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Abstract:

Computational models for the control of horizontal vergence, based on a distributed
representation of disparity, are proposed and analyzed. The models directly extract the linear
servos from the post-processed response of a population of disparity tuned complex cells, without
explicit calculation of the disparity map. The disparity-vergence curves have been either designed
on the basis of a desired behavior, or learned by examples. Training and evaluation of the
networks are discussed. The resulting vergence controls yield to stable fixation and has small
response time to a wide range of disparities.
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1 Executive summary

One of the objective of Workpackage 2 is to develop a coniarial network-based vergence
control from a population of disparity-based feature. Tis #nd, we investigated the special-
ization of disparity detectors at different levels in a hrehical network architecture to see the
effect of learning specific coding and decoding strategeadtive vergence control and depth
vision. The extraction of binocular features occurs thtoagortical-like population network,
developed by partner UG. The network provides a harmardg &mplitude and phase) repre-
sentation of the visual signal, operated by a set of "simplB anits (S-cells). At the level of
S-cells, the "totipotency” of the representation contailishe necessary basic components to
differentiate into several classes of visual descriptStereo and - in perspective - stereomotion
percepts emerge in layers of disparity energy "compleX oelits (C-cells) that gather S-cells
outputs according to specific architectural schemes. Tot@sgutations can be supported by
neuromorphic architectural resources organized as btacal arrays of interacting nodes. On
this basis, convolutional network paradigms and learnirgg@sses have been introduced to
develop a high degree variability of the cell’s responsestds the specialization of disparity
detectors for the control of vergence. The desired linearsehave been either designed on
the basis of the disparity-vergence curves observed in théidll Superior Temporal cortical
area, or learned by examples. The selected learning panadimspired by LeNet5 [1], since
it is expected to have a good performance being such a netwptirkized at every level of the
hierarchy. To this end, the LeNet architecture has beemdgteto increase its flexibility and
including new functionalities. Specifically, differentisom most of the conventional vergence
control models [2, 3, 4, 5, 6], based on the minimization @ florizontal disparity, we pro-
pose to avoid implicit computation of the disparity map arttaet the vergence control signal
directly from the population responses over the "foveaffioa. A neural network paradigm
has been chosen for this type of conversion/extractionguhoie. An increasing complexity
strategy in the learning process is adopted: starting flmsimplest one-unit architecture we
increase the number of units/layers until an acceptabkd Evgeneralization error is reached.
In order to learn the vergence control, we developed and as#chulator to create the train-
ing datasets. Each sample in the training dataset contagnstéreo image pairs, the actual
vergence angle, the actual gaze orientation, and the dg$inethis particular case) vergence
angle ("ground truth”). Using these datasets and the siradkenvironment it has been possible
to train and evaluate the proposed neural network baseéweggontroller. We conclude that:

1. The vergence can be controlled using convolutional netsvarranged in a closed loop,
for different orientations of the gaze.

2. A strategy for reading-out binocular energy populatiodes for short-latency disparity-
vergence eye movements can be devised. Specific feature@)amde working range
with a reduced number of resource (single scale), (ii) lirmsavos with fast reactions
and precision.

In general, we can take full advantage of the flexibility addatability of distributed comput-
ing to specialize disparity detectors for vergence coranal depth vision.

On this ground, further generalization of the network payadwill be explored, also with
the aim of including (i) dynamicife. spatiotemporal) disparity tuning, and (ii) attentional
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signals (based on object properties) that might guide fitteal exploration of the selected
object.

The results described in this deliverable have been plarimbsented at ESANN’09,
ICVS’09, and submitted to ISABEL'09.

2 Introduction

Experimental evidences show that, although depth pemeptnd vergence eye movements
are based on the activity of complex cells of the primary &istortex, the brain adopts spe-
cific and separate mechanisms to combine binocular infeomand carry out the two distinct
tasks. Vergence control models that are based on a digidipatpulation of disparity detectors,
usually require first the computation of the disparity mapstlimiting the functionality of the
vergence system inside the sensitivity range of the pojpulaf cells specialized for depth per-
ception. For the control of vergence larger disparitieshtavbe discriminated while keeping
a good accuracy around the fixation point for allowing findmement and achieving stable
fixations. Thus, alternative strategies might be employedhis work, we developed models
that combine the population responses without taking asaegtibut extracting, directly from
the population responses, a disparity-vergence respbasaltows us to nullify the disparity
in the fovea, even if the stimulus presented is far beyondlibgarity sensitivity range. The
disparity-vergence response is obtained by a weighted itatidn of the population response.
First, the weights were computed in order to obtain desistdisparity-vergence responses
on which to base a 'dual-mode’ vergence control mechanibam the weights were directly
learned from examples of the desired vergence behavioute®ted the proposed model in a
virtual environment achieving stable fixation and smalpmsse time to a wide range of dis-
parities. The vergence movements produced are able brohtpaeeep the fixation point both
on a steady and on a moving stimulus. Section 3 and Secti@sgectively, report on the basic
population network of disparity detectors and the propddeal-mode’ strategy for binocular
vergence, devised by UG. Section 5 reports on the two nettifear and convolutional) de-
veloped by K.U.Leuven to learn disparity-vergence beha@mn the basis of the population
responses.

3 Distributed representation of binocular disparity

3.1 Computational theory
3.1.1 Multichannel band-pass representation of the visuaignal

An efficient (internal) representation is necessary to gnige all potential visual information
can be made available for higher level analysis. At an eangl| feature detection occurs
through initial localquantitativemeasurements of basic image properteeg,(edge, bar, ori-
entation, movement, binocular disparity, colour) reféeab spatial differential structure of the
image luminance and its temporal evolution (cf. linearicattcell responses). Later stages
in vision can make use of these initial measurements by aomdpthem in various ways, to



come up with categoricajualitativedescriptors, in which information is used in a non-local
way to formulate more global spatial and temporal preditior he receptive fields of the cells
in the primary visual cortex have been interpreted as fuzffgrdntial operators (or locgéts
[7]) that provide regularized partial derivatives of theaige luminance in the neighborhood of
a given pointx = (z,y), along different directions and at several levels of resohy simul-
taneously. Given the 2D nature of the visual signal, theigpditection of the derivativei .,
the orientation of the corresponding local filter) is an impot “parameter”. Within a local
jet, the directionally biased receptive fields are represkhy a set of similar filter profiles that
merely differ in orientation.

Alternatively, considering the space/spatial-frequetigglity [8], the local jets can be de-
scribed through a set of independent spatial-frequencgratia, which are selectively sensi-
tive to a different limited range of spatial frequencies.e3é spatial-frequency channels are
equally apt as the spatial ones. From this perspective farmally possible to derive, on a
local basis, a complete harmonic representation (phaseg@iamplitude, and orientation, for
any frequency channel) of any visual stimulus, by defining @lssociated analytic signal in
a combined space-frequency domain through filtering ojmeraitwith complex-valued band-
pass kernels. Formally, due to the impossibility of a dikfinition of the analytic signal in
two dimensions, a 2D spatial frequency filtering would reg@in association between spatial
frequency and orientation channels. Accordingly, for eardéntation channél, an image/ (x)
is filtered with a complex-valued filter:

fax) = f7(x) = jfn(x) 1)
where ff (x) is the Hilbert transform off?(x) with respect to the axis orthogonal to the
filter’s orientation. This results in a complex-valugadalytic image

Q4 (x) = I * fa(x) = Co(x) + jSp(x) , (2)
whereCjy(x) and Sy(x) denote the responses of the quadrature filter pair. For qmatiak
location, the amplitudgy = /Cj + Sz and the phasgy = arctan(Sy/Cjp) envelopes measure
the harmonic information content in a limited range of fregcies and orientations to which
the channel is tuned.

