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Abstract: 
This deliverable demonstrates the interaction of an enhanced version of our working memory model 
(D3.3a) and the object recognition system (D3.2). The working memory is achieved by recurrent loops 
between the subcortical areas of the basal ganglia and the prefrontal cortex. A similar loop through the 
motor cortex models a response selection behavior. The previous model in deliverable D3.3a did not learn 
the updating of working memory. The new model covers the biological structure of the mammal brain for 
the purpose of actively maintaining and updating the content of the working memory. One of the goals in 
Eyeshots is to develop a “perceptual agent for interacting, control/planning in the peripersonal space” using 
stereoscopic object recognition. Such complex tasks will at some point benefit from the ability to hold 
previously visible information in memory and to select between behavioral alternatives. Since not 
particularly task has been specified we used for this report a typical working memory task (the 1-2-AX 
task): The model is required a number of objects and select a category depending on the sequence of 
presented objects. As previously, the objects are modeled as 3D objects in virtual reality to allow 
stereoscopic object recognition. The recognition transforms the stereoscopic images into a cortical 
representation of the object. The basal ganglia model learns to memorize an object or to suppress it from 
working memory depending on the task requirements. It also learns to select the correct category based on 
previous received reward (stimulus-reward-associations). 
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1 Executive summary

This document contains the report for deliverable D3.3b “Final, fully tested version of

the Working Memory Model”. Technical report.

The European project “Eyeshots” focuses on the research of a visuo-motor system which

is based on the concept of “active and fragmented vision”. It is inspired by the primate

brain which actively generates a cognitive interpretation of a perceived scene. It does

not encode the scene as pure 2D images or reconstruct real 3D data. Instead, it creates

an efficient code in which a scene consists of distributed and loose features, called visual

fragments. A visual fragment can represent simple features (like edges or corners) or

more complex parts of an object. A set of fragments is associated with each object and

thus forms this object.

One of the goals of the project Eyeshots, sharing a peripersonal workspace, requires to

hold previously visible information in memory to allow the agent to be able to choose be-

tween behavioral alternatives. Both requirements are addressed by the working memory

model. We present the results achieved by a combined model of our object recognition

system (D3.2) and of our working memory model (D3.3a). To ensure that the task is

general enough and also replicable, we decided to use a well known task from literature of

working memory. In this 1-2-AX task, decisions must be taken dependent on previously



presented symbols and the agent must be able to deal with distractors (distractors are

irrelevant objects for the current task which should not be remembered). Only special

combinations of the symbols (e.g. a ’1’, followed by 2 and by X) result in one certain

decision, all other combinations result in another behavioral alternative. The number of

possible combinations is very high and the agent does not know in advance if a symbol

is important or a irrelevant. This is also typical for real world tasks which makes such

tasks very difficult.

2 Combined model

2.1 Introduction

In this document, we demonstrate the interaction of a working memory model (D3.3a,

[2, 4]) and the object recognition system (D3.2, [3, 5]). We have explored in deliverable

3.2 how the brain can bind different visual fragments together to form an object (binding

process). A visual fragment can encode simple features like edges, but also more complex

shapes like part of a view from an object. A set of fragments is associated with each

object and thus forms this object. Our approach is that the concept of attention [6] is

used to bind these spatially distributed fragments together. The attention process uses

feedforward connections to detect the fragments and recognize an object. We do not use

here feature-based attention (like in [3]) in form of feedback connections from the object

representing cells to the feature cells.

Almost every task requires to hold previously visible information or to recall context

information from memory, especially when the sharing of workspace is required. Such

properties of cognitive vision systems are often referred to establishing a global workspace

for specific tasks such as planning and action control. Working memory (WM) is a

key prerequisite for planning and executing action responses. In a prominent notion

[7, 8], WM consists of the capability to maintain information over limited periods of

time and the capacity to manipulate that information. By maintaining information in

WM, an organism can detach its responses from its immediate sensory environment

and exert deliberate control over its actions. Healthy human adults demonstrate an

enormous flexibility in WM control which must be acquired meticulously over many

years of childhood and adolescence. In the early years of childhood, even WM tasks as

simple as a Delayed-Match-to-Sample task pose a serious challenge [9, 10].

Several brain structures have been shown to contribute to WM, among them lPFC1

[11, 12], posterior parietal cortex [13, 14], hippocampus [15], cerebellum [16] and BG2

1lPFC: lateral prefrontal cortex
2BG: basal ganglia

2



[17, 18]. We focus here on the role of a looped architecture of cortex, BG and thalamus

in controlling WM and motor selection: Closed cortico-BG-thalamic loops, connecting

a particular area of cortex to itself, can be anatomically distinguished from open loops,

linking in an ascending manner areas involved in motivation, action planning and motor

execution [19, 20]. This architecture of parallel and hierarchically interconnected loops

provides a potential anatomic substrate for how cognitive and motor states can be main-

tained for extended periods of time (closed loops), and for how cognitive processes can

bias response selection (open loops; cf. [19]).

