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Abstract: 
 
This deliverable describes the extension of the model for sensorimotor awareness of the 
peripersonal environment to the 3D space, and its application on the UJI humanoid robot setup. 
Results of simulated psychophysical experiments regarding the saccadic adaptation paradigm are 
provided. Object recognition as it is possibly performed by the ventral stream is presented, and an 
application schema for integration with dorsal sensorimotor information is provided. Robotic 
implementation of the theoretical principles and related ongoing experimentation are described. 
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Executive summary 
 
In this document we describe the full functionality, extended to the three-dimensional space, of the 
peripersonal pace sensorimotor awareness model, described in D4.2b, and its implementation on the UJI 
robotic platform. Employing the Radial Basis Function framework developed in the model, the robot is able to 
achieve open loop gazing and reaching capabilities toward visual targets, according to the goals of Task 4.2. 
According to milestone M12, also planned for month 30, the computational model of joint visuo-motor 
representation of the 3D space based on neurophysiological/psychophysical findings was completed and 
applied to the robotic setup. The system functionality according to the model is working under controlled 
situations and is now being tested extensively. The system is able to reach a limited set of artificial objects in a 
controlled real environment as the result of its perceptual awareness about an object and the modulation of the 
reaching and gaze directions. 
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1. Introduction 
 
The model for building an integrated sensorimotor knowledge of the environment developed so far and 
described in Chinellato et al. 2010 has been suited to be applied on the UJI humanoid robot setup. The robotic 
implementation of such model includes: 1) a module for visual acquisition and visual processing that 
generates disparity information regarding simple visual stimuli, such as point-like features on plain 
backgrounds; 2) the RBF structure for the contextual representation of stimuli in multiple reference frames, 
extended to the 3D space as explained in Section 3 of this document; 3) modules for controlling the execution 
of saccadic eye movements by the robot stereo head and arm reaching movements. 
As expected, basic skills such as concurrent or decoupled gazing and reaching movements toward simple 
visual stimuli are available to the robot. As a first experimental test, the system is able to show its visuomotor 
capabilities by performing oculomotor actions toward simple targets placed in its visual environment, or 
toward the location where its hand lies (identified with markers). Complementarily, it is also able to perform 
arm reaching movements to a similar visual target, either with or without gazing at it. The latter is a case of 
peripheral reaching, in which an intermediate transformation from visual to oculomotor space is performed, 
but the corresponding motor signal is not released. 
As described in this document, the model emulates some psychophysical effects related to deceptive feedback, 
such as in the saccadic adaptation paradigm, and such effects are now being explored on the robotic 
implementation searching for further insights that could come from the application of the model on a real 
world setup. Extensive experimentation of such capabilities is now under development, in parallel with the 
integration with WPs 1, 2 and 3 modules, which are expected to improve and complement such abilities. 
In Section 2 the model framework extended to the 3D space is presented, and some implementation details are 
provided. In Section 3 the ventral contribution to the visuomotor knowledge of the environment, in form of 
object recognition, is introduced. A description of saccadic adaptation experiments simulated with the model 
is provided in Section 4. Section 5 describes how dorsal and ventral contributions will fuse to achieve a 
purposeful interaction of the agent in a multi-object environment. Finally, robotic implementation with 
preliminary results and description of the ongoing experiments is given in Section 6. 
 
 
2. Dorsal stream: visuomotor representation of objects in the peripersonal space 
 
The modeling framework presented in this section is an extended version of the computational model 
described in deliverable 4.2b and the annexed paper (Chinellato et al. 2010). The most important development 
is that the model and the corresponding neural network structure have been extended to work in a real 3D 
environment. The main characteristics of the computational schema and its implementation, based on insights 
from WP5 experiments and especially V6A data, do not change in this version of the model. The framework 
depicted in Fig. 1, introduced in the previous deliverable referring to a 2D environment, is thus still fully 
representative of our modeling effort. 
At this stage, the model is designed to deal with stimuli in a three dimensional environment, where the robot 
can gaze to and/or reach for an object in its peripersonal space. The model is composed of two parts. The first 
part is a radial basis function network which transforms the retinotopic position of the stimulus into the 
angular positions of the head motors that are necessary to gaze at the stimulus. The inputs of this network are 
the position of the stimulus on a cyclopean image (x, y) and its horizontal disparity, while the outputs are the 
angular positions of the head motors, namely the vergence and the version (x, y) of the eyes. The second part 
is responsible to recode oculomotor coordinates in arm joint space and vice-versa. It is made of two RBF 
networks that use the same parameters and the same training points to learn to reach with the hand for the 
fixation point (direct transformation) and to foveate the position of the hand (inverse transformation). The 
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oculomotor joint/space RBFs transform vergence and the version (x, y) inputs into angular positions of the 
shoulder (two d.o.f) and elbow (one d.o.f), and vice-versa. 
 