In the harmonic space, it is in general an important requar@nto have both the spatial
width of the filters and the spatial frequency bandwidth $nsal that good localization and
good approximation of the harmonic information is realiagdultaneously. Gabor functions
reaching the maximal joint resolution in space and spatégjdency domains are specifically
suitable for this purpose and are extensively used in coatipuial vision [8]. Different band-
pass filters have been proposed as an alternative to Gabaidius, on the basis of specific
properties of the basis functions [9, 10, 11, 12, 13, 14, B, dr according to theoretical
and practical considerations of the whole space-frequéaaaygform [17, 18, 19, 20, 21, 22].
A detailed comparison of the different filters evades thepscof this report and numerous
comparative reviews can be already found in the literateug, Gee [23] [24] [25]).

We have considered a discrete set of oriented Gabor filtelts different angles). To
generate a filter with orientatioh(measured from the positive horizontal axis), we can rotate
a vertically oriented filter by — 90° with respect to the filter's center (positive angle means
counterclockwise rotation):



g(x,0,¢0)=n- exp <_x_§ — %f) cis(kozg + 1) (3)

2m0 L0y
with
xg = x cos(f — 90°) + ysin(6 — 90°)
yp = —xsin(f — 90°) + y cos(d — 90°)

ko denotes theadial peak frequencyy relates to the filter symmetry, ands relates to the
spatial filter extension, ands(o) is intended to beos(o) + jsin(o). The parameten is a
proper normalization constarg.g, chosen to the unitary maximum condition or to the unitary
energy condition). Equivalently, the set of Gabor filters ba defined by a quadratic form as:

g(x,0,¢)=n-

exp (—%XTAX) cis(kgx -+ 1) (4)

2m0 L0y

wherek, = (kosin 6, —kocos )T is the oriented spatial frequency vectaand the matrix
A can be derived from a diagonal matfix(corresponding to a vertically oriented Gabor filter)
by multiplication with the rotation matri©:

AT - sinf cosf 0;2 0 sinf —cosf
A_®D®_<—cosﬁ sin9)< 0 0_2><0059 sin 6 : (5)

Y

It is worth noting that the peak radial frequenigyand the widthr, of the Gaussian envelope
in the Gabor function are linked by the constant relativedvédth factor/3 (in octave¥ as:

. 1 (2ﬁ+1). ®)

" ko \ 28— 1

Typically, 3 is chosen around 15( € [0.8,1.2]). The relative bandwidth constancy yields
self-similar filters across the scales: filters with differeadial peak frequencies, but identical
orientation angle are simply geometrically scaled versiogach other. The aspect ratip/o,

normally takes values between 0.25 and 1 and, together metratdial peak frequency, defines
the orientation bandwidth of the filterin the following, to bind the orientation bandwidth of

1The orientation of the Gabor filter in space and the orienatif the bandpass channel in the frequency
domain are related by = arg(ko) + 3.
°The relative bandwidth of a Gabor filter is defined as

6*10 /{Q—FAk/Q —1lo kQO'I—Fl
82\ T Ak2) T %2 kg — 1

when one chooses the cut-off frequency at one-standairidtaevof the amplitude spectrum of the Gabor function
(1/0,) to define the absolute bandwidftik.

3The orientation bandwidth is the angle between two line$ plaas through the frequency origin and are
tangent to the one-standard-deviation contour of the ang@ispectrum of the Gabor function. It is given by

28— 1
By —arctan<2ﬁ+1>.




the filter to the presence of the sinusoidal term only, we fxeBpect ratio to 1.e., 0, = 0, =
o).

The values of all the design parameters have been chosendalgood coverage of the
space-frequency domain, to guarantee a uniform oriemt@eerage and to keep the spatial
support to a minimum, in order to cut down the computationat.cTherefore, we determined
the smallest filter on the basis of the highest allowableufeagy without aliasing, and we dou-
bled the sampling when the model analysis requires a higtemigion in the filter's profile
(or, from a different perspective, a larger spatial suppomgixels). [Note: this design strat-
egy reveals itself particularly effective for economic mvgcale analysis through pyramidal
techniques [26]. Yet, for all the simulations conductedhis twork we considered a single
scale, only]. Accordingly, we fixed the maximum radial peedgtiency k,) by considering
the Nyquist condition and a constant relative bandwjgliround one octave, that allows us to
cover the frequency domain without loss of information. Témult was a minimal1 x 11 filter
mask capable of resolving sub-pixel phase differences.afisfg the quadrature requirement
all the even symmetric filters have been “corrected” to chtiee DC sensitivity. The filters
have been expressed as sums:-af separable functions to implement separate 1D convolu-
tions instead of 2D convolutions in a similar way that [27]thwa consequent further drop of
the computational burden. For a detailed description ofittegs used, see the Appendix.

3.1.2 Phase-based disparity detection

Depth perception derives from the differences in the pms&iof corresponding points in the
stereo image pair projected on the two retinas of a binosylstem. When the camera axes are
parallel, on the basis of a local approximation of the Faugkift Theorem, the phase-based
stereopsis defines the dispariik) as the one-dimensional (1D) shift necessary to align, along
the direction of the horizontal epipolar lines, the phadeesof bandpass filtered versions of
the stereo image pait®(x) andI*[x + §(x)] [28]. In general, this type of local measurement
of the phase results stable, and a quasilinear behavioureophase vs. space is observed
over relatively large spatial extents, except around dargaoints where the amplitudesx)
vanishes and the phase becomes unreliable [29]. This pyopfdhe phase signal yields good
predictions of binocular disparity by

5(x) = (0" (x) — ¢"(x)]or _ [Ag(x)]2r

k(x) o k(x) 0

where¢l and ¢’ are the local phase in the left and right image, respectieglgtk (x) is the
average instantaneous frequency of the bandpass sigresuneel by using the phase derivative
¢, from the left and right filter outputs:

LX RX
1 = 000

As a consequence of the linear phase model, the instantafreouency is generally constant
and close to the tuning frequency of the filtér, ( k), except near singularities where abrupt
frequency changes occur as a function of spatial posititverdfore, a disparity estimate at a
pointx is accepted only if¢, — ko| < kou, Whereu is a proper threshold [29].

(8)

7



Equivalently, the principal part of the interocular phagéedence necessary to estimate the
binocular disparity can be obtained directly, without éxipimanipulation of the left and right
phase and thereby without incurring the ‘wrapping’ effemgshe resulting disparity map [30]
(see also [31, 32]):

[Adlor = arg(Q" Q™) 9)
= atan2 (Im(QLQ*R), Re(QLQ*R)) (20)
= atan2 (CRSL— ctSt ctoty SLSR) (12)

whereQF = Q¥ (x) = I* x g(x,0°,¢), Qf = Q%(x) = I x g(x,0°,¢) andQ* denotes
complex conjugate of).

When the camera axes are moving freely, as it occurs in a biaoactive vision system,
stereopsis cannot longer be considered a 1D problem andsiherities can be bothorizontal
andvertical. Therefore, the 1D phase difference approach must be eadendhe 2D case.

Still relying upon the local approximation of the Fourierifsitheorem, the 2D local vec-
tor disparityd(x) between the left and right images can be related/detectedpasse shift
kT (x)d(x) in the local spectrum, wheilgx) is the local {.e., instantaneous) frequency vector
defined as the phase gradient:

kx) = Vo) = (242, 225 (12
with ; n
g - 0 +0)

Given the 1D character of both the local phase and the irestanus frequency, their measures
strictly depend on the choice of one reference orientatias, ahus preventing the determi-
nation of the full disparity vector by a punctual single-chal measurement. We will see
that only the projected disparity component on the directichogonal to the dominant local
orientation of the filtered image can be detected.