The prominent role of BG within cortico-BG-thalamic circuitry has been conceptualized

in several theoretical accounts: BG are assumed to take part in visual and motor category

learning [21], in transforming goal-directed actions into habitual responses [22, 23] and in

establishing associations between stimuli and responses [24]. Most eminently for learning

of behavioural alternatives, BG has an important role in reinforcement learning3: BG

receive dopaminergic afferents from SNc4 providing the BG with an error signal of reward

prediction [25, 26, 27]. This reward prediction error is encoded by Dopamine levels which

have been shown to modulate long-term synaptic plasticity within BG, especially in its

major input structure, the striatum [28, 29, 30]. Functional, Dopamine can be seen as an

reward prediction error, encoding the difference between the expected and the currently

received reward. Dopamine bursts (above a tonic baseline level) occur from unexpected

rewards while dopamine depletions (under this baseline) follow omissions of expected

rewards.

In summary, the report will focus on the integration of the object recognition system

with the developed and recently improved working memory model. The object recogni-

tion system will only be mentioned briefly (a comprehensive description can be found

in [3, 5]) and we will focus in this report on the biological enhancements of the working

memory model. We will present a biologically meaningful computational model of how

the BG-loops contribute to the organization of working memory and the development

of response behavior. The model learns to flexibly control working memory within pre-

frontal loops and to select appropriate responses based on working memory content and

visual stimulation within a motor loop. Importantly, we show that both systems, work-

ing memory control and response selection can, develop on top of the same cortico-basal

ganglio-thalamic architecture by Hebbian and Dopamine based three-factor learning. As

a exemplary working memory task for a shared workspace scenario, we use the relatively

complex 1-2-AX task and we describe that we must teach the task in three steps (Shap-

ing), otherwise it can not be learned by the model nor by humans or animals [33]. In

general, humans are able to learn very complex task also only step by step and we show

that the model can deal with such a complex tasks in the same way. Finally, we will

3RL: A mammal is trying a behaviour and it learns from its received reward.
4SNc: substantia nigra pars compacta, a nucleus of the midbrain
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Figure 1: Functional overview of the combined object recognition (stereoscopic edge de-

tection and distributed object encoding) and working memory model (working

memory loop and motor response selection). Dashed lines indicate Dopamine

influence, therefore these weights are adapted according to the difference be-

tween received and expected reward (reward estimation error).

demonstrate the enhanced model ability to learn the 1-2-AX task after combination with

object recognition. Parts of this deliverable are taken from the manuscript “Working

memory and response selection: A computational account of interactions among cortico-

basal ganglio-thalamic loops” by Schroll et al., 2011 ([1]). The manuscript contains a

comprehensive description of the model (including all equations) and the performance

for two working memory tasks (delay response and 1-2AX).

2.2 Functional overview about the combined model

The goal of the model is to maintain working memory and to select the correct response

for the current task. It learns from visual experience and from previous rewards by

associating these rewards to specify visual stimuli. The central idea of maintain the

working memory is that an agent has to remember objects that are useful or necessary for

the task at hand. An object can be defined as very useful, if the agent can expect a high
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Figure 2: The stimuli consist of 8 different 3D objects representing the 8 symbols used

in the 1-2-AX task [33]. The letters at the top denotes the symbol names of

the 1-2-AX task.

reward when it remembers this object and choose a decision based on this memorization.

By this idea, the agent learns when it should store, hold or delete a specific stimuli from

WM.

Figure 1 gives an overview of the model. We have built in a virtual reality(VR) 8 different

objects, each represents a symbol for the 1-2-AX task (Figure 2). The VR raytracer

creates stereoscopic views of these 3D objects. First, the views are processed by an

stereoscopic edge detection model. From this representation, the system recognizes an

object and represents it in a distributed way, hence every symbol is encoded by several

cells. After recognizing the object, we pass the activations to the WM and motor

response selection system.

The working memory is organized in several thalamic-cortex-BG loops which can each

maintain a certain symbol. The basal ganglia system estimates the expected reward for

each symbol. If we get more reward than expected, the model reinforces the memoriza-

tion of such a loop, therefore the object was helpful to solve the current task. If the

object will occur again, the working memory will memorize it and the model will be

able to solve the task again. On the opposite, if the model receives less reward than

expected, the model has remembered the wrong object resulting in an inhibition of spe-

cific weights and the model will less likely store the symbol in working memory in the

future. The difference between expected reward and received reward is called reward

prediction error and the function of this term can be compared to Dopamine release in

the brain [25, 26, 27]. The model will learn which symbol is useful for a task, but it will

learn as well which symbol should be suppressed from working memory content.
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Figure 3: Neuronal network of the stereoscopic object recognition model. The i and j

indices correspond to the spatial x and y axis of the images. The index k

refers to different Gabor responses and l to different learned features in HVA.

Adapted from [3].

From the current presented stimuli and the past sensations (WM), the model learns to

associate a motor response. This learning is again based on the expected and received

reward. At the beginning, the working memory can not be maintained appropriate and

the motor decisions can only be chosen dependent on the currently presented symbol.

