures such as the superior colliculi. The SNr cells are selective for particular
motor programs and can disinhibit various thalamocortical loops (Chevalier and Deniau,
1990). Their selectivity is principally due to the inhibitory connections originating from the
striatum and GPe, but they also receive excitatory inputs from the subthalamic nucleus.
However, the SNr cells also tonically inhibit each other, with a particular connectivity pat-
tern suggesting they may subserve an important functional role (Mailly et al., 2003). When
a SNr cell is inhibited by striatal activation, it stops inhibiting the other SNr cells, who
consequently increase their firing rate and inhibit more strongly their efferent thalamic cells.
Inhibitory connections within SNr may therefore help focusing on the disinhibition of the
desired thalamocortical loop by suppressing the competing other loops (Gulley et al., 2002).
Instead of considering the inhibitory effect of high nigral activity, we modeled this compe-
tition between SNr cells by an excitatory effect of low nigral activity, what is functionally
equivalent. The 8 cells in SNr evolve according to the following equations:

τ ·
dmi(t)

dt
+ mi(t) =

∑

j∈CN

WCN
i,j (t) · uCN

j (t) +
∑

j∈SNr

W SNr
i,j (t) · (M − uSNr

j (t))+ + M + ε(t)

(15)

uSNr
i (t) =



















0 if mi(t) < 0

mi(t) if 0 ≤ mi(t) ≤ M
1

1 + e−
mi(t)−M

20

+ 0.5 if mi(t) > M

(16)

where τ = 10 ms, M = 1.0 and ε(t) is an additional noise randomly picked between
−0.3 and 0.3. The excitatory connections from neighboring SNr cells are active when their
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corresponding activity is below baseline. The transfer function ensures that activities ex-
ceeding M saturate to a value of 1.5 with a sigmoidal shape. The inhibitory connections
originating in CN are learned according to an equation similar to Eq. 9. Even if little is
known about synaptic learning in SNr, the strong dopaminergic innervation of nigral cells
(Ibañez-Sandoval et al., 2006) makes it reasonable to hypothesize that DA modulates the
learning of striatonigral connections in a way similar to the corticostriatal ones.

ηinh ·
dWCN

i,j (t)

dt
= f(DA(t) − DA) · g(SNr − uSNr

i (t)) · (uCN
j (t) − CN)+

−αinh
i (t) · ((SNr − uSNr

i (t))+)2 · W SNr
i,j (t) (17)

f(x) =

{

x if x > 0

10 · x else.
(18)

g(x) =
1

1 + e−
x

20
− 0.5 (19)

τ inh
α ·

dαinh
i (t)

dt
+ αinh

i (t) = K inh
α · (mi(t))

− (20)

where ηinh = 500, SNr is the mean activity of all the cells in SNr, τ inh
α = 10 ms, K inh

α = 2.0
and ()− is the negative part of the membrane potential. The weights are randomly initialized
between −0.15 and −0.05 and later restricted to negative values. DA depletion (below
baseline) has been given a greater influence in the learning rule through the f() function,
because at the beginning of learning DA depletion has a much smaller amplitude than the DA
bursts. Contrary to the classical Hebbian learning rule, the postsynaptic activity influences
here the learning rule through a sigmoidal function g(), what makes it closer to the BCM
learning rule (Bienenstock et al., 1982). Similarly to BCM, there is a threshold (here the
mean activity of the nuclei) on the postsynaptic activity that switches the learning rule from
LTD to LTP. This learning rule is meant to increase the selectivity of each SNr cell regarding
to its neighbors as well as the signal-to-noise ratio in the population. Another way for the
nigral cells to increase their selectivity is competition through their lateral connections.
There are two different learning rules used depending on whether the DA level is above or
below baseline. When DA is above its baseline, the lateral connections are updated according
to the following equation:

ηlat ·
dW SNr

i,j (t)

dt
= (DA(t) − DA) · (SNr − uSNr

i (t))+ · (SNr − uSNr
j (t))+

−αlat
i (t) · ((SNr − uSNr

i (t))+)2 · W SNr
i,j (t) (21)

where ηlat = 500. The weights are initially set to 0.0. This rule is similar to a classical
anti-Hebbian learning, as it favorizes the competition between two cells when they frequently
have simultaneously low firing rates. In the case of a DA depletion, an important feature of
the model is that the symmetry of the lateral connections between two inhibited cells has to
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be broken. DA depletion has then a punishing effect on the most inhibited cells, which will
later receive much more excitation from previously moderately inhibited cells:

ηlat ·
dW SNr

i,j (t)

dt
= (DA − DA(t)) ·

√

(SNr − uSNr
i (t))+ · (SNr − uSNr

j (t))+

−αlat
i (t) · ((SNr − uSNr

i (t))+)2 · W SNr
i,j (t) (22)

In both cases, two simultaneously inhibited cells will increase their reciprocal lateral
connections. However, in the case of DA depletion, the square root function applied to the
postsynaptic activity breaks the symmetry of the learning rule and the most inhibited cell
will see its afferent lateral connections relatively more increased than the other cells. Thus,
the inhibited cells which won the competition through lateral connections but provoked a
DA depletion will be more likely to loose competition at the next trial. The effect of these
asymmetric learning rules will be presented in section 3.3, where we will show that they are
able to eliminate distractors. Both learning rules use the same equation for the updating of
the regularization factor:

τ lat
α ·

dαlat
i (t)

dt
+ αlat

i (t) = K lat
α · (mi(t) − M)+ (23)

where τ lat
α = 10 ms and K lat

α = 1.0.

2.2. Experiments

In order to test the ability of our model to perform visual WM tasks, we focused on
three classical experimental paradigms: the delayed matching-to-sample (DMS), the de-
layed nonmatching-to-sample (DNMS) and the delayed pair-association (DPA) tasks. These
three tasks classically consist in presenting to the subject a visual object (called the cue),
followed after a certain delay by an array of objects, including a target towards which a
response should be made (either a saccade or a pointing movement or a button press). In
DMS, the target is the same object as the cue; in DNMS, the target is the object that is
different from the cue; in DPA, the target is an object artificially but constantly associated
to the cue. These three tasks are known to involve differentially IT, MTL, PFC and BG
(Sakai and Miyashita, 1991; Elliott and Dolan, 1999; Chang et al., 2002).

Similarly to the mixed-delayed response (MDR) task of Gisiger and Kerszberg (2006),
we want our model to acquire knowledge about contextual information, allowing it to learn
concurrently these three tasks with the same cued visual objects. We therefore need to
provide the network with a symbol specifying which task has to be performed. The meaning
of this symbol is however initially not known by the model and must be acquired through
the interaction within the tasks. The top part of Fig. 1-b shows the time course of the visual
inputs presented to the network during a trial. Each trial is decomposed into periods of 150
ms. During the first period, a cue is presented to the network, followed by a delay period
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without visual stimulation. A visual object representing which task to perform (DMS, DNMS
or DPA) is then presented, followed by the same delay period. During this presentation
phase, the signal G(t) in Eq. 3 is set to 1.0 to allow the sustained activation in dlPFC of
these two objects.

In the choice period, two objects are simultaneously presented to the network: the target
(whose identity is defined by the cue and the task symbol) and a distractor chosen randomly
among the remaining cues. At the end of this period, the response of the network is consid-
ered to be performed, and reward is given accordingly through a probabilistic rule during
the following reward period. For the entire duration of this reward period, the signal R(t)
in Eq. 11 is set to 0.5 if reward is given and to 0.0 otherwise. P (t) is set to 1.0, denoting
that reward is expected to occur. This reward period is followed by another delay period,
the activities in dlPFC being manually reset to their baseline, allowing the network to go
back to its resting state before performing a new trial.