Let us distinguish two cases. When the image (stimulusgstre is intrinsically 1D, with
a dominant orientatiofi, (let us think of an oriented edge or of an oriented gratindiré-
quency vectok, = (k,sin 6, k, cos 0,)T, as extreme cases), the aperture problem [33] restricts
detectable disparity to the direction orthogonal to thesgdg., to the direction of the dominant
frequency vectok,):

ko (A9, (%) Jan ke [Ag, (%) |2

593 (X) = ]{55 T = k‘s ks (13)

wherek(x) is the magnitude of the instantaneous frequency. That g tbe projectiond,, of
the disparityd onto the direction of the stimulus frequenkyis observed. A spatial disparity
in a direction orthogonal tk, cannot be measured. For an intrinsic 1D image structuregihd
the spectrum energy is confined within a very narrow bandwadd it is gathered by the band-
width (Ak, By) of a single activated channel. This is a realistic assupngdtr a relatively large



number of orientation channels. Moreover, in this conditawhen the dominant frequency of
the stimulusk, is unknown, it can be approximated ky, and thus Eqg. (13) becomes:

8, (x) ~ I;_S—LA@];ix)J%'

When the image structure is intrinsically 2D (let us thinlaaich texture or a white noise, as
an extreme case), the visual signal has local frequency cpers in more than one direction
and the dominant direction is given by the orientation of @abor filter. Similarly, the only
detectable disparity by a band-pass oriented chankg| By) is the one orthogonal to the
filter's orientationd, i.e., the projection in the direction of the filter's frequency:

ko [Adg(x) |2r
A e

Again, k(x) can be derived by Eq. (12) or approximated by the peak fre;yuefithe Gabor
filter ko.

By considering the whole set of oriented filters, we can aetine projected disparities in
the directions of all the frequency components of the nelishnel band-pass representation,
and obtain the full disparity vector by intersection of cimamits [3], thus solving the aperture
problem. Without measurement errors, the vector dispaketyrmined by each orientation
channel consists of projectiai (x) in ky-direction and unknown orthogonal component (see
Fig. 1). The full disparity vectod(x) can be recovered from at least two projectidnsx),
which are not linearly dependent. The end points of the vedgx) for fixed k, are located
on a circle through the origin and the end pointdgfx). Taking into account measurement
errors of Agy and , the redundancy of more than two projections can be asedhimize the
mean square error fan(x):

(14)

(15)

0(x) = argmin co(x) | do(x) — —0O(x ) 16
() g(x);u(() <>) (16)

where the coefficienty(x) = 1 when the component disparity along directibfor pixel x is
avalid (i.ereliable) component on the basis of a confidence measures awdl otherwise. In
this way, the influence of erroneous filter responses is esiuc

3.2 Distributed models

The phase-based disparity estimation approach presens&tiion 3.1 impliegxplicit mea-
surements, for each spatial orientation charih@nd for any given scale) of the local phase
differenceA¢ in the image pairs, from which we obtain thd&ect measure of the binocular
disparity componeny,. Similarly, we can consider a distributed approach in whiehbinocu-
lar disparitys is never measured but implicitly coded by the populatioivéagtof cells that act
as “disparity detectors” - over a proper range of disparéjpggs. Such models are inspired by
the experimental evidences on how the brain and, specyfith# primary visual cortex (V1),
implements early mechanisms for stereopsis. Using sucBtahdited code it is possible to
achieve a very flexible and robust representation of birayalikparity for each spatial position
in the retinal image.



Figure 1: Recovery of the 2D disparity vector. By constraefithe end points of all the
(correct) estimate&;* of the disparity component with respect to the orientati@me located
on a circle through the origin. The true full disparity is tbagest vector whose end point lies
on the circle.

3.2.1 Phase-shift and binocular energy models

An abundance of neurophysiological evidences report tmatcortical cells’ sensitivity to
binocular disparity is related to interocular phase shiftshe Gabor-like receptive fields of
V1 simple cells ([28][34][35][36][37][38]). It is worth niing that models based on a differ-
ence in the position of the left and right RFs (position4simibdels) or hybrid approaches have
been proposed (we will discuss the consequences of thislrexigations in the Section). The
phase-shift model posits that the center of the left and gl RFs coincides, but the arrange-
ments of the RF subregions are different. Formally, theaese of a simple cell with RF center
in z and oriented along, can be written as:

OoTswo(X) = IF % 2 (x; 0,400 + ) + T % W (x; 0, 4b9 + ") (17)

where

h(x) = h(x;0,v) = nexp (—%XTX) cos(kgx + 1) (18)
is a real-valued RF (cf Eq. (4)) is a “central” value of the phase of the RF, antl andv)”?
are the phases that characterize the binocular RF profile.

In order to make the disparity tuning independent of the ncatay local Fourier phase of
the images (but only on the interocular phase differenagahdular energy complex cells play
the role. Such “energy units” are defined as the squared suagofdrature pair of simple
cells (see Fig. 2) and their response is defined as:
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Figure 2: The complex cell response is constructed as theredisum of a quadrature pair of
simple cells. The green and red pathways relate to the mdéardguadrature pair” of simple
cell RFs,g” andg’, respectively.

GAW’c(X) :eAw Tg,o(x) +€A¢ Tg,nm(x) (19)

Linking phase-based and energy-based modelsFor any fixed orientation, if we character-
ize a “quadrature pair” of simple cells by a complex-valudd(Bf Eq. (4)):

h(x) = ho(x) + jhs(x) = g(x; ¥) (20)
then we can write the expression of the response of the “quia@r pair” as:

Qx) = I gh(x)+ 1% gf(x) = I" % g(x)e" + % g(x)e"" =
= Q") + Q" (x)e".

The response of a complex “energy” cell is then

2 L R |2
8re®) = [Agrao) )]’ = [QF0F + Q0| =

O (Q 0 + Q™) = Q1) + Q(x)e |

(21)
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whereAy = ' — . Therefore, complex cells’ responses depend\gnonly, instead
of ony’ andw ¥ individually.

Eq. (21) formally establishes the equivalence betweengbased techniques and energy-
based models [39]. Indeed, the maximumrofesponses is obtained when the two phasors
Q" and Q" are aligned in the complex plane, that is wh&p compensates for the different
Fourier phases of the right and left image patches withircétés RF (cf. [28]).

Notwithstanding the formal equivalence between phaseebteshniques and energy-based
models, the latters prove themselves more robust to noderame flexible, since they can
intrinsically embed adaptive mechanisms both at codingdaudding levels of the population
code. From algebraic and trigonometric manipulation we aanive the tuning curve of the
complex cell:

Apre(x) = [QF (%) * +2|Q" (x) Q™ (x)| cos(8"ko — Avp) + QT (x)]*. (22)
Accordingly, the stimulus disparity, along directiénto which the cell is tuned is:
AY(X) |2
6}9)ref(x) = % (23)

Including position shift: hybrid models The position-shift model posits that there is a pop-
ulation of energy neurons with different receptive field ipoa shifts. Accordingly we can
consider a family of binocular energy neurons whose righbocolar subfield is shifted by
a set of distanceg compared to the retinal position of the left monocular sudbfieJsually
position-shift are used in combination with phase-shifdels to overcome the restriction on
the maximum disparity detectability stemmed by the fact thea phase shifts are unique only
between—7 andx. These hybrid models posit that there is a population of cutar energy
neurons with different RF positions and different RF phdséiss In the following we will
restrict our analysis to phase-shift model only, and we dglerve a model extention for future
work.

3.2.2 Characterization of the population of disparity detetors

Coding Disparity information is extracted from a sequence of stémeage pairs by using
a distributed cortical architecture that resorts to a pajoh of simple and complex cells.
The population is composed of cells sensitiveNp x N, vector disparitiesy = (dy, dy)
with NV, magnitude values distributed in the rangeA, A| pixels and alongV, orientations
uniformly distributed betweefi and = (see Fig. 3). For each simple cell we can control the
ocular dominance of the binocular receptive fiélck), its orientationf with respect to the
horizontal axis and the interocular phase siit along the rotated axis, which confers to
the cell its specific tuning to a dispariﬁﬁmf = Avy/ko, along the direction orthogonal tb
The spatial frequency, and the spatial envelope are fixed on the basis of the designizr
described in Section 3.1. The complex cell inherits theiapptoperties of the simple cells,
and its response’ (x) is given by Eq. (21): For each orientation, the populatigriristhis
way, capable of providing reliable disparity estimateshi@a tange betweenr A andA, where

A = AYna ko can be defined as the maximum detectable disparity of thelgkbqu
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Figure 3: The population of binocular receptive fields fackeeetinal location.