 
 
Figure 1: Computational framework. 
 
 
The transformation functions implemented by the RBF networks depend on some parameters that are 
implicitly learnt by the model. For the visual/oculomotor transformation, the parameters are interocular 
distance, focal length and resolution of the camera. Focal distortions were ignored in the simulated model, 
assuming that the application of the learning framework on the robot will allow to compensate for any known 
or unknown distortions and also adapt to changing parameters. The parameters included in the 
oculomotor/joint space RBFs are five: lengths of arm and forearm, interocular distance, and relative position 
of shoulder and eyes (two parameters, supposing they are aligned in the z coordinate). 
The networks which compose the two parts of the model are radial basis function networks with three layers: 
input, hidden and output. The hidden layer performs the non-linear transformation of the input, and the output 
is computed as a weighted sum of the hidden neurons’ activity. The parameters of the networks were 
experimentally chosen a-priory, so the learning phase affects only the weights which link hidden and output 
layers. For the first part we employed hidden neurons with Gaussian activation logarithmically distributed on 
the input space. The values of the radii were set to be proportional to the distance between adjacent centers. 
The direct and inverse transformations between head and arm motors were performed with centers uniformly 
distributed on the input space and having the same Gaussian activation. In the simulated model of the robot, 
the weights of the networks were calculated minimizing the mean square error over a given training set of 
points homogeneously distributed in a Cartesian space. 
To pre-adapt the model for its application on the real robot, an on-line delta-rule learning strategy has been 
developed, which allows the robot to continuously learn its parameters and progressively improve its gazing 
and reaching capabilities. In order to estimate the sort of results we could expect applying the computational 
framework to the robotic setup, we changed the kinematic parameters of the robot model, and start training the 
network with the old weights from the new configuration. Considering for example the more demanding 
oculomotor to joint-space transformation, after modifying the above parameters about 10% to 20%, the error 
rises up immediately, and drops back almost to the original precision only after about 50 trials. This behavior 
shows the adaptability of the system to changes in working conditions, and supports its suitability for 
implementation on the robot, as described in Section 6. 
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3. Ventral stream: object recognition 
 
In addition to building a sensorimotor map of visual and motor targets in the nearby space, the construction of 
an integrated knowledge of the environment requires also the identification of objects or targets and the use of 
a memory of previously observed/reached objects. 
An important open issue that needs to be solved is how to associate object identity to motor memory of 
locations. So far, we have dealt with the object recognition task to identify simple shapes according to various 
available features. Among others, we include visual features regarding object proportion, a sort of information 
that is very likely forwarded to the ventral stream by dorsal areas. Such features are the activation of Surface 
Orientation Selective (SOS) and Axis Orientation Selective (AOS) Neurons of the posterior intraparietal 
sulcus area CIP (Chinellato and del Pobil, 2008). In addition, we include the estimated size of the object three 
main axes, its general shape (approximated to box, cylinder or sphere) and its color, for a total of seven 
features. The color feature is dominant, and no other features would be required if objects had different colors. 
In any case, we are interested in having a robust visual object identifier, able in principle to recognize objects 
of the same material and thus with very similar colors. 

 

 
 
Figure 2: Discrimination of object identity with SOS and AOS data and estimated object height, for nine objects. 
 
 
Our tests so far have been reduced to a box universe. At first, the system is provided with a number of labeled 
items, and uses visual perception to associate detected features to object identity. Then, upon presentation of a 
novel input, it tries to recognize the visualized object, through a probability density estimator. The system 
decides that a target object has been recognized when there are at least five features that match one of the 
known classes. A feature matches if the sample is in the range [µnσ, µ+nσ], where parameter n defines the 
tolerance of the classifier, and has been set to 2, corresponding in theory to about a 95% probability of correct 
classification (n = 3 would correspond to approximately 99%). If a sample is classified, it is directly added to 
the classifier memory to be used in subsequent tests, otherwise it is ignored. If a human supervisor is 
available, he is asked to label the sample so it can be added to the memory. The average identification 
performance obtained so far on box-like objects of the same color is of 83%. 
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As an example, Fig. 2 shows object identity plotted as a function of SOS and AOS activations, and of 
estimated height. While for some objects these values are very informative and nearly enough to recognition, 
it is apparent that other objects cannot be resolved from each other only using one or two visual features. If we 
should decide to include grasping in our experiments, object weight, estimated upon lifting thanks to haptic 
perception of the grasped object, can also be used to distinguish and recognize objects. 
 