In these experiments, we use four different cues (labelled A, B, C and D) and three
task symbols (DMS, DNMS and DPA) that stimulate each a different cell in PRh. The
corresponding cells will therefore be successively activated according to the timecourse of
the trial described on the top part of Fig. 1B. In the Results section, we will only consider
subsets of combinations of cues and tasks. For example, we define DMS-DNMS AB as a
combination of four different trials: A followed by DMS (A+DMS), A followed by DNMS
(A+DNMS), B followed by DMS (B+DMS) and B followed by DNMS (B+DNMS). These
four different trials are randomly interleaved during the learning period. In the DMS trials,
the target of the task is the same as the cue, the distractor being chosen in the remaining
possible cues. In the DNMS trials, the target is the object that is different from the cue. In
the DPA task, the target is an object artificially associated to the cue. In DMS-DPA AB,
the target of the trial A+DPA is C and the one of B+DPA is D.

Each PRh cell is stimulated by its corresponding visual object by setting the signal Vi(t)
in Eq. 1 to a value of 1.0 during the whole period. In the choice period, Vi(t) is limited
to 0.5 for both cells (to mimic competition in the lower areas). To determine the response
made by the system, we simply compare the activities of the two stimulated PRh cells at
the end of the choice period. If the activity of the cell representing the target is greater than
for the distractor, we hypothesize that this greater activation will feed back in the ventral
stream and generate an attentional effect that will guide a saccade toward the corresponding
object (Hamker, 2003, 2005b). We assume that this selection is noisy, what is modeled by
introducing a probabilistic rule for the delivery of reward that depends on the difference of
PRh activity for the two presented stimuli.

If we note utarget the activity of the PRh cell representing the target at the end of the
choice period and udist the activity of the cell representing the distractor, the signal R(t) in
Eq. 11 has the following probability to be delivered during the reward period:

P(R) = 0.5 + utarget − udist (24)

This probability is of course limited to values between 0.0 and 1.0. When the activities
of the two cells are equal, reward is delivered randomly, as we consider that a saccade has
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been performed randomly towards one of the two objects, as the feedback from PRh to the
ventral pathway is not sufficiently distinct to favorize one of the two targets. When the
activity of the target cell becomes relatively higher, the probability of executing the correct
saccade and receiving reward is linearly increased. When reward is delivered, the signal R(t)
has a value of 0.5 during the whole reward period, whereas it is set to 0.0 otherwise. We do
not consider here the influence of rewards with different amplitudes.

In delay conditioning, reward is delivered randomly with a fixed probability during the
presentation of a visual object (called X). The timecourse of this task is depicted on the
bottom part of Fig. 1B. This task is described in section 3.5 to study the effect of the
probability of reward delivery on striatal representations and reward prediction in SNc.

In section 3.4, we will study the influence of the number of cells in SNr on the performance
of the network. While this number is equal to 8 in the previous experiments, we vary it here
from 6 to 16. When the number of cells in SNr exceeds 8, we simply added cells in SNr which
receive striatal inhibition and compete with the others, but which do not inhibit any thalamic
cell. When there is only 6 cells, we suppressed in SNr and VA the cells corresponding to the
objects DPA and X, which are not used in this experiment.

3. Results

3.1. Concurrent learning of the different tasks

Fig. 2A shows the learning behavior of the model when different combinations of tasks are
presented. Each network was fed 1000 times with randomly alternated trials. The Y-axis
represents the rank of the last trial during the learning sequence where the network pro-
duced a incorrect answer, which is a rather conservative measurement of behavior. After
this last mistake, the performance of all networks are stable, even when more than 1000 trials
are presented as further tests have shown. We represent here the performance of different
combinations of tasks: DMS-DNMS AB, DMS-DPA AB, DMS-DNMS ABC, DMS ABCD,
DNMS ABCD and DPA ABCD. For each combination of tasks, we used fifty different net-
works that were initialized randomly. One can notice that the different networks learn at very
variable speeds, as shown by the standard deviation. For example, for the DMS-DNMS AB
task, some networks converged after 200 different trials whereas a few others needed 800
trials, what denotes the influence of initialization as well as the one of noise. The only signif-
icant difference between the combinations of tasks is that DMS-DNMS AB is learned faster
than DMS-DNMS ABC, DMS ABCD, DNMS ABCD and DPA ABCD (two-sample KS test,
P < 0.05). However, this can be simply explained by the fact that DMS-DNMS ABC uses
six different trials instead of four for DMS-DNMS AB (C+DMS and C+DNMS have to be
learned at the same time), and that DMS ABCD, DNMS ABCD and DPA ABCD use a
bigger set of possible distractors during the choice period. We will investigate in section
3.3 the influence of distractors on performance. The distributions of the numbers of trials
needed to learn for each combination have no significant shape, though a Gaussian fit can
not be rejected (χ2-test, 0.2 ≤ P ≤ 0.6).

Fig. 2B shows the average success rate of 50 networks presented with the DMS-DNMS AB
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Figure 2: Different success rates. (A) Mean value and standard deviation of the last incorrect
trial during learning of 50 randomly initialized networks for different combinations of cues
and tasks: 1) DMS-DNMS AB; 2) DMS-DPA AB; 3) DMS-DNMS ABC; 4) DMS ABCD;
5) DNMS ABCD; 6) DPA ABCD. (B) Average success rate of 50 networks presented with
DMS-DNMS AB. (C) Success rate of a particular network which learned DMS-DNMS AB,
but computed only on the trials composed of A as a cue followed by DNMS as a task symbol.

task. The success rate of a network is computed after each trial during learning as the per-
centage of rewarded trials for the last ten trials: if the last ten trials were rewarded, the
success rate is 100%, if only one trial was not rewarded, the success rate is 90% and so on.
All networks have reached the maximum success rate before the 800th trial, but some only
need 200 trials. At the beginning of learning, the success rate is 50%, as the network does
not really select a response and reward is given randomly according to the probabilistic rule
of reward we use. This success rate quickly increases to a high value in around 300 trials,
followed by a more flat phase where the competition in SNr temporarily deteriorates the
performance of the networks.

This flattening of the average success rate can be explained by observing Fig. 2C. We
represent the success rate of a particular network which learned DMS-DNMS AB, but this
success rate is plotted for analysis purpose only from trials composed of A as a cue followed
by DNMS as a task symbol. We see that the network performs this task accurately after
only 40 trials and stays at this maximum until it makes a mistake shortly before the 80th

trial. We will later show that this temporary decrease in performance is due to the late
involvement of selection in SNr. To quantify this behavior, we examined the success rates
of the 50 networks used in Fig. 2B and decomposed them regarding to the four types of
trials involved in the learning phase (A followed by DMS and so on). We found that 32.5%
of trial-specific networks showed this type of behavior, by reaching success in at least ten
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Figure 3: Temporal evolution of the activity of several cells in a network which successfully
learned DMS-DNMS AB. The activities are plotted with regard to time (in ms) during a trial
consisting of A as a cue, DNMS as a task symbol and B as a target. The first row represents
the activities of three cells in PRh which are respectively selective for A (blue line), DNMS
(red line) and B (green line). The second row shows the activities of two cells in CN, one
being selective for the pair A+DMS (blue line), the other for the pair A+DNMS (green
line). The third row represents the activities of three cells in SNr which are respectively
selective for A (blue line), DNMS (red line) and B (green line). The fourth row represents
the activities of three cells in VA which are respectively selective for A (blue line), DNMS
(red line) and B (green line).

successive trials before performing again a mistake. In average, these trial-specific networks
reach stable success after only 14 trials and stay successful for 17 trials before performing a
mistake. They then need on average 47 other trials before reaching definitely 100% success
(last mistake after the 78th trial). In comparison, the other trial-specific networks (67.5%)
perform their last mistake at the 64th trial on average, which is significantly shorter (χ2-test,
P ≤ 0.05).