Fig. 4 shows examples of tuning curves obtained from the ladipa network stimulated
with §5 only, compared to the variety of tuning curves fgr, observed experimentally in V1
cortical cells [38].

Decoding Once the disparity along each spatial orientation have lbeded by the popu-
lation activity, it is necessary to read out this informatito obtain a reliable estimate. The
decoding strategy, the number of the cells in the populadiweh their distribution are jointly
related. To decode the population by a winners-take-altesgry, a large number of cells along
each spatial orientation would be necessary, thus inergdbe computational cost and the
memory occupancy of the approach. To obtain precise feastimation, while keeping the
number of cells as low as possible, thus an affordable coatipugl cost, aveighted sunfi.e.,

a center of gravity) of the responses for each orientatioalsulated. Theomponent disparity
d5 is obtained by:

est sz‘vzpl kOACiiQT?
59:’ - Np ij] (24)
DT

Other decoding methods [40], such as thaximum likelihoodstimator, have been con-
sidered, but the center of gravity of the population activét the best compromise between
simplicity, low computational cost and accuracy of therastes.

Confidence values, based on local energy, are used to pravediability measure for each
disparity estimate.

To decode the full (horizontal and vertical) disparity wen cdill rely on the intersection
of constraints (channel interaction) introduced in SecBol.2 that combine the population
estimates for each orientation channel.

Summarizing, on the basis of these principles, a cortigaldrchitecture for disparity es-
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Figure 4: (a) Distribution of the tuning curves obtainednfrthe population network. The
distribution has been obtained fof, = 7 and N, = 8. (b) The distribution observed for
real V1 cortical cells [38]. The insets represent exampfedigparity tuning curves fitted by
Gabor function. The model cells’ distribution and the tunprofiles closely resemble the
experimental ones.
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Figure 5: Basic scheme of the neuromorphic architecturthiscomputation of the 2D dispar-
ity.

timation can be devised [41]. The overall scheme of the megarchitecture is shown in
Fig. (5). Three distinct levels of processing can be distisiged: (1) the distributed coding
of disparity across different orientation channels, (2) decoding stage for each channel, and
(3) the estimation of the full disparity through channeknaiction. If one wants to consider
several scales, coarse-to-fine strategies can be sti@yhatdly embodiede.g, by including

in the scheme a refinement loop as re-entrant connectiohs ifiltering stage (see [41] [42]).

Toward a generalized architecture for active stereopsis In active stereopsis, besides han-
dling horizontal and vertical disparities, we have to exiflly consider vergence mechanisms
in the processing loop. From this perspective, in the negti&e we address the problem of
the refinement of vergence, which does not necessarily @sfilist a refinement of the estima-
tion of the disparity map. Indeed, experimental evidensesd.qg, [43] [44] [45]) pointed out
that mechanisms guiding eye movements are in generaldifféom those supporting depth
perception. We will see that, by specializing disparityedédrs for vergence control, we can
obtain linear servos with fast reaction and precision thatkvover a wide range of disparities
with a reduced number of resources single scale).

4 Strategies for vergence without explicit calculation of @s-
parity

4.1 Reading binocular energy population codes for short-fency
disparity-vergence eye movements

As described in Section 3, the population of complex ceks by construction, tuned to ori-
ented disparitied,e., jointly tuned to horizontal{y) and vertical disparitiesi(;). In general,

indeed, the retinal disparity is a two-dimensional (2D)tdea and the full decoding of the
population response would require the proper solution efajperture problem [33]. This can
be achieved, by example, through the intersection of thetcaints provided by the different
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HD = Asiné

VD = -Acos6

6A

-6A
VD =
>

-6A 0 6A
HD

Figure 6: Each complex cell is, by construction, tuned to aented disparity,, i.e., each
cell is jointly tuned to horizontal (HD) and vertical (VD)gparities. (Top): For each oriented
disparity, its contribution to the HD and VD is calculatedrpjections on the horizontal and
vertical lines. (Bottom): By assuming \\D 0, the orientation of the RF is used as a degree of
freedom to extend the sensitivity range of the cell to hariabdisparity stimuli (HD).

orientation channels (cf. [3]). If one proceedes in such g tet is by recovering the full dis-
parity vector, the disparity detectability range wouldl & limited to+A, and the horizontal
(vertical) component of the full disparity vector will thesed for the control of horizontal (ver-
tical) vergence. Unless one uses computationally expemsiutiscale techniques for widening
the disparity detectability range, this approach wouldsiderably limit the working range of
the vergence control. As for the control of vergence, ladigparities have to be discriminated
while keeping a good accuracy around the fixation point ftowahg finer refinement and
achieving stable fixations, alternative strategies migheimployed to gain effective vergence
signals directly from the complex cell population respaseithout explicit computation of
the disparity map. To this end, we can map the 2D disparitjufeaspace into the 1D space
of the projected horizontal disparities, where the orieoited plays the role of a parameter.
More precisely, by assuming, = 0, the dimensionality of the problem of disparity estima-
tion reduces to one, and the orientation of the receptive fselised as a degree of freedom to
extend the sensitivity range of the cells’ population toiamtal disparity stimuli (see Fig. 6).
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In this way, each orientation channel has a sensitivity liertiorizontal disparity that can be
obtained by the projection of the oriented phase differarcéhe (horizontal) epipolar line in
the following way:

Ay
2mkgcost
Fig.7a shows the horizontal disparity tuning curves oladiof the population for different
orientations of the receptive fields. To decode the horeatisparity at a specific image point,
the whole activity of the population of cells, with recegtifields centered in that location, is
considered. By using a center-of-mass decoding strategyestimated horizontal disparity
6¢:% is obtained by:

3py = (25)

ZNp No _ A¢i _ij
1=1 Jj=1 27kq cosb; ' ¢

Z?gl j’V:O1 rd
wherer¥ denotes the response of the complex cell characterizedebiytthphase difference
and by the j-th orientation. The dashed line plots in FigcAtrow the resulting disparity curves
obtained by population decoding. The estimate of the digpzan be considered correct when
the stimulus disparity is withig-A.

By analyzing the tuning curves of the population (see Figwe observe that the peak
sensitivity of cells that belong to a single orientationmmh@l is uniformly distributed in a range
that increases with the orientation anglef the receptive field, as the horizontal projection
of the frequency of the Gabor function declines to zero. Tlapplying the center of mass
decoding strategy, separately for each orientation, weobtdain j different estimates of the
disparity:

est __
0 =

(26)

ENP Ay, ij

J=1 27k cos 0; re
25\21 réd

It is worthy to note that the increase of the sensitivity s the orientation of the receptive

fields deviates from the vertical, comes at the price of acedueliability and accuracy of

the measure (as an extreme case, horizontal receptive stdgnable to detect horizontal

disparitiesj.e., 0" — co). In any case, the estimate of the disparity can be consideneect

in a range arounf-A,; A], only.