After the agent gets constantly rewarded, the model learns to maintain WM accurately.

Because of these requirements, the motor-reward association are learned faster and per-

form earlier correctly than the working memory loops.

After this functional overview about the model, we briefly introduce the object recogni-

tion system and then explain the biological architecture of the basal ganglia system to

achieve a biological meaningful WM model.
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2.3 Object recognition system

The object recognition system [3, 5] uses learned object representations based on local

edge detectors. The objects are detected depending on their shape or texture and thus we

do not use color information. The following section is a summary of Beuth et al. (2010).

In our neuronal model (Fig. 3), we simulate an early area (V1) detecting stereoscopic

edges and a high level area (HVA) recognizing objects. The cells of HVA could be

functional mapped onto area V2/V4/ITC. An object is represented by a distributed

code of HVA cells, where a single HVA cell can be interpreted as representing a single

view of an object. As input stimuli we use the left and right eye view of 8 different

3D objects (Fig. 2), produced by a raytracer engine [34]. The first layer serves as a

preprocessing for the HVA, it detects stereoscopic edges and disparities via an energy

model [35, 36, 37] and it is comparable to area V1. This particular energy model [38]

uses 56 Gabors with 8 orientations (with a π
8

step size) and 7 different phase disparity

shifts (with π
4

step size). This area builds a representation of the scene encoding edge

information, independent of the right or left view and therefore enables stereo object

recognition.

Overlapping receptive fields serve as input for the cells of the HVA. We achieve the object

selectivity by learning the feedforward weights (V1→ HVA) with a biological motivated

learning algorithm [39] and a trace rule using temporal continuity for the development

of view-invariant representations of objects (like in [40, 41, 42]). For the idea of trace

learning, we use the temporal correlations which are included in the visual input. If

we consider a short time spawn, mammals will look with a higher probability at the

same object rather than at different objects. Therefore, the visual input is more likely

to originate from different views of the same object, rather than from a different object.

To combine stimuli that are presented in succession to one another, activation of a pre-

synaptic cell is combined with the post-synaptic activation of the previous stimulus using

the Hebbian principle. We simulated an appropriate temporal presentation protocol

where the agent mostly kept the fixation at one object and only rarely switched to

another object.

The Frontal Eye Field (FEF) consists of two areas, the saliency map (called FEF visual)

and the map encoding the target of the next eye movement (called FEF movement). One

of the binding processes operates over all locations in HVA and reinforces the features of

the searched object (which depends on the current task). The other is achieved by the

loop over FEFvisual and FEFmovement. This mechanism reinforces adjacent locations.

Both processes use a soft winner takes all competition to decrease the activity of irrel-

evant features and locations in HVA. After convergence of the system, FEFmovement

encodes the target of the next planned saccade. From this information about the object

position, we can use the appropriate HVA response as a distributed neuronal response
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Figure 4: The input of the working memory part of the combined model. The neuronal

reponse of ITC is shown for every symbol (at the x-axis) and every cell of

ITC (y-axis). Comparing to the original model, the combined model uses a

biological more realistic distributed representation of the symbols.

to represent the object. This neuronal response (Figure 4) is comparable of the neurons

in ITC and it will be directly passed to the WM and response selection model.

2.4 Distributed representation of symbols in the combined model

The combination of the object recognition system with the WM model made a change

of the symbol representation in ITC necessary. In the combined model, each object is

represented by several cells in a distributed manner. The encoding is the same as used

for the object representation in the HVA (Figure 3) and more precisely, it is determined

by the feedforward weights (V1→ HVA). These weights are learned from the visual in-

formation by the trace learning rule [3] in a self-organized manner and and hence the

encoding of the cells is indirectly determined by the visual input.

Due to the distributed coding we increased the overall number of cells in ITC, here from

8 to 16 (arbitrary chosen value). The working memory model uses the object encoding

of ITC as input. Most connections are adapted by Hebbian learning or by Dopamine

learning. Both learning rules can deal with an increased number of cells due their self

organizing principle. To conclude, the model works well with different input sizes if the

mean activity in the areas ITC, PFC, STN, GPe are nearly the same. It is of course
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necessary that the firing rates of active cells in ITC can clearly distinguish from inactive

cells.

3 A model for working memory and response selection

This section briefly describes the enhanced working memory model (WM model) focusing

on the biological architecture.

3.1 Biological architecture of the model

BG can be divided into three main functional domains based on cortico-striatal afferents

[44]. 1) The limbic/ ventral domain is involved in classical conditioning and evaluation

of motivational valences [45]. The corresponding part of the striatum is called nucleus

accumbens and receives afferents from orbitofrontal cortex, amygdala and hippocampus.

2) The executive domain (associated to the caudate nucleus as another part of striatum)

is mainly connected to lPFC. It is involved in goal-directed learning, action-outcome

associations and WM [46]. 3) The sensorimotor domain is mainly associated to pre-

motor and sensorimotor cortices and is involved in action selection, stimulus-response

associations and habitual control [47]; the corresponding striatal part is called puta-

men. These different domains interact through ascending cortico-cortical projections,

thalamo-cortico-thalamic projections and through a spiraling pattern of connections be-

tween striatum and the dopaminergic areas of SNc and ventral tegmental area [19].