3.2. Temporal evolution of the activities after learning

Fig. 3 shows the temporal evolution of some cells of a particular network that successfully
learned DMS-DNMS AB. The learning phase consisted of 1000 randomly interleaved trials.
At the end of learning, the network was able to generate systematically correct responses
which all provoked the delivery of reward. The selectivity of CN cells developed to represent
the different combinations of cues and task symbols through clusters of cells (see section
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3.5). SNr cells also became selective for some of these clusters and the learned competition
between them ensured that only one SNr cell can be active at the same time in this context.
The temporal evolution of the activity of the cells on Fig. 3 was recorded during the course
of a trial using A as a cue and DNMS as a task symbol. However, this pattern is quali-
tatively observed in every network that successfully learned the task and similar activation
patterns occur for different tasks. The cells which are not shown on this figure do not exhibit
significant activity after learning.

When the object A is presented as a cue in PRh (and simultaneously enters the working
memory in dlPFC), it excites a cluster of cells in CN which, in this example, represents the
couple A+DMS (blue line). This cluster inhibits the cell representing A in SNr which in turn
stops inhibiting the corresponding cell in VA. The thalamocortical loop is then disinhibited
and the two cells representing A in PRh and VA excite each other. After 150 ms, the
stimulation corresponding to the cue ends and the activity of the cells representing A slowly
decreases to their baseline. At 300 ms, the object specifying the task (DNMS) stimulates
a cell in PRh and enters WM in dlPFC. This information biases processing in CN so that
a new cluster representing A+DNMS gets activated (green line) and disinhibits through
SNr the cell in VA representing the object B, which is the target of the task. At 600 ms,
when both objects A (distractor) and B (target) stimulates PRh, the perirhinal cell A only
receives visual information, while the cell B receives both visual and thalamic stimulation.
Consequently, its activity is higher than the cell A and will be considered as guiding a saccade
toward the object B. The cell representing DNMS in SNr never gets inhibited because it has
never been the target of a task during learning. The corresponding thalamic cell only shows
a small increase during the presentation of the object in PRh because of the corticothalamic
connection. In the Discussion, we will come back on the fact that, in this particular example,
the system has learned to select B instead of avoiding A as it should do in a DNMS task.

Three features are particularly interesting in this temporal evolution and have been ob-
served for every network used in section 3.1. The first one is that the perirhinal and thalamic
cells corresponding to the object B are activated in advance to the presentation of the target
and the distractor. The network developed a predictive code by learning the input, context
and target association. For example, the behavior of the perirhinal cell correlates with the
finding of pair-recall activities in IT and PRh during DPA tasks: some cells visually selective
for the associated object have been shown to exhibit activation in advance to its presentation
(Naya et al., 2003). Similarly, the behavior of the thalamic cell can be compared to the delay
period activity of MD thalamic cells (part of the executive loop) during oculomotor WM
tasks (Watanabe and Funahashi, 2004). The second interesting observation is the sustained
activation of the perirhinal cell B after the disappearance of the target (between 750 and 900
ms on the figure) which is solely provoked by thalamic stimulation (as the WM in dlPFC still
excites CN), whereas classical models of visual WM suggest that it is due a direct feedback
from dlPFC (Ranganath, 2006).

The third interesting feature is the fact that the network, when only the cue was presented
in PRh and dlPFC, already started to disinhibit the corresponding thalamic cell, somehow
anticipating to perform the DMS task. We tested the 50 networks used in section 3.1 after
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Figure 4: Evolution of internal variables in SNr for trials surrounding the mistake performed
by the network on Fig. 2C. (A) Reward received at each trial. (B) Activity of four SNr
cells at the time reward is received or expected during the trial. These cells are selective
respectively for A (blue line), B (green line), C (red line) and D (turquoise line). (C) Striatal
inhibition received by these four cells. (D) Competition term received by the same four cells.

learning the DMS-DNMS AB task and presented them with either A or B for 200 ms.
By subsequently recording the activity of the corresponding cells in SNr, we noticed that
they all tended to perform DMS on the cue, i.e. disinhibiting the corresponding thalamic
cell. This can be explained by the fact that the representation of the cue in PRh is also
the correct answer to the task when DMS is required, and the projection from PRh to
CN therefore favorizes the selection of the striatal cluster representing A+DMS compared
to A+DNMS. This can be interpreted such that the ”normal” role of the visual loop is to
maintain the visually presented objects, but that this behavior can be modified by additional
prefrontal biasing (here the entry of DNMS into WM and its influence on striatal activation),
as suggested by Miller and Cohen (2001).

3.3. Effect of the competition in SNr

We focus now on what happens around the late incorrect trial in Fig. 2C to show that
the first phase of learning corresponds to the selective learning of connections from cortex
to CN and from CN to SNr, whereas the second one corresponds to the learning of lateral
connections within SNr to decorrelate the activities in the structure. Fig. 4 shows the
evolution of some internal variables of SNr cells between the trials surrounding the mistake
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produced at the trial number 77 of Fig. 2C. These trials are all composed of A as a cue,
DNMS as a task symbol and therefore B as a target. Fig. 4A shows that the preceding and
following trials were rewarded, but not the trial 77. Fig. 4B shows the activity of four SNr
cells at the exact time when reward is delivered or expected to be delivered (750 ms after
the beginning of the trial on Fig. 3). These cells are selective respectively for A (blue line),
B (green line), C (red line) and D (turquoise line). The four remaining cells in SNr are not
plotted for the sake of readability, but they are not active anymore at this stage of learning.
Fig. 4C represents the inhibition received by these cells at the same time, which means the
weighted sum of inhibitory connections coming from CN. Fig. 4C represents the competition
term received by these cells, which means the weighted sum of lateral connections in SNr
(see Eq. 15).

Through learning in the 76 first trials consisting in A followed by DNMS, the cells B and
C became strongly inhibited during the choice period. In the rest of the article, we will call
”active” a cell which is strongly inhibited and has an activity close to 0.0. Both cells receive
a strong inhibition from the same CN cluster but they still do not compete enough with
each other so that only one remains active. As B is a target, this provokes the disinhibition
of the thalamocortical loop corresponding to B, so that the cell B in PRh is much more
active than the cell A, leading to a correct response and subsequent reward. The cell C is
not involved in this particular task, so it is just a distractor: its activation does not interfere
with the current task. However, this cell may be useful in other tasks, but the strong striatal
inhibition it receives will make it harder to recruit it for other tasks. At the trial 77, the
cell C in SNr competes sufficiently with the cell B so that the activity of the cell B becomes
close to its baseline (around 0.7 on Fig. 4B). The difference between the activities of cells
A and B in PRh becomes small, leading to an omission of reward on Fig 4A according to
the probabilistic rule we used. This omission has two effects through the depletion of DA:
first, it reduces the striatal inhibition received by the two active cells, as seen on Fig. 4C;
second, it increases the competition between the two active cells, but in an asymmetrical
manner (Fig. 4B). According to Eq. 22, the excitatory connection from the cell B to C will
be much more increased than the one from the cell C to the cell B, as the cell C is much more
inhibited than the cell B. Consequently, at trial 78, the cell C receives much more excitation
from the cell B and its activity becomes above baseline. The cell B is then strongly inhibited
by the same cluster in CN and generates a correct rewarded response. In the following trials,
the cell B will further increase its selectivity for this cluster, whereas the other cells in SNr
(including the cell C) will totally lose theirs and can become selective for other clusters.