Moreover, since the 1D tuning curves of the population wéataioed under the assump-
tion of horizontal disparity only, when the vertical dispwaiin the images differs from zero,
the correctness of estimate of the actual component of thedmdal disparity has to be ver-
ified. We observe that (see Fig.7b and Fig.7c, top row), tepatity estimated by the whole
population is unaffected by non null vertical disparitias,well as the estimate obtained by
the orientatiort = 0 (vertically oriented cells are indeed , by definition, séusito horizontal
disparity only). On the contrary, the estimated dispariitatned ford # 0 shows a dependence
on vertical disparity, that increases witl{see Fig.7c, middle and bottom row), and leads to a
systematic error response.

est
6H,9j -

(27)

4.1.1 Control signal extraction

A desired feature of disparity-vergence curves is an oddsgtry with a linear segment pass-
ing smoothly through zero disparity, which defines critisatvo ranges over which changes
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Figure 7: (a) Disparity tuning curves of complex cells afetént orientations. (b) Estimated

horizontal disparity using single orientation channelpiasence of horizontal disparity only

(6 = 0). (c) Estimated horizontal disparity using single origioia channels in presence of a

fixed amount of vertical disparityy(; # 0). Dashed line plots refer to the horizontal disparity
estimates obtained by combining all the orientation chinne

in the stimulus horizontal disparity elicit roughly propional changes in the amount of hori-
zontal vergence eye movementsy = pdy, wherea is the vergence angle. Starting from the
estimated disparity curves shown in Fig.7b, we can exphatresponses at different orienta-
tions to design linear servos that work outside the religlridnge of disparity estimation. Yet,
we have to cope with the attendant sensitivity to verticapdrity, which is an undesirable ef-
fect that alters the control action. Hence, given a stimulitis horizontal and vertical disparity
0y anddy, we want to combine the population responses in order taetxarvergence control
proportional to thej;; to be reduced, regardless of any possihle We demonstrate that such
disparity vergence response can be approximated by progighting of the population cell
responses where disparity tuning curves act as basis dmscf46]. Due to these considera-
tions, the population responses are combined with two veggific goals: (1) to obtain signals
proportional to horizontal disparities, (2) to make theigmals be insensitive to the presence
of vertical disparities. The disparity vergence responseesr” are obtained by a weighted
sum of the complex cell responses (see Fig.9):

NP No
k __ § § k .1
Ty = wijrc (28)
i=1 j=1
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Figure 8: Thev¥, target curves to be approximated by the LMS minimizatiorcheaf them is
designed to have a tuning to disparities of different magtst

where the indeX denotes the different kind of the desired vergence respanses. Referring
to a common classification [47] we divide the V1 cells in fivéegmries: nearNE) and far
(FA) dedicated to coarse stereopsis, and tuned fiédy, (uned far TF) and tuned zeroT()
for fine stereopsis. The Weigh@j are obtained through a recursive LMS algorithm. From
the control point of view, we assume that small values ofieardisparities do not affect the
disparity-vergence curves. Moreover, to mildly constréire solution of the problem and, in
the meantime to ensure a good control stability, we pose héndependence constraint for
HD ~ 0, only. Under this assumption, we can design the dispaetgence curves that define
the visual servos by considering the tuning curves obtassgarately for VD=0 and HD=0
(i.e. the orthogonal cross-section of the oriented 2D dispawityng curves of the binocular
energy model). More precisely, the profile of the desiredygrce curvet, (see Fig.8) is
approximated by a weighted sum of the tuning curves for latal disparityr.(6y; 6, Ay).

To gain the insensitivity to vertical disparity we add a doaisit term in the minimization
formula. This term ensures that the sum of the vertical digpaning curves<(dy; 0, Avy),
weighted with the same’*, approximates’.. To overcome the difficulties of approximating
a constant with a combination of a limited number of peridoi&sis functions, we impose
v¥ to have a profile that is mildly constant as the one that canbb&ireed by summing the
tuning curves all togethgn® = S ;V:“I r(8y)). Hence, the weights* are obtained by
minimizing the following functional:

NP No

Z Z rij(éH)wfj — ok

i=1 j=1

NP No

Z Z Tij(5v)(wfj —-1)

i=1 j=1

2
B(w") = + A (29)

where)\ > 0 balances the relevance of the second term over the first. risiowlations we
fixed A\ = 1 in order to give the same relevance to béthanddy . To test the functionality
of the model, at this stage, we used the same kind of stimoptd to compute the disparity
tuning curves of the cells, so that we expect the disparitgemce tuning curve to be the same
we drew from the minimization. The stimuli have a disparigyying in the same range used for
the tuning curves, and the control computed has the same sifisipe desired curves (Fig.9b).
A drawback that arises is that if the image contrast is lodiedesparity vergence tuning curves
hold the same shape, but their gain is consequently lowerid the effect that the speed of
the vergence movements is modulated by the image contrdm. eStimated disparity does
not show this effect because the center of mass decodinggtrmeans to take a decision on
the disparity value, regardless to the contrast of the dtism(cf. [35]). By analogy with the
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Figure 9: Extraction of the vergence control signals: eacation of the left and right image

is filtered with a population of diparity detectors whosepsser,. is combined with five
different families of weightsv®, in order to extract five signalg™, »7% +70 +TN and V¥,
tuned to disparities of different magnitudes. These sgasd combined in a differential way,

io order to extract theONG andSHORT controls, used to drive the vergence eye movements,
while ther™® works as a switch between them.

formula used to decode the disparity, we can introduce thmesgrmalization term to let the
system work in the proper way independently of the imageresit

Np No . 'k, .ij
> i 1 WiT

k j=1 Yijle
ry = — (30)
N,
: > it ;‘V:Ol rd

4.1.2 Signal Choice

With reference to the five categories of the disparity-veogecurves, it is plausible to think that
the first two generate the fast and coarse component anditéesahe slow and fine component
of the vergence movements. In practice the fast-coarseat@siven byLoNG= rVF — pF'4,
while the slow-fine is given bgHORT= r’V — +TF (see Fig.9). ThesHORT control signal is
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Figure 10: The effectiveONG, SHORT (a), and TO (b) signals computed by the model stimu-
lated with a random dot stereograms (RDS). Sh@RT control is able to work in a linear and
precise manner for small disparities, while tt@NG one works in a coarse but effective way
for larger disparities. Since tHEO signal is high for small disparities, it is able to act like a
switch between the two controls.

designed to proportionally generate, in a small range qfatities, the vergence to be achieved,
and allows a precise and stable fixation (Fig.9b). Out ofatgye of linearity, theHORT signal
decreases and loses efficiency to the point where it changestBus generating a vergence
movement opposite to the desired one. On the contrary foll siisparities theLONG control
signal yields overactive vergence signal that make theesysb oscillate, whereas for larger
disparities it provides a rapid and effective signal.

The role of the-”? signal, is to act as a switch between 8#oORT and theLONG controls.
When the binocular disparities are smafl? is above a proper threshokH, and it enables
thesHORT control (see white regions in Fig.9b). On the contrary, &mgé stimulus disparities,
rT0 is below the threshold and it enables thenG control (see grey regions in Fig.9b).

A straightforward but meaningful effect that arises fronficatating thesHORT and the
LONG controls in a differential way is a strong robustness to&diswe add a Gaussian white
noise to the population response, both the decoding of 8gadty and the computation of the
r* signals, would be affected. Since the weightsare normalized, it is easy to demonstrate
that the noise terms onV” and ™4 cancel each other while differentiating to compute the
LONG control, and so it happens for tis&IORT one. Simulation results evidenced that, when
one adopts the differenti@HORT and LONG control signals, the S/N ratio is 6dB higher
than the input S/N ratio for the complex cell responses.

4.2 Effects of vertical disparity

The optimized control we want to obtain from the proposetinegue is a control of the hori-
zontal vergence that would be able to yield the same movefoeatgiven horizontal disparity
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Figure 11: The effectiveONG (a), andsHORT (b) signals computed by the model stimulated
with a random dot stereograms (RDS) in the absence (so&ldind in presence (dashed line)
of a vertical disparity pedestal.

0, without suffering any effect from the vertical disparity. Indeed if thed,, constraint is
not taken into account in the minimization process used tainlihe weightsv (see EQq.29),
the resulting control shows a strong dependence on vedispérity, as it appears evident in
the disparity-vergence tuning curves shown in Fig.7 righticin. The control loses the zero
crossing and its odd symmetry, which are instrumental featto ensure that at the steady
state, the eyes fixate on the closest surface along the af®tbn, not before, nor beyond.

Although, the regularization term we introduced in Eq.29 thee sake of forcing the control
to be insensitive to the vertical disparity, simulationshaRDSs showed that the behaviour is
different from the expected one.