Further, cortico-striatal fibers that originate from different cortical areas overlap in the

striatum [49, 48, 50]. These anatomical arrangements create a hierarchy of information

flowing from the limbic domain via the executive/prefrontal domain to the sensorimo-

tor domain. [19]. Figure 5 shows the general layout of our model which contains two

prefrontal loops and one motor loop. The model consists of parallel and hierarchically

interconnected loops that have the same general architecture and obey the same learning

rules. The loops’ internal connectivity is consistent with cortico-BG-thalamic circuitry

[51, 32, 19]. Prefrontal cortico-BG-thalamic loops (as shown on the left of Figure 5)

control WM by flexibly switching between maintenance and updating of information.

Then, they bias a motor loop (shown on the right of Figure 5) to decide between a set

of possible responses. As previously motivated by others (e.g. [33, 43, 52]), our model

contains multiple independent prefrontal loops. While there is no theoretical limit to the

number of loops that can be incorporated, we kept it as small as possible to minimize

computational costs: two loops are sufficient to learn the task analyzed in this report.

The general functional framework of our model is straightforward. During stimulus
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presentation, visual input is externally fed into ITC5. Stimulus-related activity can then

spread through the model and bias processing within prefrontal and motor loops. Motor

responses are read out of MI6 activity and rewarded if correct. When a reward is

given, reward information is fed into SNc where an error signal of reward prediction

is computed. From this error signal, BG learn to self-organize in such a way that the

model’s responses maximize rewards.

All cortico-BG-thalamic loops obey the same functional architecture. Notice, however,

that the motor loop is simplified in some respects when compared to prefrontal loops:

it is not equipped with a hyperdirect pathway and has hard-coded instead of learn-

able pallido-pallidal, cortico-thalamic and thalamo-cortical connections. For the tasks

analyzed in this report, these simplifications do not result in significant reduction of

model performance while on the other hand saving computational resources. The loops’

functional architecture works as follows. Activation in the cortex excites striatal and

subthalamic neurons. Striatum then inhibits tonically active neurons of GPi7 via striato-

pallidal connections that are usually referred to as the direct BG pathway. Decreasing of

GPi firing in turn disinhibits thalamic neurons that excitatorily connect back to cortex.

In global terms, the direct pathway serves both to establish WM maintenance by map-

ping cortical representations onto themselves, and to link WM content to appropriate

responses by mapping prefrontal-loop representations onto specific motor-loop represen-

tations. In contrast, activation of STN8 causes a strong and global excitation of GPi

via subthalamo-pallidal fibers that are usually referred to as the hyperdirect pathway.

As activity is spreading from STN to GPe9, inhibitory GPe-GPi connections cancel the

excitatory effects of STN on GPi. In prefrontal loops, the hyperdirect pathway thus

gives a brief and global reset pulse to GPi, allowing the respective loop to update. As

stated above, we did not model the hyperdirect pathway of the motor loop which we

assume to hold back motor responses until appropriate. The interplay of the various

layers is in detail be analyzed in [1], section 3.2.2.

Each of the modeled layers consists of dynamic, firing rate-coded neurons (exact numbers

are reported in [1], Table C.2). For each neuron, a membrane potential is determined

by a differential equation, discretized according to the Euler method with a timestep of

1 ms; a cell-specific transfer function turns membrane potentials into firing rates. The

differential equations are evaluated asynchronously to allow for stochastic interactions

between functional units. As a general template, membrane potentials
(
mpost
i (t)

)
are

5ITC: inferior temporal cortex
6MI: primary motor cortex
7GPi: globus pallidus, internal segment
8STN: subthalamic nucleus
9GPe: Globus pallidus, external segment
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Figure 5: Architecture of the working memory model: prefrontal cortico-BG-thalamic

loops flexibly control WM and guide a motor loop to choose between a set of

possible responses. While the general layout of prefrontal and motor loops is

the same, the motor loop is simplified as explained in the main text. Boxes

represent the different layers of the model, arrows the connections between

them. Solid arrows denote hard-coded connections between or within layers,

dashed arrows learnable ones. Pointed arrows symbolize excitatory connec-

tions, rounded arrows inhibitory ones. The grey arrows deriving from SNc

represent a modulatory influence on learning within BG afferents. Explana-

tions are given in the main text. GPe: globus pallidus external segment; GPi:

globus pallidus internal segment; lPFC: lateral prefrontal cortex; MI: primary

motor cortex; ITC: inferior temporal cortex; SNc: substantia nigra pars com-

pacta; STN: subthalamic nucleus.
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computed by the following differential equation:

τ · dm
post
i (t)

dt
+mpost

i (t) =
∑
j∈pre

wpre
i,j (t) · uprej (t) +M + εi(t) (1)

where: τ is the time constant of post-synaptic cell i, uprej (t) the firing rate of presynaptic

cell j, wpre
i,j (t) the weight between these cells, M a baseline membrane potential and

εi(t) a random noise term. Each of the cell’s inputs is determined by multiplying the

respective presynaptic firing rate by the weight from the pre- to the post-synaptic cell.