What happened around this trial shows the selection of a unique cell in SNr, even when
the network already had a good performance. This selection relies on four different mech-
anisms. First, the network should have selected a number of cells in SNr which produce a
correct answer. These cells include the target, but also distracting cells that are also selective
for the same cluster in CN but which disinhibit irrelevant thalamocortical loops. Second,
as the network produces correct answers, the cluster in CN becomes associated to a high
reward-prediction value in SNc. The amplitude of phasic DA bursts is accordingly reduced.
However, omission of reward will generate a greater depletion of the DA signal, compared to
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the beginning of learning when CN clusters had no association to reward and provoked no
DA depletion. Third, omission of reward reduces the striatal inhibition received by active
cells in SNr. However, if this was the only ”punishing” mechanism, all the active cells will
lose their selectivity. In this particular example, the cell B would gradually stop receiving in-
hibition from CN and all the preceding learning would be lost. Fourth, the learning of lateral
connections in SNr is asymmetric with respect to DA firing: when a distractor progressively
wins the competition until the response associated to the target is attenuated, this distrac-
tor becomes disadvantaged in the competition with the target. This is an indirect memory
effect: as the cell corresponding to the target was previously activated and provoked reward
delivery, the cease of its activation (provoking reward omission) is transmitted to the other
cells in SNr through DA depletion, which ”understand” that their activation is irrelevant
and ”get out” of the competition.

It is important to note that this competition between cells in SNr stays completely local
to the cells: there is no winner-take-all algorithm or supervising mechanism deciding which
cell should be punished. This competition emerges only through the interaction of the
cells and the learning of their reciprocal connections. As stated in section 3.1, the scheme
described before occurs during learning in 32.5% of the networks we studied: the target cell
in SNr temporarily loses the competition before being reselected. However, in other cases
the target directly wins the competition and the distractors fade: there is no degradation in
performance, what can explain the great variability in the number of trials needed to learn
correctly all the tasks on Fig. 2A.

In order to better describe these two schemes of learning, we show on Fig. 5 the magnitude
of weight changes in CN and SNr during learning for two different networks. This magnitude
is computed for each trial in the learning session by summing the absolute values of the
discretized variations of weight values (|dWi,j(t)| in Eqs 9, 17, 21 and 22) for all neurons in
the considered area and for all computational timesteps in the entire trial (1050 in our design).
These two networks have both learned the DMS-DNMS AB task, but we represent here only
the magnitude of weight changes occurring during A+DMS trials. The top row represents
the magnitude of weight changes for striatal cells (Eq. 9), the middle row for the inhibitory
connections from CN to SNr (Eq. 17) and the bottom one for lateral connections within
SNr (both Eqs. 21 and 22). The absolute amplitude of these weight changes is meaningless,
as it depends on the number of cells in each areas and the number of afferent connections.
On Fig. 5A, the network shows an early learning phase in the first thirty trials where both
striatal and pallidal cells show great variations in weight values, denoting that the network
tries to find a correct answer to the task. After this first period, the connections from CN to
SNr cease to fluctuate, while the connections from PRh and dlPFC to CN gradually stabilize
(rather slowly, as the computed magnitude also takes into account the regularization term
in Eq. 9, as the striatal cells always tend to overshoot, and this magnitude only decays
with the association to reward). However, after the 50th trial, the lateral connections within
SNr show another peak of variation. This corresponds to the simultaneous activation of two
SNr cells, including the target. In this case, the correct target wins the competition and
eliminates the distractor without provoking a mistake. The task has been correctly learned
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Figure 5: Magnitude of weight changes during learning of DMS-DNMS AB for two different
networks, plotted here only for A+DMS trials. The top line corresponds to global weight
changes in CN (projections from PRH and dlPFC), the middle one to the connections from
CN to SNr, the bottom one to lateral connections within SNr. (A) Network showing a
late competition mechanism in SNr selecting directly the correct target without provoking
a mistake. (B) Network showing a late competition mechanism in SNr that led to the
performance of mistakes and to a long period of instability. The amplitude of lateral weight
changes has been thresholded during this unstable phase (it reaches up to 5000) in order to
allow a better comparison with the first network.

and the network slowly stabilizes its learning. Oppositely, the network shown on Fig. 5B
has the same early phase of learning, but the late increase in magnitude of lateral weight
changes is much higher and lasts for about 50 trials. This inefficient selection process might
be due to interference with learning in other trials, but provokes no mistake for the task.
However, around the 120th trial, this competition leads the network to perform a mistake (as
what happens in Fig. 4), and the connections within the network vary for a certain number
of trials before finding the correct solution and stabilizing. The first scheme of learning is
the most frequently observed, while the second one corresponds roughly to the 32.5% of
networks found in section 3.1. We observed a third infrequent scheme of learning similar to
the second one, but where only the connections from CN to SNr are modified in the second
phase of learning, not the lateral ones. This can be explained by the fact that the target
and the distractor have already learned to compete with each other during the learning of
another type of trial.
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Figure 6: Influence of the number of cells in SNr. (A) Mean value and standard deviation
of the last incorrect trial during learning of 50 randomly initialized networks learning DMS-
DNMS AB, depending on the number of cells in SNr. (B) Rank of the first trial during
learning which got a success rate of 100% (computed on the ten preceding trials), depending
on the number of cells in SNr.

3.4. Influence of the number of cells in SNr

As the number of possible distractors in SNr may influence the number of trials needed
to learn the tasks, we investigated the influence of the number of cells in SNr (method
described in section 2.2). Fig. 6A shows the average number of trials needed to learn DMS-
DNMS AB by fifty randomly initialized networks. One can observe that the mean number
of trials needed to learn increases monotonically with the number of cells in SNr, but in a
quite flat manner: from 360 trials with 6 cells to 510 trials with 16 cells (regression analysis
y = 15.16∗x+271.9, with x the number of cells in SNr and y the time needed to learn). This
rather slow increase can be explained by the fact that the selection process in SNr through
lateral connections do not concern cells two-by-two as shown on Fig. 4, but can eliminate
several distractors at the same time. In addition, the variability of these numbers of trials
is rather high, and some networks with 16 cells in SNr converge faster than some networks
with only 6 cells depending on initialization and noise.

As a matter of comparison, Fig. 6B shows for the same networks the rank of the first
trial in the learning sequence where the success rate was 100% (ten preceding trials were
rewarded). One can observe that this first successful trial occurs on average at the same
time in the learning sequence (around 150 trials), independently of the number of cells in
SNr. We estimated the proportion of trial-specific networks that reached an early phase
of success during at least ten consecutive trials before performing a mistake again. This
proportion stays rather constant with the number of cells in SNr, the minimum being 32.5%
for 8 cells and the maximum 40% for 14 cells. Taken together, the result presented here
confirm that there are globally two stages of learning regarding SNr: a first stage of parallel
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Figure 7: Receptive fields of some CN cells after learning DMS-DNMS AB. The X-axis
represent the cells in PRh and dlPFC and the Y-axis the different cells in CN. A white color
represents a positive weight for the connection, grey represents a weight close to zero and
black a negative weight.

search independent of the number of cells in SNr, where the system selects through striatal
inhibition an ensemble of cells in SNr able to obtain rewards (including the target and several
distractors) and a second stage of partially sequential search that depends on the number of
cells in SNr, where the system tries to eliminate the distractors through lateral competition,
what needs more time when the number of possible distractors increases.