The problem of this approach is due to the fact that the miration is computed by con-
sidering, for every complex cell, its responsgg to the horizontal and the vertical disparity
only, for the first and the second term of the functional, eetipely. As a matter of fact, in
the functional in Eq.29, what we consider are the crossesecforéy = 0 anddy = 0 of
the two-dimensional (2D) tuning profile that characterigash complex cell. Though, the 2D
disparity tuning profile of a binocular energy unit can besnted by any angle, depending on
the orientation channel we consider, and it is separable fof) andd = 7 /2 only.

Hence, the problem arises if a vertical disparity pedestafided to the stimulus, the section
of the 2D profile one should consider, is the one at the impésedtherwise, the more the
filter is tilted from the vertical and the more tlig¢ is, the most the tuning curves change,
producing the effect of making the decoding for vergencelietle.

Thus if thedy is set to0, the control is working in the conditions it is designed fand
its effectiveness is the highest. In Fig.14a we show theutiol in time of the actual hori-
zontal disparity, when the vergence control to correcivactrhe value of each plot at the first
time step is the initial horizontal disparity step we impis&he system is able to cope with
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Figure 12: (a) The profile of the response of the complex adihed byd = 7 /4, tested with

a RDS withéy anddy ranging from—3A and3A. (b) Tuning curves for the same complex
cells, taken at different fixed vertical disparity, the bhree is foré,, = 0 and the green one is
for 6, = A. The empty circles highlight the position of the peak forteaarve.
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Figure 13: 2D vergence tuning profiles for tseORT and LONG control mode obtained as
weighted sums of the 2D disparity tuning profiles of the camlells. The weights are derived
by Eq.29 and by Eq.30

disparity values ranging from3A to 3Aand the control of vergence reduces to zero the stim-
ulus disparity. Moreover is highlighted when the systeneslipon thesHORT control (filled
circles) and the.oNG control (open circles). As expected, for small disparities working
mode is the former, while for larger disparities is the latteepending on the threshold of the
T0 signal (see Fig.10b). At the same way if vertical dispastgmall (see Fig.14b), the tuning
of the population responses is almost unaffected;hyand the only visible effect is a slight
slow down of the vergence control. Increasing the valugofsee Fig.14c-d), besides a more
consistent slow down of the control, another drawback isé¢deicing of the range afy the
control is able to cope with. This effect is particularly @ent on thee.ONG mode, because it
resort mainly on the cells whose orientation tuning largigyiates from the vertical, thus being
more sensitive ta,. Fig.13 shows theHORT andLONG controls obtained as weighted sums
of the 2D disparity tuning profiles of the complex cells, angarticular haw the two control
are slowed down by,. Moreover the areas where the controls are unreliable isliglged
with white lines.

4.3 Results
4.3.1 Test with Random Dot Stereograms

We tested the proposed model with synthetic stimuli comgjsdbf random dot stereograms
(RDS) in which the stereo image pairs are shifted horiznt&pecifically, we applied hori-

zontal disparity steps varying from3A to 3A. The model works in a perception-action loop
in which the vergence movements are simulated reducingbstegtep the disparity between
the left and right images by an amount proportional to thgerece control, computed both
through the estimation of the disparit§;’ (see 26) and through the vergence signélésee

30) Fig.16 shows the percentage of vergence movement atisbegbby the two mechanisms
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Figure 14: Evolution in time of the vergence control testéb & RDS. Fixed a vertical dispar-
ity pedestal, varing from to A, each trace represent the evolution of the vergence gjriatm

a different value of horizontal disparity. It is clear thansidering a small vertical disparity
(b), its effect on the horizontal vergence is negligiblecreasing it above a certain value (c)
and (d), the vergence control is slowed down and its rang&fedtareness is reduced. Filled
and opend circles denote the action of §##RTandLONG controls, respectively.
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Figure 15: Horizontal vergence velocity (deg/timesteppmesence of a vertical disparity
pedestal of increasing magnitude.
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Figure 16: Comparison of percentage of vergence achievedebgnodel using the estimated
disparity 6% (white bars), and the” signals to control the vergence. The stimulus used is a
RDS with a disparity step in the range fror8A to 3A. Only the positive axis is represented
because the response is symmetric around zero dispar#ygreiphs represent the status of the
system after 1, 2 and 10 time steps. At each step/tteignals are able to reach the target in
the whole range tested, whi* yields a wrong control for disparities larger than
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Figure 17: (a) Simulated experimental setup, consistin®®yes looking at a plane charac-
terized by a RDS pattern, and perpendicular to the binodinkof sight. (b) Behaviour of the
vergence control usingf vs 6% in case of a diverging step. Thé control (solid line) is able
to reach the depth of the plane (dotted line) in all the casesgmted, while thé¢;* control
(dashed line) produce a wrong movement for a depth step abosgain threshold.

for different time steps. Because of the behaviour of the tvezhanisms is symmetric with
respect to zero disparity, we show the positive semiaxig. ohlpercentage value higher than
100 indicates an overshoot of the movement, whereas a \@ige than zero indicates a move-
ment in the opposite.e., wrong) direction. After the first time step (Fig.16 top rowf)the
stimulus disparity is withim\, the behaviour is slightly better fa¥;* (white bars), whereas
outside this range it produces a vergence movement thag ispgposite of the one requested.
Ther* signals (black bars) produce almost the same moveméfit'dor small disparity steps,
but they are able to achieve slow but effective vergence mewgs up to the limit of the tested
range. At the second time step (Fig.16 middle row), for digpateps smaller thai\, both the
mechanisms reach the target, and for higher disparitiesghaviour is similar to the previous
time step. Afterl0 time steps (Fig.16 bottom row), we observed gt was able to work in
the proper way only for disparities withift, whereas* was able to reach the target in all the
tested range.

4.3.2 Test with a frontoparallel plane

Considering a virtual environment in which the eyes, charamed by null version and eleva-
tion angle, and by a vergence angldook at a plane with a random dot texture (Fig.17a). The
plane is at a deptlf with respect to the cyclopic position, and perpendiculahbinocular
line of sight. The interocular distance is= 70mm, the nodal length i, = 17mm, and
the stimulus is projected onto the retinal plane, with a sizémnm, thus considering a field
of view of almost20 degree. At the first time step the plane and the fixation pomiaathe
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sameZ, then the plane is moved to a new depth, and the vergence stagie to change step

by step, until the fixation point reaches the depth of the galaBonsidering the position of
the eyes, the vergence variation is applied symmetricdilyz = —Aa;, = — arctan(ﬁ),
wherer is computed by considering the weighted average of the wesgeesponses’ or of

the estimated disparitie’;’. The area where the average is computed, is a neighborhood of
the fovea of5°, and its size is based on physiological experiments [48]ghaw that it is the
maximum extent of the retina where the disparity stimulustisgrated to drive vergence eye
movements in humans.

The first test considers a fixed frontoparallel plane at argdistance, while the eyes are
fixating on the surface of the plane. The plane steps backatiu lfy an amount that varies
from trial to trial. Fig.17b shows that a control based ondisparity computation produces the
correct change of the vergence angle (dotted lines), whesile of the step is restrained. On
the other hand, the implemented model is able to produceex fesange of the fixation point
(solid lines), and, even for larger depth steps, the modabis to ensure a reliable vergence
control. Moreover, once the fixation point has reached thagin depth, the disparity in the
fovea is approximately zero and the system is able to ensstiabée fixation.