Individual inputs are then summed up and the baseline membrane potential and random

noise term are added.

Firing rates
(
uposti (t)

)
are computed from membrane potentials by a layer-specific trans-

fer function, usually giving the positive part of the membrane potential:

uposti (t) =
(
mpost
i (t)

)+
(2)

with ()+ denoting that negative values are set to zero.

Loops are not predetermined to represent particular stimuli: each prefrontal loop re-

ceives the same visual input and only by accumulating knowledge about its environment

it will learn to encode certain stimuli and ignore others. Figure 5 depicts all learnable

connections of the model by dashed arrows. As explained in detail in the next para-

graphs, thalamo-cortical and cortico-thalamic learning is Hebbian-like whereas learning

in BG relies on three-factor rules, involving presynaptic, post-synaptic calcium level and

a reward-related dopaminergic term [53]. Dopamine levels are controlled by SNc firing

rates and encode an error signal of reward prediction.

Dopaminergic learning poses an obvious challenge on modeling: the stimuli are typi-

cally presented (and responses performed) before reward delivery (compare section 4.1),

there will be a delay between concurrent activity of pre- and post-synaptic cells and

the dopamine levels resulting from that activity. The brain’s probable solution to this

problem is the usage of synapse-specific calcium eligibility traces: concurrent pre- and

post-synaptic activity leads to a sudden rise in input-specific post-synaptic calcium con-

centrations
(
Capost

i,j (t)
)

that decrease only slowly when concurrent activity ends.

ηCa ·
dCapost

i,j (t)

dt
=

(
uposti (t)− post(t)

)+ · (uprej (t)− pre(t)
)

(3)

ηCa =

{
ηinc if dCapost

i,j (t) > 0

ηdec else.
(4)

ηCa is the time constant of the calcium trace, pre(t) the mean firing rate of afferent layer

pre at time t, post(t) the mean firing rate of post-synaptic layer post at time t, ηinc a

12



parameter controlling the speed of calcium level increase and ηdec a parameter controlling

the speed of calcium level decline. When, at the same point of time, both presynaptic

cell j and post-synaptic cell i fire more than the mean activities of their respective layers,

dCapost
i,j (t) gives a positive value. As ηCa is set to the relatively small value of ηinc in that

case, the corresponding calcium level increases rapidly. In contrast, when concurrent

activity ceases, dCapost
i,j (t) becomes negative and the calcium level decreases. As ηCa is

set to a relatively large value (ηdec) in that case, it does not directly drop to zero but

declines rather smoothly. Calcium eligibility traces are inspired by findings that calcium

levels stay heightened for some interval longer than actual pre- and post-synaptic activity

[54] and that post-synaptic calcium is required for striatal dopamine-mediated learning

[55, 56]. Specificity of synaptic plasticity is an established finding [57].

To determine the change in BG-afferent weights
(
wpre
i,j (t)

)
, a three-factor learning rule is

used, comprising the calcium trace described above (which contains the two factors pre-

and post-synaptic calcium levels) and a dopaminergic term (DA(t)) linked to reward

delivery:

η ·
dwpre

i,j (t)

dt
= f (DA(t)−DAbase) · Capost

i,j (t)

−αi(t) ·
(
uposti (t)− post(t)

)2 · wpre
i,j (t) (5)

τ · dαi(t)
dt

+ αi(t) = Kα ·
(
uposti (t)− uMAX

)+
(6)

f(x) =

{
x if x > 0

φ · x else.
(7)

DA(t) is the dopamine level of the respective loop at time t, DAbase the baseline dopamine

level of 0.5, αi(t) an adaptive regularization factor, uMAX the maximal desired firing rate

of cell i, φ a constant regulating the strength of LTD10 relative to the strength of LTP11

and Kα a constant that determines the speed of increases of αi(t). In case of a dopamine

burst (i.e. when dopamine levels rise above the baseline level of 0.5), all weights are

increased in proportion to the strengths of their calcium traces; dopamine depletions

(i.e. dopamine levels below baseline) decrease recently active synapses accordingly. The

subtractive term of the equation ensures that weights don’t increase infinitely: when

connections are strong enough to push firing of a post-synaptic cell above a particular

threshold defined by uMAX, αi increases and all weights to that post-synaptic cell are

diminished. Increases of αi can be slow or fast depending on the value of Kα.

By applying a single set of learning principles to all loops, we show their flexibility to

implement two highly different functions: to establish flexible control of WM, and to

10LTD: long-term depression
11LTP: long-term potentiation
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link distinct cortical representations in a stimulus-response manner, thereby linking WM

to motor control. While the general learning rules for prefrontal and motor loops are

the same, the parameter values regulating LTD in case of dopamine depletion differ.