3.5. Reward-related clustering in CN

The CN cells learn to represent cortical information from PRh and PFC during the first
stage of learning, together with the parallel selection in SNr. As the competition between
CN cells is not very strong, a cluster of a few CN cells gradually become selective for a
particular pattern of cortical activity which is rewarded. Each rewarded combination of cue
and task symbols in the cortical areas gets represented by 2 to 5 cells in CN, whose identity
may change through learning depending on reward delivery. Fig. 7 shows the receptive
fields (connection pattern with the cortical neurons) of several cells in CN after learning
DMS-DNMS AB. One can observe that some cells developed a very sharp selectivity to the
cue and task symbols in dlPFC, as well as for the target in PRh. They have very strong
positive connection weights to these cells, and relatively strong negative connection weights
to the others. For example, the four cells on the top of the figure are selective for A and
DNMS in dlPFC and B in PRh. After learning, this cluster will selectively inhibit the cell
B in SNr and generate a correct response towards B.

According to these receptive fields, when a cue (e.g. A) is presented at the beginning of a
trial, it will be represented in both PRh and dlPFC and therefore activate preferentially the
cluster in CN selective for A+DMS. This explains the activation pattern of CN cells on Fig.
3: the presentation of the cue favorizes the DMS-related clusters. However, when DNMS or
DPA appear, they tend to inhibit these clusters so that the correct cluster can emerge from
the competition. This tendency of the network to perform the DMS task even when the
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Figure 8: (A) Sum of activities in CN depending the probability of reward associated to the
object X. (B) Association with reward of the cluster representing X in CN, depending on
the probability of reward delivery.

task is not known may have some advantages: a cue which is reliably associated to reward
will see its representation in PRh enhanced through disinhibition of its thalamocortical loop,
compared with visual objects which were never associated with rewards. This is coherent
with the findings of Mogami and Tanaka (2006) who showed that the representation of visual
objects in PRh is modulated by their association to reward.

At the end of the learning phase, the clusters in CN are fully associated with reward,
which means that they totally cancel the phasic DA bursts and could generate a maximal
depletion of DA if reward was omitted. The question that arises is whether all rewarded
objects get represented equally in CN. In order to investigate this issue, we now use the trace
conditioning that we presented in section 2.2. This task consists in presenting to the network
a visual object X which is randomly associated to reward with a fixed probability, whatever
the response of the system. This trace conditioning task is randomly intermixed with the
learning of DMS-DNMS AB, for a total number of 1000 trials. Fig. 8A shows the sum of
the activities of all CN cells at the time reward is given or expected, averaged over the last
50 conditioning trials of the learning sequence. Even with a low probability of reward like
0.1, the object X gets represented in CN by a sum of activity comprised between 3.0 and
5.0. This value must be compared to the sum of activities in CN when reward is never given
(1.1) and which solely consists in weight initialization and noise. This sum of activities can
represent a cluster of 3 to 6 cells depending on their activity.

Fig. 8B shows the association with reward associated of the object X at the time reward is
given or expected, averaged over the last 50 conditioning trials of the learning sequence. This
prediction of reward is computed as the absolute value of the weighted sum of connections
from CN to SNc. Contrary to the striatal representations, this association to reward strongly
depends on the probability of reward. It explains that even rarely rewarded objects can get
represented in CN: the received reward generates a DA burst of activity that increases the
corresponding corticostriatal connections, but it never becomes sufficiently associated to
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reward to generate a DA depletion that would decrease the same connections.

4. Discussion

We designed a computational model inspired by the functional anatomy of the visual loop
connecting a high-level visual cortical area (PRh), some structures of BG (CN, SNc and SNr)
and the corresponding thalamic nuclei (VA). The functioning of this closed loop is biased by
the sustained activation of some prefrontal cells (dlPFC) which here artificially keep track of
activity in PRh. This model is able to learn a mixture of visual WM tasks like DMS, DNMS
and DPA in the context of reinforcement learning, where only a reward signal is delivered
when the system answers correctly. This reward signal drives the activity of a dopaminergic
cell which modulates Hebbian learning in the connections between the neurons of the model.
With the combinations of tasks we tested, the network was able to learn perfectly the tasks
after an average of 500 trials. Even if this number of trials may seem huge in comparison
to experimental data on human adults, one has to consider that the system has absolutely
no prior knowledge about the task: the symbols representing the tasks to perform within
a trial are initially meaningless and the system only sees a couple of visual objects before
being forced to make a choice in an array of objects.

Even if the architecture of the visual BG loop has been simplified compared to the known
literature (only the direct pathway is implemented) and some known mechanisms have not
been taken into account (like the modulation of the activity of striatal cells by DA firing),
this model is able to exhibit some interesting emergent behaviors which can be considered
as predictions. First, we have observed sustained activation of PRh cells which is only due
to thalamic stimulation. As we hypothesized in (Vitay and Hamker, 2008), the observed
sustained activation in PRh (and IT) may not only be the consequence of direct feedback
from prefrontal areas to temporal areas, but may also pass through the thalamus via the
BG in order to gain more control on the relevance of this behavior during the reinforced
learning phase. After this learning phase, the fronto-temporal connections may replace the
BG-thalamus system and directly provoke the sustained activation. Second, the tendency
of the model after learning to start performing DMS right after the presentation of the cue
(as the cue is represented both in PRh and dlPFC) enhances the perirhinal representation
of items that are reliably associated to reward, what is in agreement with the findings of
Mogami and Tanaka (2006). It suggests that the default role of the visual loop of the BG is
to favorize the representation of rewarded visual objects that are present in the visual scene,
and that the role of the connections from dlPFC to the visual loop is to bias this behavior
towards cognitively defined targets, as suggested by Miller and Cohen (2001). Third, cells
in PRh and VA corresponding to the target in the task are activated in advance of the
presentation of the search array. Especially in DNMS and DPA where the target differs
from the cue, this behavior reminds the pair-recall activities found in IT and PRh (Naya
et al., 2003), as well as the presaccadic activities in the medio-dorsal nucleus (MD) of the
thalamus (Watanabe and Funahashi, 2004). We have not found similar results concerning
the VA nucleus of the thalamus, but we predict that VA cells responsive for paired target of
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a DPA task will exhibit pair-recall activity.
There are three different stages of learning in the model. The first stage consists in the

representation of cortical information by the striatal cells based on the delivered reward. This
striatal representation combines the content of the WM (a representation of the cue and the
task in dlPFC) with the perirhinal representation of the target through the activation of a
cluster of cells. These clusters are composed of a limited number of cells due to competition
among striatal cells. The second stage of learning consists in the selective inhibition of a
group of SNr cells by these clusters of striatal cells. This selective inhibition is strongly
modulated by reward delivery, so that the inhibited SNr cells are able to disinhibit the
perirhinal representation of the target but not the distractor. This phase is performed in
a parallel manner which does not depend on the number of cells in SNr. The third stage
of learning is the enhanced competition between SNr cells to decorrelate their activities.
This phase is sometimes characterized by a temporary degradation of the performance of
the network until the target cell gets selected by the competitive mechanism, what makes
this phase sequential with regard to the number of cells in SNr. This phase strongly relies on
the learned reward-association value of striatal clusters in SNc, so that omission of reward
can generate a depletion of DA. However, this distinction into three different stages is made
a posteriori, as all cells learn all the time through the experiments without any change of
parameters in the learning rules.