The second test considers a frontoparallel plane whos#qosi depth varies continuously
in time as a ramp and a sinusoid. The slope of the ramp is vaoed0.5 cm per time step to
a pure step (Fig.18a). While for small values only §x0RT control is enabled, in the other
cases the initial part of the vergence is produced by theG one, and the interplay between
the two controls is very similar to the one observed in thedient and sustained components
of the physiological responses [5]. In support of this hyyesis, in case of both a divergent
and a convergent ramp, the simulated vergence movemergsartatively very similar to the
results obtained in physiological experiments. In the samg the frequency of the sinusoid
that controls the depth of the plane was varied betwéand 38 time steps, and again the
simulated results (Fig.18b) are qualitatively similar e texperimental data [5]. Increasing
the frequency, it is evident a transition from a slow and stnacking of the plane, due to
the SHORT control, to a combination of theoNG and SHORT controls. When the frequency
becomes too high, the system is no more able to follow theudtisrin depth.

5 Network Paradigms for vergence control

In this section we present a modular architecture (see stibses.1) and two networks for
learning vergence control: a linear (subsection 5.2) andnaalutional one (subsection 5.3).
Training and evaluation are also discussed.

5.1 \ergence control model

For the vergence control paradigm modeling we used the sétoyyn on Fig. 19. This setup
consists of the vergence simulator module, the dispariyaier population module (described
in Section 3.2) and the vergence control network module.vEngence simulator consists of a
robotic head model and a ray-tracing engine. The robotid headel has the same parameters
as in subsection 4.3.2 (the baseline 70 mm, the focal lengthf, = 17 mm and field of view
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Figure 18: (a) Vergence response in time to diverging ramipls efferent slopes, and (b)
to sinusoids characterized by different periods. The dolitee represents the depth of the
stimulus and the solid one is the depth of the fixation point.
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Figure 19: The scheme of the experimental setup for vergemiol model training.

~ 20°) and can be controlled externally by the gaze directionsfeal) and the vergence angle.
Using the robotic head model and scene information the nairtg engine renders left and
right views (see Fig. 20), which then are fed to the dispatétector population module. In
order to speed up the simulations we decided to work with gleiacale architecture of the
disparity detector population and use images of low-ragmiy41 x 41).

The response of the population through the postprocessodyi® reaches the vergence
control network (VC-net). The actual gaze direction andialcvergence are used as an ad-
ditional input to the VC-net. The output of the VC-net is agraeter controlling the actual
vergence, which in this work is the vergence angle. Obviggslen a gaze direction, which in
our case is fixed, there is only one value of the vergence awhleh brings the fixation point
onto the surface of the attended object. The VC-net is erpect approximate this value as
close as possible given the input data.

The postprocessing of the population response was ditféoenhe two considered VC-
nets. In the case of the linear network, the postprocessagydefined as a 2D pooling over
first two (spatial) dimensions of the population response @ibsection 5.2).

On the one hand, the pooling operation reduces the amouradtaftd process, but on the
other hand, it has a major drawback as it discards the spattaimation about the disparity
encoded in the population response. The simulations sHwtsih the simplified case, this is
still acceptable, but not in general case (see subsect)n 5.

That is why, in the general when the linear network has anediptable systematic error,
we do not do any pooling directly, but let the convolutionatwork to do this in the first two
layers (see subsection 5.3). In this case, it is conventeabnsider the postprocessing as an
identical operator.

31



(@) (b)

Figure 20: An example of a synthetic scene layout (a) usetdyée¢rgence simulator to render
corresponding left (b) and right (c) eye views.

5.1.1 Vergence control database

The vergence simulator was used also for the creatiornvefgence databasehich has been
used for training and testing of the vergence control nétwdihe database contains a set of
synthetic scenes and a set of samples. Each synthetic soesists of several simple (plane
triangle, cube, tetrahedra etc.) textured objects platedoom-like environment (see Fig. 20).
All the textures (real-world images, checkerboard-likeages, random noise etc.) we used,
were corrupted by 5% Gaussian noise in order to obtain arlregponse from the population.
Samples of the database consist of ¢lae directionthe actual vergence anglghe stereo
pair (left and right eyes images), tipopulation responsér the stereo pair and theesired
vergence angleThe actual vergence angle is a distorted (with Gaussissehwoersion of the
desired one.

With the database it is easy to prepare training pairs. Aging data vector is constructed
from the gaze direction, the actual vergence angle and mpr&ipsed population response are
computed. The output consists of only one parameter: theedegergence angle.

5.2 Linear servo network

The first attempt in the modeling of a network for vergencetimnvas done with the simplest
possible network that reproduces the results from sectiging learning from examples taken
from the vergence database.

5.2.1 Vergence angle vs. distance to the fixation point

Given a robotic head baseliheand a gaze direction vectgr= (g., g,,9.)", (gl = 1) itis
possible to infer the distancéto the fixation point (from the middle of the head’s baseline)
using the vergence angte

b 1
d=-(s++vVs®+1), wheres = —— 31
2< ) tanay/1 — g2 (31)
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andvice versa

T
A\
(x = arccos < LT ) , Where

haihal
v,=d-g+(b/2,0,0)", and
vi=d-g— (b/2,0,0)".

(32)

From the equations 31 and 32, one can see that by considefineglayaze direction and fixed
baseline, the vergence angle is equivalent to the distartbe fixation point (nevertheless they
have a nonlinear relationship). We used the deviation odtteal distance to the fixation point
from the desired one as an additional measure of vergenéerpance. From our point of
view, this measure is more natural compared to the deviafitime vergence angle.

5.2.2 Postprocessing of population response

As it has been mentioned above, we have defined the postpnoges the population response
(r. = {r?7},;, wherer. is a four dimensional array, x n. x N, x N,, n, is the number of
rows, n. is the number of columnsy, is the number of phase shifts and, is the number
of orientations) for the linear network as two-dimensiospétial pooling over the first two
dimensions of-. with a two-dimensional Gaussian kerrgl:

Py =Gy #r¥, (33)

wherer¥ is (two-dimensional) population response map #th orientation andj-th phase
shift. The kernel=,, has the same size. x n, as the size of a population response mapso
the result of the convolution is a scalar valbg.

This step drastically reduces the amount of data to procA#ier pooling, the network
has to process only a two-dimensional,(x NV,) pooled population response instead of four-
dimensional{, x n. x N, x N,) array.

5.2.3 Training

We consider two cases for the experimengiraplifiedand ageneralcase. The simplified case
is shown on Fig. 17a: the gaze direction of the robotic heatlsogonal to its baseline and
the stimulus is a frontoparallel plane, thus, also orthadjtmthe gaze direction. The stimulus
is allowed to move only in depth. In the general case, alfic&ins on the orientation of the
gaze, as well on the stimulus position, type and orientaaoa dropped. One of the examples
is shown on Fig. 20 with the only difference in the resolutadrihe rendered images (for the
simulation we used much lower resolution).

For each experiment case we have prepared several vergaiat@ases with the number of
synthetic scenes ranged from 100 to 1000 and the number gissifinom 200 to 4000.

The input vector for the linear VC-net was constructed asrecatenation of the pooled
population response (56 values), the gaze direction (Z2gxknd the actual vergence (1 value),
so its dimensionality is 59. The output is a prediction of ¥kegence angle, which is a scalar
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value. Due to the linearity of the network, there was no redsontroduce any hidden layers,
so the linear VC-net consisted of only one linear unit. Tingpdest possible vergence control
network has only 60 parameters (including bias), which catearned either directly (using
robust linear regression) or iteratively (using gradiezsgaknt) from the training database. Not
surprisingly, both training approaches produced almasitidal solutions on the same training
data in the simplified case.

5.2.4 Evaluation and results

For the evaluation of the VC-net, we have adopted the metbhggadescribed in subsec-
tion 4.3.2 with the next differences:

¢ the stimuli are allowed to move in the direction of the gazsat pmly in Z direction),

¢ the rendered stimuli cover 60-100% of the image area (afigvior depth discontinu-
ities),

¢ in the general case the stimuli can be not only 2D plane rgtgarbut also 3D primitives
(cubes or tetrahedrons),

e in the general case the stimuli can have arbitrary positimh @rientation inside the
workspace.

The first item is very important for the general case, whergtige direction is not necessarily
parallel to the Z-axis.