 
4. Reproduction of psychophysical findings – saccadic adaptation 
 
Regarding the psychophysical effects the model and its robotic implementation are expected to be able to 
reproduce, we are beginning to check the model behavior in the case of the deceptive visual feedback, such as 
in typical experiments of saccadic adaptation. This is done by eliciting a saccade (based on vergence/version 
eye movement control) toward a given visual target, and providing a fictitious error on the reached final 
position. For the computational model, this is achieved by adding an offset to the output. On the robot, the 
same effect will be obtained moving the visual target as for human subjects. For this purpose, we implemented 
an experimental setup similar to that used in the experimental protocols of human saccadic adaptation 
experiments. 
Analysis of how (as in the saccadic adaptation protocol) such artificial displacement of the target affects the 
artificial agent oculomotor and arm motor abilities can serve as a validation of the underlying model, and may 
help in advancing hypotheses on saccadic adaptation mechanisms in humans and monkeys. We were able to 
verify that our model actually exhibits saccadic adaptation, altering its ability to perform correct saccades 
according to the deceptive feedback. We are performing a number of different experiments and the analysis of 
error distributions around the target point and of error vectors is providing interesting information that we are 
studying together with the partner WWU. Some examples of the obtained results, depicted in Fig. 3 and 4, are 
described below. 
Once the network described in Section 3 has been trained, the process of saccadic adaptation can start. The 
learning strategy which has been used for training the net during the altered perception stage is the delta rule. 
In this phase, the system is ideally fixating a starting point at (xF, yF) and a target (x0, y0) that triggers an input 
(Cx0, Cy0, D0) in the cyclopean, disparity space is shown. This input produces an output (Vx0, Vy0, Vs0) 
composed of the version and vergence eye motor components necessary for gazing at the target. The vergence 
and version angles which are estimated by the net will be incorrect, because in the meantime, the target has 
been displaced to the point (x1, y1), correspondent to a different visual input and a different transformation 
(Vx1, Vy1, Vs1). The network then changes the weights based on the error movement it committed:  (Vx1-Vx0, 
Vy1-Vy0, Vs1-Vs0).  As suggested by human studies (Wallman & Fuchs, 1998), a saccade to the new position 
is not required, and the actual correct position is estimated from retinal information by the network itself. 
After each deceptive feedback movement, a successful gaze movement back to the fixation point is simulated. 
No error is introduced in this case. The saccadic movement is repeated 100 times and each iteration allows to 
reduce the saccadic error due to target displacement, thus simulating saccadic adaptation. 
In the three examples we show, there is a horizontal displacement of the visual target which deceive the visual 
feedback after movement execution as described above. In the first two cases, the target is placed at (x, y) = 
(12, 0) and (10, 0) in degrees, respectively, and then displaced inward at (8, 0), to check the effect of different 
displacement amplitudes. In the third case the displacement is in the opposite, outward direction, being the 
target at (8, 0) and the displaced feedback at (12, 0). Fig. 3 plots the learning curves in which the system 
adapts to the deceptive feedback and learns the new gaze movement to the displaced target in a few dozen of 
iterations. 
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Figure 3: Learning curves of the saccadic adaptation experiments, in which a new gaze movement is learned. 
 
 
After 100 iterations, when the system has fully adapted to the deceptive feedback, the response of the network 
with the new weights is compared to that with initial weights. This comparison takes place for different 
locations in space. We show the comparison done on a grid of points on the space (x, y) on the left side of Fig. 
4, for the same experimental conditions of Fig. 3. It can be observed how the altered response transfers to 
different values of x, inward and outward respectively, and even on the y coordinate, especially for the larger 
displacements of the first and third experimental conditions. These results resemble those observed in human 
saccadic adaptation studies, such as Collins et al. 2007 and Schnier et al. (submitted).  
A clearer assessment of how saccadic adaptation transfers to values of horizontal displacement different from 
what the system was trained to is depicted in the right side of Fig. 4, where the error is plotted as a function of 
the x component, cumulated across the values of y depicted on the left side graphs. As revealed by the 
experiments described in Collins et al. 2007, there is peak in the saccadic transfer error external to the target 
for the inward adaptation scheme. A similar peak is seen for outward adaptation in the model simulations. 
However, human outward adaptation appears to be less peaked and more uniform than inward adaptation 
(Schnier et al., submitted), suggesting that inward adaptation and outward adaptation use partly different 
learning mechanisms. 
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Figure 4: LEFT: Displacement errors after saccadic adaptation in the (x, y) space. Black dot: fixation point; red dot: 
target; green dot: displaced feedback. RIGHT: Cumulated adaptation transfer on the horizontal direction; red dot: target; 
green dot: displaced feedback. 
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5. Stream integration – sensorimotor memory of nearby objects 
 