The role of the learned competition in SNr is to ensure that only the useful thalamocor-
tical loop is disinhibited according to task requirements. Without this competition, several
SNr cells would be inhibited by the same striatal cluster because the initialization of the
connections between CN and SNr is randomly distributed. This could provoke parasitic
disinhibition of thalamocortical loops, leading to involuntary movements or visual hallucina-
tions. Without an additional self-organization of thalamocortical connections the search for
the target cell requires in the progressive elimination of those distractors that strongly com-
pete with the target, eventually leading to DA depletion to resolve the ambiguity. For large
real-world networks one potential way to keep the sequential search in a reasonable bound
would be to consider the topographical projections from cortex to striatum as well as from
striatum to SNr. In our model, these projections are all-to-all and only become selective
for particular patterns through learning. Zheng and Wilson (2002) showed that adjacent
cells in striatum have very little common input, leading to a sparse representation of cortical
information. Similarly, projections from striatum to GPi and SNr also have a sparse connec-
tivity (Bar-Gad et al., 2003), although some GPi cells have been shown to receive input from
functionally different striatal regions (Flaherty and Graybiel, 1994). Wickens and Oorshcot
(2000) observed that striatal cells are organized into small assemblies of neurons that have
mutually inhibitory connections. The number of such compartments is remarkably similar to
the number of GPi neurons, what could suggest a topographical pattern of convergence from
cortex to SNr through striatum that could allow to limit this competition in SNr to limited
sets of functionally related cells instead of the whole population. This would in agreement
with the found pattern of lateral connections between SNr cells belonging to the same or
adjacent functional subdivision (Mailly et al., 2003).
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To our knowledge, this model is the first to address the issue of learning at the level of
SNr, either from striatum to SNr or within SNr. The late selection of the useful-only SNr
cells may allow the prediction that the mean activity of the SNr population will be lower
during learning than after, in the sense that more SNr cells will be inhibited in the first stages
of learning than when the competition takes place. In addition, one may observe that the
performance of the subject could temporarily be degraded after a certain number of successful
trials, due to the late involvement of competition in SNr. From a computational point of
view, our model assigns a new functional role to SNr (and GPi) in the general framework of
BG functioning and may guide to the development of a new class of BG models.

The model currently solves the DNMS task by learning to select the target, not by learn-
ing to avoid the cue. If a novel target were presented together with the cue after the learning
phase, the system would not respond systematically towards it. In this respect, what is
learned by the model when DNMS is required is more a version of DPA that associates cues
together than truly DNMS. In order to learn DNMS, we would have to close the thalamo-
cortical loop corresponding to the cue even more strongly than when SNr cells are at their
baseline level. That could be achieved by exciting strongly the SNr cell corresponding to
the cue, therefore inhibiting the neighboring cells in SNr which can then let other thalam-
ocortical loops become active. The indirect pathway of BG is a possible candidate to truly
learn DNMS: the additional inhibitory relay through GPe allows striatal activation to indi-
rectly excite the output nuclei GPi/SNr (Albin et al., 1989; DeLong, 1990). This indirect
pathway is also particularly involved in the processing of DA depletion, as the striatal cells
participating in this pathway have mainly D2-type DA receptors and are globally inhibited
by DA release. Dopamine depletion could then favorize this pathway and signal precisely to
the output nuclei the omission of the expected reward. Incorporating this indirect pathway
could allow us to truly learn DNMS and might also allow to simplify the learning rules in
SNr which treat differentially over- and below- baseline DA activities. The balance between
the direct and indirect pathway may signal more elegantly these two different situations,
without modifying the principal results presented here.

On top of this possible influence of the indirect pathway on learning DNMS, Elliott
and Dolan (1999) showed that DMS and DNMS involve differentially cortical or subcortical
structures, the MD nuclei of the thalamus (part of the executive loop) being for example
more implicated in DNMS than DMS. This raises the issue of the involvement of the ex-
ecutive loop in solving these rewarded visual WM tasks. In the current model, only the
connections originating from dlPFC (which simply stores perirhinal information) bias rep-
resentations in CN to perform the tasks. The purpose of this model is only to show that
it is possible to retrieve object-related information in high-level visual areas like IT or PRh
through behaviorally-relevant BG gating. The role of the executive loop in rewarded visual
WM tasks is obviously much more complex than just maintaining perirhinal representations:
gating the entry of items in WM (if a distractor is systematically presented during the task
but has no behavioral relevance, it should not enter WM), manipulating them (abstracting
sensory information and applying rules) and eventually actively suppressing items from WM
(at the end of a trial or when a new item makes it obsolete). Gating and suppression of items
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are manually performed in our current dlPFC model but can be learned through the loop
linking dlPFC with the corresponding BG structures modulated by DA firing (O’Reilly and
Frank, 2006). Manipulating and abstracting representations is a harder issue that involves
specifically the prefrontal cortex, but some computational models have already started to
address this problem (Rougier et al., 2005). It would be also interesting not only to learn to
represent specific combinations of cues and task symbols, but also to abstract the rule behind
the task: if a new cue is presented, the system has to learn again this specific combination.
This generalization to novel cues may be the role of the executive loop which may bias the
visual loop in a more abstract manner than just storing cues and task symbols. This view
is supported by the findings of Parker et al. (1997) which showed that MD (thalamic nuclei
part of the executive loop) is crucial for learning DMS when the set of cues is big, but not
when the set is small (what could be learned solely in the visual loop).

An extension of our model that would be able to fully learn the DMS, DNMS and DPA
(with generalization to novel cues for all tasks and avoidance of the cue instead of selection of
the target for DNMS) would therefore be composed of the visual and executive loops of the
BG, both incorporating at least the indirect pathway. The role of the visual loop would be
to retrieve the visual information associated to rewarded objects in the temporal lobe, acting
by default on visually presented objects. The role of the executive loop would be to bias
this processing, either by forbidding the visual loop to perform its automatic behavior (as in
DNMS) or by guiding this behavior towards objects retrieved from memory (as in DPA). The
executive loop would also be responsible for managing the task in time (gating and updating
the entry of items into WM) in order to solve the temporal credit assignment problem,
which is hard-coded in the current model. It would also manage the generalization of the
learned task to bigger sets of cues and ultimately abstract the underlying rule. However, we
expect the principal results of the current model to remain true in this extended version:
the sustained activation of the target is only due to the classical disinhibition mechanism
of the BG; the anticipatory activities in the thalamus are due to the maintenance of cues
and task symbols in the executive loop; and the split of learning in two phases at the level
of SNr should not affected by the incorporation of the indirect pathway, whose role would
be rather a simplification of the treatment of dopamine depletion than a modification of the
competition mechanism.

The way we modeled the dopaminergic firing in SNc is rather simple from a computational
point of view. It receives information about the delivery of reward and learns to associate it
with striatal representations. This reward association progressively cancels through learning
the amplitude of the phasic DA bursts and provokes DA depletion at the time reward is
expected (through an external timing signal) but not delivered. This behavior is consistent
with the observations of Schultz et al. (1997) about DA firing at the time of reward in
conditioning tasks. It does not reproduce the observed phasic burst that appears after
learning at the presentation of the conditioned stimuli (or cue in our case). However, contrary
to the classical approach comparing DA firing with the error signal of the temporal difference
(TD) algorithm (Suri and Schultz, 1999), we consider that this pattern of activation is
computed by a separate mechanism, presumably by the selective entry in WM of the cue in
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the executive loop, as suggested by Brown et al. (1999) and O’Reilly and Frank (2006). This
entry of the cue in the executive loop will provide a timing signal which, combined with the
reward association of the corresponding CN representation, is able to gradually provoke a
DA phasic burst at the appearance of a cue which is reliably associated to reward. From
a conceptual point of view, our current implementation of the DA firing considers that DA
firing only enables the learning of the link between a context (here the content of WM),
an action (the response made by the system) and the consequences of this action (here the
delivery of reward), as suggested by Redgrave and Gurney (2006).

The DA phasic burst generated by the executive loop could allow to signal the behavioral
relevance of a stimulus instead of its association to reward. In the trace conditioning that
we performed, even rarely rewarded stimuli get represented in CN, although they do not
acquire a strong association to reward. By signaling that these stimuli may be rewarded
but do not have a great importance for behavior, this cue-related DA firing may allow
to reduce or even suppress their representation in CN so that the corresponding cells can
focus on more important events. This DA-mediated behavioral relevance may act on the
learning of corticostriatal connections (as we implemented it) or through the modulation
of the membrane potential of striatal cells through the activation of D1 or D2 receptors
(Calabresi et al., 2007). Linking striatal representations to behavioral relevance instead of
just reward-association may allow a more efficient and selective encoding of external events
that can occur in natural scenes.