In particular, LTD in prefrontal loops is assumed to be slower than in the motor loop,

biologically inspired by a gradient of rostro-caudal dopamine D2 receptor density that

increases from limbic via associative to sensorimotor striatum [58, 59]. Functionally,

this parametric difference ensures that after a sudden change in reward contingencies

(resulting in dopamine depletions), re-learning in the motor loop is faster than re-learning

in prefrontal loops: attempts to map priorly relevant stimuli onto different responses will

thus be undertaken faster than gating previously irrelevant stimuli into WM.

The following paragraphs will focus on the different functional parts of the model and

explain the supposed architecture more thoroughly.

3.1.1 Cortex

The WM model contains lPFC and MI. lPFC is assumed to take part in WM control,

presumably being involved in both active maintenance and manipulation of information

[60]; MI integrates cortical and subcortical inputs to send an emerging motor command

directly to the motoneurons of the spinal cord [61]. We here simplify lPFC and MI

to represent visual stimuli and motor commands by single neurons. However, Vitay

and Hamker [62] provide a computational framework to understand how more realistic

distributed cortical representations interact with subcortical brain structures. All cor-

tical cells receive excitatory thalamic input. lPFC additionally receives cortico-cortical

afferents from ITC that are involved in visual object recognition [63].

Cortico-cortical and thalamo-cortical connections are defined to be learnable. Learning

of the corresponding weights is assumed to be Hebbian-like. Although there is empirical

evidence of dopaminergic innervation of prefrontal cortex, the corresponding dopamine

signals are not well suited to reinforce particular stimulus-response associations as they

have been shown to last for several minutes [31, 64].

3.1.2 Thalamus

Thalamus is assumed to relay information to cortical areas [65] and to control cortical

activation and deactivation [66]. Consistent with this, maintenance of a representation

in WM and selection of a response requires thalamic disinhibition through GPi in the

model. Thalamic cells receive inhibitory pallidal and excitatory cortical input (cf. Figure

5). As with prefrontal cortex, there is evidence for dopaminergic innervation of the

thalamus [67, 68]. The nature of the dopamine signals provided, however, has not yet
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been clearly elucidated. Conservatively, we thus assume cortico-thalamic learning to be

Hebbian-like (i.e. not to be modulated by dopamine).

3.1.3 Striatum

There are two input structures of BG: striatum and STN. Both receive glutamatergic

cortical afferents and both are organized topographically [69, 70]. Striatum can be

subdivided into putamen, receiving mostly motor-cortical afferents, and caudate nucleus,

innervated by lPFC [44]. Next to excitatory cortical afferents, striatal cells receive

inhibitory input from a network of GABAergic interneurons [71]. In the model, these are

hard-coded for means of simplicity and serve to downsize the number of striatal cells that

become associated to each cortical representation. Activity of caudate nucleus has been

shown to be negatively correlated with progress in reward-related learning [72]. Lesioning

dorsolateral parts of the striatum leads to disabilities in stimulus-response learning [73].

Within the model, striatum learns to efficiently represent single or converging cortical

afferents in clusters of simultaneously activated cells as shown in Vitay and Hamker [2].

Striatum gives rise to the direct BG pathway, connecting striatal cell clusters to single

GPi cells. Thereby, it is vital both for WM maintenance and stimulus-response learning.

3.1.4 Subthalamic nucleus

STN is considered part of the hyperdirect BG pathway, linking cortex with GPi by

two excitatory connections [74]. Also, STN excitatorily innervates GPe [75]. Recently,

STN has become a key target structure for DBS12 in Parkinsonian patients in order

to alleviate dyskinesia [76] and to improve mental flexibility [77, 78]. STN DBS has

been reported to cause WM deficits in spatial delayed response tasks [79] and n-back

tasks [80], thereby further underlining its contribution to cognitive processing. Electrical

stimulation of STN in monkeys yields a short-latency, short-duration excitation of GPi,

followed by a strong inhibition, the latter being mediated by GPe [81]. Based on these

findings, we assume STN within prefrontal loops to give a global (learned) excitatory

reset signal to GPi that is cancelled by STN-GPe-GPi fibers shortly after.

3.1.5 Globus pallidus external segment

The role of GPe in BG functioning is still rather elusive. Historically, GPe has been

considered a relay station on a striato-GPe-subthalamo-GPi pathway, often referred to

as the indirect BG pathway [82, 83]. More recently, such a simple notion has been chal-

lenged and GPe has been hypothesized to have a more prominent processing function in

12DBS: deep brain stimulation
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BG [84]. Anatomically, GPe is well-situated to take a central position in BG processing

as it is connected bidirectionally with both striatum and STN and projects unidirection-

ally to GPi and thalamus [51]. Our model contains a reduced set of pallidal connections,

accounting for afferents from STN and efferents to GPi only. Thereby, GPe is modeled

only in its potential contribution to the hyperdirect (and not the indirect) pathway.