Three standard tests (ramp, sinusoid and staircase) wetedcaut for the simplified as
well as the general case. The typical results of the perfoosameasured in terms of distance
to the fixation point, are shown on Fig. 21.

The results of the evaluation of the linear VC-network shitat in the simplified setup,
it can produce an accurate and robust vergence control spitiplly pooled population re-
sponses. The relative error (distance-based as well asaangaasure) was always less then
1% in all tests of the simplified scenario (see Fig. 21a).

But in the general case this approach has unpredictablemsgst error, which in our tests
was up to 7% (see Fig. 21b). The large magnitude of the veegemor of the linear network
in the general case can be explained, from our point of vigwthb presence of the vertical
disparity asymmetric patterns (due to the arbitrary odgah and position of the stimuli) and
by the disparity discontinuities (caused by the limitecesat the stimuli). In the simplified
scenario, the vertical disparity information is symmetlig spread over the spatial dimensions
of the population response, and is discarded in the prepsotgstage by spatial pooling. This
does not happen in the general case, so the pooled populesiponse is biased by the residual
vertical disparity, and linear network, in turn producesasbd vergence control signal.

This situation motivated us to investigate a more compleagigm for the vergence con-
trol, which should be able to recognize particular pattennhe population responses in the
general case, and produce a proper vergence control skgprahis purpose we have chosen a
convolutional network [49, 50, 51], as it has proved to be oinde best paradigms for object
recognition.
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Figure 21: A typical examples of the depth-based perforragsiots for a linear vergence
control network in the simplified (a) and general case (bhades.

35



Input image C-layer S-layer C-layer S-layer C-layer F-layer

10 feature maps 10 feature maps 16 feature maps 16 feature maps 100 feature maps 7 outputs

5x5

D\ 2x2 [ o T

Figure 22: An example of typical convolutional network. Tdmehitecture (number of layers
and/or feature maps) of the network can differ, dependinthercomplexity of the task.

5.3 Convolutional network

The firstconvolutional networCN) appeared in the work of Fukushima in [49] and was
called Neocognitron. The basic architectural ideas bethiaN (ocal receptive fieldshared
weights and spatial or temporalubsamplinallow such networks to achieve some degree of
shift and deformation invariance and at the same time retthgceumber of training parameters.

Since 1989, Yann LeCun and co-workers have introduced ima [dgries of convolutional
networks with the general nameNet which contrary to the Neocognitron use supervised
training. In this case, the big advantage is that the whdleon is optimized for the given task,
making this approach usable for real-world applicatioreNé&t have been successfully applied
to character recognition nonlinear-dimensionality reéauncof image-sets [52] and even to ob-
stacle avoidance in an autonomous robot [53].

A typical convolutional network is a feed-forward networklayers of three typescon-
volutional (C-layer), subsampling S-layer) andiully-connectedF-layer). The C-layers and
S-layers usually come in pairs and are interleaved, angé&rdacome at the end (see Fig. 22).
The output of a C-layer is organized as a seteafture maps Each feature map contains the
output of a set of neurons with local receptive fields. All rees in the feature map share the
same weights, so the feature map is responsible for a plartimcal visual feature which is
encoded in the weights of these neurons. The computatiorfedtare map starts with a 2D
convolution of the input with a fixed kernel defined by the rels weights. A feature map can
have inputs from several feature maps of the previous ldy@rder to condense the extracted
features and make them more invariant with respect to $pltiarmations, the C-layer is typ-
ically followed by an S-layer which does a local averaging anbsampling. Each neuron in
a F-layer just does summation of bias with all weighted ispand then propagates the sum
through a nonlinear transfer function (RBF or sigmoid).

The network is trained in a supervised manner using backgatmon. For the efficient
training of large CNs, LeCun and colleagues proposed a nuofliecks and a modification
of the Levenberg-Marquardt algorithm [54].
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5.3.1 Extended convolutional network

For the modeling of CN-based vergence control we have dpedl@ur own version of the
convolution network in MATLAB. This network can be considdras an extension of LeCun’s
LeNet because it has the next features:

e any directed acyclic graph can be used for connecting trexdayf the network;
e the network can have any number of arbitrarily sized inpdt@umtput layers;

e the neuron’s receptive field (RF) can have an arbitrary etfglep of local RF tiling),

which means that in the S-layer, RFs can overlap and in they€x-lthe stride can differ
from 1,

e any layer or feature map of the network can be switched franable to nontrainable
(and vice versa) mode even during training;

e new layer type: M-layer.

The M-layer works similarly to the C-layer with the only difence in the subsampling opera-
tion s(x,a) = a ), x; is replaced by a softmax-like M-operation:

B ZZ ZE’ZC(mi
B > e’

where the receptive field is denoted ky= (xy, zo, ..., z,). This functionm(x, a) has been
chosen because its properties:

m(x,a)

(34)

e m(x,a) ~ max{z;};, if a is a large positived.g.a = 100);
e m(x,a)~ min{x;};, if a is a large negativee(g.a = —100);

o m(x,a) = 2215 i g,
n

5.3.2 Convolution network design

The idea behind the use of the convolutional network as aevexg controller consist in an
assumption that this powerful network, after proper tragnwill be able to recognize disparity
patterns directly from the population responses, and gbtivem into a proper vergence sig-
nal. The architecture of the convolutional network, usedoiar experiments, is CSFF and is
depicted on Fig. 23. The main challenge in this approach haamount of data: the popula-
tion response consists of 56 8) maps of resolutiod1 x 41 (rendered image resolution), so
the input of the network has 941361(x 41 x 8 x 7) components. In order to be able to train
the network with such high dimensional input data, we hacthuce the number of the train-
ing parameters. The first (convolutional) layer was set asiffxnontrainable) with Gaussian
kernels of sizd9 x 19 with standard deviation 6. The second (subsampling) lageraso 56
feature maps size of which was seBte 3.
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Figure 23: Convolutional network (and its input) used far lergence control.

5.3.3 Evaluation and results

For the evaluation of the convolutional network we have useakctly the same tests as for
the linear network (see subsection 5.2). The performansewsey similar in both scenarios
(see Fig. 24). The average relative error (in distanceébaseasure) for both scenarios is
less than 1%. Comparing the performances of two the netwadrisspossible to say that the
convolutional one has a more pronounced inertia with regpethe linear one, but it still is
able to handle the general case tasks with an acceptableaag@and robustness. But, on the
other hand, vergence control based on the convolutionalrkis much more computationally
expensive than linear-based.

6 Conclusions

Most of the conventional vergence control models, are basetie minimization of the hori-
zontal disparity.

Conversely, we proposed to avoid the explicit computaticthe disparity map and extract
the vergence control signal directly from the populatiospense, over the “foveal” region, of
a cortical-like network organized as a hierarchical ar@sinocular complex cells. With the
specific design approach followed to implement the distabwarchitecture, we demonstrated
that we can take full advantage of the flexibility and adaititsitof distributed computing to
specialize disparity detectors for vergence control amudtdeision.

On this ground, a neural network paradigm has been propaseduilding disparity-
vergence control. Specifically, an increasing complexitategy in the learning process
is adopted: starting from the simplest one-unit architectwe increased the number of
units/layers until an acceptable level of generalizatiooras reached.

Although the model only resorts to a population of neurona single scale, we demon-
strated that, using a convolutional network, accurate astiMergence control can be achieved
in a closed loop, for different orientations of the gaze.

In this direction of the development of the vergence contetivorks, our next steps of
investigation are the following:
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Figure 24: A typical examples of the depth-based performanteots for a convolutional ver-
gence control network in the simplified (a) and general ceysdenarios.
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¢ we can allow the first (C-)layer of the convolutional netwtwlbe trained (in a supervised
or unsupervised manner);

e We can replace the disparity detector population by aduafiaon-trainable layers of the
convolutional network;

e we can include dynamid.¢é., spatiotemporal) disparity tuning and attentional signal

(based on object properties) that might guide intentiorplaration of the selected ob-
ject.
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