A few computational models have addressed the issue of memory retrieval in the context
of delayed visual WM tasks (Morita and Suemitsu, 2002; Mongillo et al., 2003; Gisiger and
Kerszberg, 2006). These models are mainly attractor networks which focus on the inter-
play between inferotemporal and prefrontal cortices, but do not consider the influence of
BG on learning through reinforcement. The model by Gisiger and Kerszberg (2006) learns
concurrently DMS and DPA with a paradigm similar to the one we used. It is composed of
three interconnected cortical structures performing respectively visual representation, work-
ing memory and planning, and is able to reproduce electrophysiological data on IT and PFC
functioning. However, it only learns to associate visual representations together, without
learning to schedule the tasks. For example, the execution in time of DPA compared to
DMS is controlled by manually computed gating signals, whereas, in our model, the only
external gating signals concern the entry of visual representations into WM, independently
of the particular task. Even if our model does not either solve the temporal credit assignment
problem, we consider that the BG loops are an important site where the temporal execution
of a task is learned, and that this functioning in time has important consequences on the
content of cortical processing itself, such as anticipatory activities.

A comparison with other BG models is more difficult as we apply our model to a different
paradigm. Some models deal with the influence of BG on reinforcement learning, particularly
in classical or operant conditioning. The model of Suri and Schultz (1999) principally focuses
on the computational aspects of DA firing which is considered similar to the error signal of
the TD algorithm and which biases a direct mapping between stimuli and actions, within
an actor-critic architecture. The model of Brown et al. (1999) is more biologically detailed
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and proposes a distinction between the different sources of information reaching SNc. The
rest of the architecture of the BG is nonetheless kept simple and learning occurs only at the
corticostriatal level. Other models focus more on the executive loop, especially with regard
to WM gating and maintenance. Similarly to our approach, the model of O’Reilly and Frank
(2006) uses the BG as a gating device for specific thalamocortical loops. It is successfully
applied to complex WM tasks such as 1-2-AX, where it learns to generate a binary motor
response depending on the content of WM. It is also applied to the store ignore recall (SIR)
task, where it is presented with successions of visual objects, together with task symbols like
”store” (where it should copy the object into WM) or ignore (where it should not copy).
When the ”recall” signal is presented alone, the system should respond towards the object
that is currently stored in WM, whereas ordinarily it should just respond towards what
is visually available. This task is similar to how we simulated DMS (PRh represents the
visual input except when thalamic stimulation tells the opposite), but their model has the
great additional ability to ignore intervening distractors by selectively updating the content
of WM depending on task requirements. The main differences with our model is that the
output of their model is segregated from the input and that cues and task symbols have to
be presented simultaneously. Adding an efficient executive loop to our model may allow us
to better compare with this model. The model of Ashby et al. (2005) also focuses on working
memory maintenance (although in the spatial modality) through selective disinhibition of
thalamocortical loops by the direct pathway only and considers elegantly the role of the
feedback connections between PFC and posterior cortices. A very functionally different
model was proposed by Gurney et al. (2001), who place the subthalamic nucleus (STN)
at a very central place in the functioning of the BG. They claim that STN mediates the
interplay between the selection pathway (similar to the direct pathway in other models) and
the control pathway which biases processing in the selection pathway instead of acting in
the opposite direction as suggested in the classical direct/indirect (or Go/NoGo) dichotomy.
Although DA has there only a tonic effect, the concepts introduced in this model allow to
reconsider the functional connectivity between BG structures.

Our proposed model is coherent with most cortical functional models of visual WM, such
as Ranganath (2006). It considers that relevant visual objects are actively maintained in
dlPFC and fed back in high-level visual areas. These visual areas themselves modulate visual
processing in the ventral pathway through feedback connections, in order to create object-
based attention that helps selecting the correct target in space (Hamker, 2005a). However, we
propose that in the first phase of learning, BG learns to associate prefrontal representations
with visual representations through reinforced trial-and-error learning in order to acquire
the correct behavior. In parallel, but more slowly, the top-down connections from PFC to
IT or PRh learns the same task in a supervised manner, BG acting as the teacher. After
this second stage of learning, this prefrontal feedback on high-level visual areas can become
the unique source of memory retrieval, as suggested by the results of Tomita et al. (1999).
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Software module for the Basal Ganglia model

1 Description of the model

We designed in [Vitay and Hamker, 2010] a computational model of the visual loop of the basal ganglia

(BG) that is able to learn to perform delayed rewarded tasks under the biasing of short-term mnemonic

activities in prefrontal cortex. These tasks require to maintain a visual cue and to associate it to itself or

to another visual object depending on an intervening task symbol in order to obtain reward. They are

derived from the classical delayed matching-to-sample (DMS), delayed nonmatching-to-sample (DNMS)

and delayed pair-association (DPA) tasks. This model shows various interesting results listed in the

article, such as sustained activation of target representations in the visual areas, recall activities, split of

learning in two phases due to competition in the output structure of the BG.

The architecture of the model is depicted on Fig. 1A. It is composed of 6 different brain areas (PRh,

dlPFC, CN, SNR, VA and SNc). Each of these areas is composed of a set of artificial neurons, whose

number vary with the area (8 for most of them, except CN which has 64 cells and SNc just one). The

neurons used in each area are homogenous, insofar as they all use the same differential equations to

compute their instantaneous firing rate and the same learning rules to update their afferent connections,

with the same parameters. The different equations and parameters for each area are described and

biologically justified in the paper. The functioning of the network is autonomous and distributed, as

each neuron only use local information (its current state and the activities of remotely connected neurons)

to update its state. An exception is the inputs to the area PRh, which are simulated externally to reflect

the visual perception of the system. The activities in PRh are also observed by an external mechanism

in order to determine the response of the system, what allows to compute a binary reward signal that

reflects the fact that this response is in agreement to what was expected. This reward signal is used

as an input by the unique cell in SNc in order to modulate learning in the network. The software we

implemented can therefore be separated into two components: the neural network by itself; and an

external environment which gives visual inputs to the network, observe its response and give reward

accordingly.

The tasks proposed to the network are shown on Fig. 1B. The learning session of a network consists

in the successive presentation of 1000 trials, which all follow the same picture. The top part of Fig.

1B shows the time course of the visual inputs presented to the network during a trial. Each trial is

decomposed into periods of 150 ms. During the first period, a cue chosen randomly among a fixed set

is presented to the network, followed by a delay period without visual stimulation. A visual object

representing which task to perform (DMS, DNMS or DPA) is then presented, followed by the same delay

period. In the following choice period, two objects are simultaneously presented to the network: the

target (whose identity is defined by the cue and the task symbol) and a distractor chosen randomly

among the remaining cues. At the end of this period, the response of the network is considered to be

performed, and reward is given accordingly through a probabilistic rule during the following reward

period. Although time is an important component here (as we will see later, the discretization step of

the equations is 1 ms and a trial lasts 1050 ms), the temporal evolution of the visual inputs and the

evaluation of performance is quite simple and can be controlled by a simple finite state machine. The

bottom part of Fig. 1B represent a delay conditioning task also used in the article, which is shorter in

its duration but follows the same principles.

We will present in the next section the generic library that we developped to simulate distributed

networks of mean-rate artificial neurons, as well as the expected computational properties. The following

section will describe the use of this library to simulate our model.
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(A) (B)

Figure 1: (A) Architecture of the model. Pointed arrows denote excitatory connections and rounded

arrows denote inhibitory ones. Circular arrows within an area represent lateral connections between the

cells of this area. (B) Timecourse of the visual inputs presented to the network. Top: rewarded trials

like DMS, DNMS or DPA. Bottom: delay conditioning.