3.1.6 Globus pallidus internal segment

The internal segment of globus pallidus is a major BG output structure receiving and

integrating subthalamic, external pallidal and striatal input [32]. GPi has a high baseline

firing rate by which it tonically inhibits thalamic neurons [85]. Striatal and GPe inputs

inhibit GPi cells below this baseline, thus disinhibiting thalamic neurons and opening a

gate for mutually excitatory cortico-thalamic loops [32]. Subthalamic input in contrast

excites GPi, thus further inhibiting thalamic neurons and preventing cortico-thalamic

loops from firing [74]. The interplay of afferents to GPi which is critical for the model’s

functioning, is studied in detail in [1]., section 3.2.2.

Lateral competition in GPi ensures that each striatal cell cluster connects to a single

pallidal cell only. While this is of course a simplification, it reasonably reflects the much

smaller number of pallidal cells relative to striatal ones [86]. The lateral weights evolve

according to an Anti-Hebbian learning rule.

3.1.7 Substantia nigra pars compacta

Inspired by the findings of Schultz and co-workers [25, 27] and in line with other com-

putational accounts of reinforcement learning [e.g. 33, 87], we assume SNc neurons to

compute an error signal of reward prediction. This signal is then relayed to BG to mod-

ulate learning of afferent connections. A detailed account of the underlying rationale

can be found in Vitay and Hamker [2]. Briefly, SNc neurons compute a difference signal

between actual and expected rewards and add the resulting value to a medium baseline

firing rate of 0.5. Thereby, unexpected rewards lead to activity above this baseline while

omissions of expected rewards result in a decrease in SNc firing. Information about

actual rewards is set as an external input while stimulus-specific reward expectations

are encoded in learnable striato-nigral afferents.

Each prefrontal and motor loop is connected to a separate SNc neuron. This is based

upon reports showing SNc to have a topographical organization and reciprocal con-

nections with striatum [88, 19]. Inspired by evidence showing SNc neurons to broadly

innervate striatal subregions [89], we assume a single dopamine neuron to innervate all

BG cells of a corresponding loop.
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3.1.8 Pedunculopontine nucleus

As outlined above, the model contains multiple prefrontal loops. Following an idea of

Krueger and Dayan [43], recruitment of these loops is dependent upon error detection

after prior successful task performance. The framework of our model allows us to develop

a biologically plausible mechanism of error detection: highly unexpected errors (i.e.

errors after prior successful task performance) lead to a huge dip in SNc firing. This

SNc signal can be used to recruit additional SNc neurons, thereby enabling learning

within additional prefrontal loops. We assume an additional dopamine neuron to start

firing whenever the most recently recruited neuron fires below a fixed threshold of 0.05.

In contrast to the model of Krueger and Dayan [43], learning rates within previously

engaged loops are not artificially decreased.

A potential anatomic substrate for subserving such a recruitment is a part of the brain-

stem named PPN13. PPN has been associated to the phenomena of attention, arousal,

reward-based learning and locomotion [90, 91]; activation of cholinergic afferents from

PPN to SNc has been shown to recruit quiescent dopamine neurons [92]. As PPN is

innervated by many BG structures [93], it presumably also receives information about

reward prediction. It might thus subserve a basic form of task monitoring, reacting

whenever unexpected omissions of reward occur. Of course, the mechanism we propose

may likely be largely simplified: other brain areas than the PPN have been linked to

error detection as well, in particular the anterior cingulate [94]. Further, PPN out-

put is not restricted to SNc but also reaches other BG nuclei, most notably STN [91].

Thus, PPN will neither be the only brain structure involved in error detection nor will

recruitment of dopamine neurons be the only way it assists in modulating learning in

cortico-BG-thalamic loops.

4 Model performance

This section describes the 1-2-AX task and investigates the task performance (the num-

ber of leaning steps required) of the combined model.

4.1 Experiment setup and 1-2-AX task

We use the relatively complex 1-2-AX task as an exemplary working memory task. In

this task, a successive list of objects is presented as depicted in Figure 6. Within each

trial, one of a set of possible stimuli (1, 2, A, B, C, X, Y and Z) is shown and the

agent is required to press one of two buttons. Only and exactly one of these buttons

13PPN: pedunculopontine nucleus
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Figure 6: The 1-2-AX conditional WM task and the shaping procedure proposed to train

the model. In each trial, a stimulus is presented and the model has to choose

between a left- and a right-button press. Circles indicate correct responses.

Please refer to the main text for detailed explanations. (A) Full 1-2-AX task.

(B) Step 1 of the shaping procedure involving only the outer-loop stimuli 1

and 2. (C) Step 2 of the shaping procedure involving outer-loop stimuli (1 and

2) plus inner-loop stimuli (A, B and C). le: left button; ri: right button.

will lead to reward when pressed. As mentioned earlier the numbers and letters stand

for 3D objects. The task has a complex inner-outer loop structure that is not known

to the model: numbers (1 and 2) represent context cues and constitute the outer loop.