At this stage, we need to introduce recognition and memory in the sensorimotor interaction schema. This is 
done implementing an actual integration with object recognition modules. Such integration is being pursued 
through a sequence of increasingly demanding experimental conditions. At the current stage of development, 
integration is being performed in the experimental environment resembling psychophysical experiments 
performed in WP5, in which stimuli are constituted by colored lights on a screen. Object recognition is thus 
very easy at this point, but the fundamental principles for contextually encoding object identity and 
sensorimotor parameters required to gaze/reach at it are already included in the schema. Later on, acting on 
more complex and real-life environments, more complex object recognition methods will employed, such as 
the ventral stream modeling described in Section 4 and the attention based identification system developed by 
the Chemnitz partner, with lower-level biological inspiration. 
The behavioral schema in which object identity is associated to a particular sensorimotor configuration starts 
when the system is already able to accurately gaze, and possibly reach, toward a visual target. In previous 
experiments, this was done with the presence of only one stimulus in the visual field of the robot. Now, more 
targets can be visualized contextually. In this associative learning schema the robot is gazing at a given 
fixation point while two or more stimuli appear in its field of view. The robot is thus required to use its 
visuomotor skills, embedded in the neural networks that transform between visual and motor parameters, to 
estimate the eye motor movements required to fixate on each visible object, without actually executing the 
saccadic movement on the targets. The sums of the movement vectors with the actual gazing direction 
constitute an instance of the absolute positions of the visible objects. Next, the fixation point is changed, the 
robot gazes at the new one and estimates the new movements vectors required to fixate on the visual targets, 
creating new instances of the targets absolute position. The process is then repeated and at each step a slightly 
different absolute position is computed for each visual target. Ideally, all computed positions are the same, but 
due to unavoidable distortions and imprecisions we expect a range of variability, and the average of each 
estimated location is stored as the memory of the visual target position, for all targets. After the learning 
process, the system can be required to fixate and/or reach a target given its identity, using the visuomotor 
associations it has learned during the previous step. Ideally, this can be done even on objects placed out of the 
field of view, if their location has been previously observed. 
 
 
6. Hardware setup and setting of robotic experiments. 
 
One of the main goals of our research is to provide the robot with advanced skills in its interaction with the 
environment, namely in the purposeful exploration of the peripersonal space and the contextual coding and 
control of eye and arm movements. The implementation on an actual, physical sensorimotor setup is a 
potential source of additional insights for the computational model, hardly achievable with simulated data. 
Our robotic setup consists of a torso body which mounts a pan-tilt-vergence stereo head, and two multi-joint 
arms, endowed with a parallel-jaw gripper and a three finger Barrett Hand respectively (see Fig. 5). Visual, 
visuomotor and arm motor libraries have developed and adapted to this setup. Among other utilities, we 
developed a library, which can be accessed by software or as a user interface, for the coordinated control of 
head movements according to a vergence/version control, as in Eyeshots objectives, and a second one with 
several visual processing steps to assess the suitability of various algorithms and parameters in different 
conditions and visual setups. 
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Figure 5: Humanoid robot with pan/tilt/vergence head and arm with hand. 
 
 
Before applying the model to the humanoid robot we made an effort to include already a full 3D functionality 
(the model was originally in 2D, allowing only for movements in the xz space). We thus introduced tilt 
movements of the head and one more joint for the arm. For simplicity, and waiting for the oncoming 
integration with specialized modules from the partners, at the moment visual stimuli appearing on a computer 
screen as in WP5 experiments are being used. As a first step, aimed at configuring the visual/oculomotor 
network on the robot, a stimulus appears on the screen, the robot estimates the oculomotor movement required 
to gaze at it and execute it. The residual distance of the stimulus from the center of the image is used to 
estimate the movement error, which is employed to adjust the network weights through incremental learning 
by delta rule. In this way, the exploration behavior is aimed at learning an implicit sensorimotor map of the 
environment. This is not done from scratch, as learning is bootstrapped with the weights learned during the 
training of the modeled network. The robot learns to adjust the weight to its actual parameters and to any 
distortions of image and kinematics movements. A preliminary result is the learning curve depicted in Fig. 6, 
obtained in uncontrolled experimental conditions with an object placed on a table. Full experimentation of the 
learning framework and on the computer monitor setup is in progress. 
In the second learning stage, in which arm movements are introduced, possible misalignments are made of 
two different error components, one due to the visual-oculomotor transformation and the other to the arm-
oculomotor. The two error components can be estimated measuring the visual distance between the effector 
and the final gazing point. A marker is placed on the forefinger to discriminate between oculomotor and arm-
motor errors. The use of tactile feedback is planned but not applied yet for safety reasons. Again, extensive 
experimentation of this learning framework is under development. 
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Figure 6: Error (mm) of robot gazing movements toward visual stimuli while the delta rule is applied to adjust the 
weights of the visual/oculomotor network. 
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