2 Description of the ANNarchy library

The generic library ANNarchy (Artificial Neural Networks architecture) was developped in the lab to

allow the shared development of distributed neural networks, by abstracting the underlying simulation

mechanisms and leaving the developper the only task to specify the architecture of the network, the type

of neurons used (equations ruling the evolution of the mean firing rate, learning rules), the connection

pattern between brain areas and the environment. This library allows different developpers to elaborate

neural models independently and to gather them without compatibility problems. It is written in C++

and makes use only of GNU or free software tools. It provides a set of abstracted classes that can be

derived by the developper to describe its network, and is able to automatically generate a graphical

interface in order to visualize the firing rates and interact in real-time with the network. It runs on

MacOSX and Linux, both 32 or 64 bits, and uses POSIX threads to simulate different parts of the model

on different processing cores.

The term ”distributed” means that neurons have only access to local information through connections

to other neurons and not to global information, like the state of the entire network or connection weights

of other neurons. In principle, biologically unplausible mechanisms like back-propagation and winner-

take-all are impossible with this simulator, even though there are ways to implement them anyway (in

particular, winner-take-all is implemented). Within this framework, a neural network is not only a

collection of interconnected neurons, but is structured into maps (possibly representing cortical areas)

and layers (cytoarchitectonic layers or different neurons types). This is meant to help to define patterns

of connections between neurons (inside a layer, between layers of the same map or between distant maps)

as well as to represent graphically the activity of the neurons.

ANNarchy also provides the ability to perform asynchronous evaluations. In classical synchronous

evaluation, the evaluation of the variables of the neurons (such as the firing rate) at one timestep is

performed depending on the value of these variables at the previous timestep. Oppositely, asynchronous

evaluation uses new values of variables as soon as they are computed. Let’s take an example with two

neurons who just copy each other’s activity. Let’s say their respective activity is a(t) and b(t). In the

synchronous mode, we will have a(1) = b(0) and b(1) = a(0) after the first step, a(2) = b(1) = a(0) and

b(2) = a(1) = b(0) after the second step and so on. In the asynchronous mode, one of this two neuron

will be randomly chosen and updated. For example, we will get b(1) = a(0). The other neuron will

be updated according to this new value: a(1) = b(1) = a(0). Further evaluations will not modify these

values, which is a totally different behavior. It was shown in [Rougier and Vitay, 2006] that asynchronous

evaluation in densely interconnected populations of neurons favorizes competition and is a more realistic

way to address massively parallel architectures such as FPGA or ASICs.
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Figure 2: Structure of the network. The network, derived from the class annarNetwork, is basically a
collection of maps deriving from annarMap. Each map contains one or several layers (annarLayer). Each
layer contains several neurons (annarNeuron) which are stored in two-dimensionnal arrays. Neurons also
store a collection of connections (Weight) that represent the synaptic weight and the presynaptic neuron.
The external word, providing perception, reward, or analysing motor outputs is simulated in annarWorld.
The graphical representation of the network is managed by annarWindow.

The architecture of an ANNarchy network is depicted on Fig. 2. Each object described in this figure
must derive from an abstract class defined in the simulator. A network is derived from the annarNetwork
class. Only one network can be defined at the same time in the simulator. A network is basically a
collection of maps, which represents for example a cortical area. A map should derive from annarMap
and consists of a collection of layers (annarLayer). The underlying idea is that the connectivity between
layers does not vary a lot throughout the cortex, so one can reuse the same map to simulate different
cortical areas by just defining different connectivities between areas, or perhaps by changing only some
parameters inside the map. One layer is then a collection of individual neurons, which should derive from
annarNeuron. Neurons are stored in an array, with an unique rank in the layer. However, they are also
considered to be arranged in two dimensions: a layer therefore has a width and a height and each neuron
can also be accessed by its position in the 2D space. For example, this 2D representation is useful to
create gaussian connectivity kernels between cortical layers, or whatever topology the developper wants
to define. The neuron class is where all the actual computations occur. Each neuron has a certain
number of internal variables, but one must be the firing rate of the neuron). The others can be added
by the user in the sub-classes. Every neurons in one layer must have the same type, which means that
only one particular subclass of annarNeuron can be added to this layer - of course, different layers can
use the same type of neurons. Each subclass must define a step() method where all internal variables
will be updated at each computation timestep.

Neurons are connected with connections that are represented by objects of type Weight. These objects
are very small (they mainly contain the address of the presynaptic neuron, the weight of the connection
and its type) and are stored in arrays in the neuron’s corresponding object. Connections also have to
be defined as learnable or not (to speed up processing), so that the call of the method learn() that has
to be implemented in every neuron’s subclass allows to update these learnable connections according to
any user-defined learning rule. This learning rule has to be local, which means that it can only consider
pre- and post-synaptic firing rates, as well as post-synaptic internal variables.

All the interactions of the network with the external world (perception, decoding of actions, rewards,
etc...) have to be managed in a class deriving from annarWorld. Its method step() is evaluated every
computation timestep before the neurons. When the graphical interface is used, the user can add some
buttons, rulers, etc. that can interact either directly with the network or through the external world.
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A class deriving from annarWindow has to be defined for this purpose. The parameters defined in neu-

rons, maps, networks and external worlds can also be declared at the construction, so that the graphical

interface allows to modify them on-the-fly during simulations, to speed-up ”at-hand” parameter opti-

mization. Non-learnable connections can also be modified during the simulation. The library additionaly

provides several utilities, such as regular saving of internal variables, connection weights, descriptions of

the network etc.

3 Implementation of the model

By using the ANNarchy library, the simulation of the model described in section 1 is quite straightforward.

We only needed to define the number of maps in the network (here they represent the six brain areas of

Fig. 1, with only one layer in each), the connection patterns between these maps, the equations followed

the neurons in each area (updating of the firing rate and learning rules), and the external environment.

Within this implementation, the continous differential equations presented in the article are discretized

with a timestep of 1 ms following the Euler method. The partial derivate of the equation is evaluated

each timestep in the step() and learn() methods of each class describing a particular neuron for a

given area. The following list describes the different classes developped to simulate our model.

• Network, derived of annarNetwork. This class is created first and defines how many maps and

layers will be created as well as the type and number of neurons they contain. When these objects

are created, it defined the connections between the areas, by using predefined patterns such as

”one-to-one”, ”gaussian” or ”all-to-all” which can be parameterized, and specifying if they can

be learned. Once the network is created, threads for each layer are created and an infinite loop

managed by the ANNarchy library calls the step() method of every constructed neuron depending

on the mode of evaluation.

• PRh, derived of annarNeuron;

• dlPFC, derived of annarNeuron;

• CN, derived of annarNeuron;

• SNr, derived of annarNeuron;

• VA, derived of annarNeuron;

• SNc, derived of annarNeuron. These six classes representing different neuron types all initialize

some parameters and define the step() and learn() methods. The step() method contains the

discretized derivate of the equation ruling the mean firing rate of the neuron. It sums afferent

connections that are stored in an array and computes the new firing rate. The learn() method

does the same job, but for every afferent connection, by discretizing the corresponding learning

rule.

• World, derived of annarWorld. This class simulates the external environment of the neural network.

Its step() method is called every computational timestep before the neurons are updated. It allows

to define which neurons in PRh will receive a visual input, observe the activity of PRh neurons

when needed to compute the answer of the system and to provide reward to the neuron in SNc or

not. This behavior is controlled by a finite state machine whose state evolves every 150 timesteps.
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