To correctly perform the task, the last outer-loop stimulus has to be kept in WM at

any time. Whenever the last outer-loop stimulus has been a 1, the letter X requires a

right-button press if it has been directly preceded by an A; if the last outer-loop stimulus

has been a 2, a Y that directly follows a B requires a right-button response. In all other

cases, a left-button press has to be performed. There are several versions of this task

regarding the sequence of stimuli. We will here use the version employed by O’Reilly

and Frank [33]: First, an outer-loop stimulus (i.e. 1 or 2) is randomly chosen. Then,

with equal probabilities, one to four inner loops are generated. With a probability of 0.5,

an inner loop consists of a potential target sequence (i.e. A-X or B-Y); otherwise, any

of the inner-loop stimuli (i.e. A, B or C) is followed by any of X, Y or Z, all probabilities

being equal.

Teaching this task to the model requires a three step shaping procedure as depicted in

Figure 6, otherwise the task can not be learned by the model nor by humans (given no

further instructions and just being presented a sequence of objects) or animals [33]. In

general, animals are able to learn very complex tasks only step by step and we show
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that the model can solve such an problem in the same way. In a first step, only the

outer-loop stimuli 1 and 2 are presented, probabilities being equal (Figure 6B). Each 1

requires a right-button press, each 2 a left-button press. When the model has reliably

acquired this task (which is conservatively assumed to be the case after 100 correct

responses in a row), the inner-loop stimuli A, B and C are added to the sequence. An

outer-loop stimulus can be followed by one or two inner-loop stimuli, all probabilities

again being equal. A right-button press is required for an A if the last number has been

a 1 and for a B if the last number has been a 2. In all other cases, a left-button press is

required (Figure 6C). Finally, when the second step is securely coped with, the full task

is presented (Figure 6A). After 150 correct responses in a row, the model is classified as

having solved the task; if this criterion is not reached within 10000 trials, we admit that

the model has failed. In the first two steps of shaping, stimulus presentation (lasting

for 400ms) is separated from response requirement by a 400ms delay period. This is to

ensure that the model learns to make use of WM, preventing it from solving the task

by simply associating visual ITC representations to responses. By employing the latter

strategy, the model would not develop the ability to maintain the stimuli in WM as

is required to successfully master the subsequent steps of shaping. For the full task,

responses are required while visual stimulation is still on as proposed by O’Reilly and

Frank [33]. Each stimulus is presented for 800ms. 400ms after stimulus onset, the model

is required to perform a response while the stimulus is still present.

4.2 Task performance

Figure 4.2 shows the performance of the combined model of 20 randomly initialized

networks succesfully learning the 1-2-AX task. For each step of the shaping procedure,

box plots show the number of trials needed until the last error occurs. Networks not

learned the task to criterion were removed from the data for Figure 4.2. This occurs for

approximate 25% of the networks.

Now, we investigate the learning of the different shaping steps closer. Two-sided Wilcoxon

signed-rank tests provide difference statistics for the number of trials needed to cope with

the different steps: The second step of shaping (Mdn = 222, IQR = 84) takes signif-

icantly longer than the first step (Mdn = 101, IQR = 19, 75), z = 3.62, p < .001, as

can be explained by the more complex set of rules to learn and the higher number of

additional WM representations to develop. The third step (Mdn = 313, IQR = 204)

requires significantly more trials than the first step of shaping, z = 3.52, p < .001 but

does not differ significantly from the second step, z = 1.58, p = .11. In the third step,

a highly complex set of rules has to be learned while no additional WM representations

have to be developed.
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Figure 7: The the combined model’s performance in learning of the WM task 1-2-AX.

Combined model performance at the 1-2-AX task, separately for each step of

shaping. Box plots show the number of trials needed until the last error oc-

curs. The boxes’ upper and lower borders represent upper and lower quartiles,

respectively; the median value is shown as a line crossing each box. Whiskers

extend to a maximal length of 1.5 times interquartile range, outliers are rep-

resented by asterisks.

5 Conclussion & future work

We have proposed a biologically computational model combining object recognition and

reinforcement learning which lead to the organization of WM and overt response behav-

ior. Our model demonstrates that both flexible control of WM and adaptive stimulus-

response mappings can develop within parallel, hierarchically interconnected cortico-

BG-thalamic loops. Based on Hebbian-like and three-factor learning rules, prefrontal

loops learn to flexibly control WM while a motor loop learns to decide between a set

of possible responses. By teaching the 1-2-AX problem to the model, we have shown a

formal task comparable to one in a shared workspace scenario.

In future work, we could extend the model to simulate reward based guidance of vision.

In such a model, the agent will not push two buttons, but it will be able to look at

different objects. This will result in an even closer integration between the object recog-

nition system and the working memory model. The possibility to actively guide vision

will enhance the recognition in a lot of situations, for example to recognize an object on

a very cluttered office desk. In this proposed model, a loop though basal ganglia and
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ITC will reinforce some cell in ITC relevant for the task at hand. These ITC cells will

then project back to HVA and activate specific features (feature-based attention, [3, 6]).

By the FEF, the feature based attention will result in a spatial attention encoding a

saccade target in FEF movement part.
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