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Abstract:

This deliverable describes the skills of the model implementing an artificial agent able to build an
integrated visuomotor awareness of potential targets in its visual environment. The two RBF
(Radial Basis Function) networks which constitute the core of the model are trained through a
sequence of random gaze and reaching movements around the peripersonal space.

The system is finally able to achieve a very good open loop gazing and reaching capability
toward visual targets. Contextual coding of a target in different reference frames allows the
system to perform also peripheral reaching actions (without foveating the target).

The model is able to emulate some psychophysical effect related to deceptive feedback, such as in
the saccadic adaptation paradigm.



The main goal of Task 4.2 is to achieve the integration of visual, oculomotor and arm-motor
information into a common action-oriented framework, aimed at endowing an artificial agent with a
natural ability of interacting with features of its surrounding environment. Through a self-supervised
learning procedure, and by using visual and proprioceptive feedback regarding the position of its eyes
and arm joints, the agent is able to build a sensorimotor awareness of visual stimuli, which
encompasses both the abilities of foveating and reaching toward them, according to different
movement sequences. The principle has been so far implemented on a computational model, subject of
this deliverable, and is now being applied to our humanoid robot hardware setup.

The global structure of the implemented model is described in Figure 1. The visual input regarding a
potential target is expressed with its location in a cyclopean visual field accompanied by information
on binocular disparity; the output is the correspondent head/body-centered representation built of a
potential vergence/version movement required to foveate on the target. This transformation has been
implemented with a RBF network, using a logarithmic retinotopic distribution of the basis function
neurons. It is trained through the execution of random saccadic movements and the estimation of the
target visual displacement. The second transformation, also implemented with RBF, is used instead to
maintain a contextual coding of stimuli in both a body-centered and an effector based frame of
reference. It is used to recode oculomotor coordinates in arm joint space and vice-versa. Each coding
corresponds to a potential movement, so that, thank to this second transformation, the agent is able to
reach where it is looking at (direct transformation) and to foveate on the position of the hand (inverse
transformation). If one of the potential motor signals is not released, eye and arm movements can be
decoupled, i.e., the system can for example reach toward a peripheral visual target without directing
the gaze toward it, only using the body-centered representation as an intermediate step to recode visual
input to arm motor response. Similarly, arm movements can also be planned but not executed, e.g.
waiting for a cue signal in an experimental protocol of delayed reaching. This second RBF net is
trained by random movements of the arm followed by gazing movements on its final position.

RBF REF

Visual/ Head/body- Oculoemotor/
oculomotor centered jointspace
transformation representation transformation

Effector-based
representation

Retinotopic
representation

\ergence—version Jointspace
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Figure 1: Computational framework.

The ability the system is able to demonstrate at this stage is thus a contextual visuomotor awareness
regarding potential targets in the peripersonal space. Such ability is learnt through exploration of the
environment: from a rough capacity of looking and reaching toward visual targets, the agent is finally
able to perform such actions with a very high precision. As visual processing is not the focus at this
stage of development, visual stimuli are just point-like features such as LEDs in UNIBO monkey
experiments or screen cues in WWU saccadic adaptation experiments.

Additionally, the system is able to adapt to altered conditions, such as visual distortions or modified
kinematic configurations, and experiments were performed in which the agent had its kinematics
changed and was able to learn the correct actions associated to the new parameters.

Issues and concepts related to the job of the dorso-medial cortical visual stream, especially regarding
its visuomotor properties, were the starting point of the computational implementation. In Chinellato
et al. 2009 and Chinellato et al. 2010a, we performed a Principal Component Analysis on the
activation patterns of V6A neurons showing that a neural population of V6A can be properly modeled
by a basis function approach. With the current model we try to verify what computational advantages
could be given by a responsiveness pattern such as that of V6A, including neurons having only visual
response, neurons apparently involved mainly in motor actions and mixed neurons, activated in all



phases of sensorimotor processes. The second RBF net is built following this principle, and our
simulation supports the hypothesis that a mixed population of neurons such as that observed in V6A is
especially suitable to a cortical area which contextually codes for different reference frames. Through
the use of basis function neurons whose configuration was set according to what was suggested by
neuroscience data, we were able to learn very accurately the transformations between oculomotor and
joint space, in a way suitable to their application to the robotic setup. Implementation details are
described in the paper [Chinellato et al. 2010b] added to this deliverable as annex.

The model and its robotic implementation are also expected to be able to reproduce some of the
experimental protocols and related effects used in WP5. Regarding psychophysical effects, we are
checking the model behavior in the case of the deceptive visual feedback, such as in typical
experiments of saccadic adaptation. This is done by eliciting a saccade (based on vergence/version eye
movement control) toward a given visual target, and providing a fictitious error on the reached final
position. For the computational model, this is achieved by adding an offset to the output. On the robot,
the same effect will be obtained moving the visual target as for human subjects. Analysis of how (as in
the saccadic adaptation protocol) such artificial displacement of the target affects the artificial agent
oculomotor and arm motor abilities can serve as a validation of the underlying model, and may help to
advance hypothesis on saccadic adaptation mechanisms in humans and monkeys. So far, we were able
to verify that our model does exhibit saccadic adaptation, altering its ability to perform correct
saccades according to the deceptive feedback. The analysis of error distributions around the target
point and of error vectors is also providing interesting information that we are studying together with
the partner WWU. For example, we were able to reproduce saccadic transfer effects similar to those
observed with human subjects. We expect to achieve even more revealing insights from applying the
same protocol to the robotic setup.

For demonstration purposes, the system can be required to perform either gaze/reach/both movements
toward visual targets. Sequences of saccadic adaptation movements can also be executed, and the
adaptation of the system to altered kinematic configurations can be simulated.

Chinellato, E., Grzyb, B.J., Marzocchi, N., Bosco, A., Fattori, P. & del Pobil, A.P. (2009) Eye-Hand
Coordination for Reaching in Dorsal Stream Area V6A: Computational Lessons. Bioinspired Applications in
Artificial and Natural Computation, LNCS 5602, pp. 304-313.

Chinellato, E., Grzyb, B.J., Marzocchi, N., Bosco, A., Fattori, P. & del Pobil, A.P. (2010a) The Dorso-medial
Visual Stream: from Neural Activation to Sensorimotor Interaction. Accepted with minor changes in
Neurocomputing.

Chinellato, E., Antonelli, M., Grzyb, B.J. & del Pobil, A.P. (2010b) Implicit mapping of the peripersonal space
by gazing and reaching. Accepted with minor changes in IEEE Trans. on Mental Development.
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Implicit sensorimotor mapping of the peripersonal
space by gazing and reaching

Eris Chinellato,Member, IEEEMarco Antonelli, Beata J. Grzyb and Angel P. del PoMember, IEEE

Abstract—Primates often perform coordinated eye and arm gain fields and basis function representations, that petonit
movements, contextually fixating and reaching towards nearby simultaneously represent stimuli in various referencenés.
objects. This combination of looking and reaching to the same |, fact the basis function approach has the attractiveufeat
target is used by infants to establish an implicit visuomotor rep- . .
resentation of the peripersonal space, useful for both oculontor that bqth head?centrlc repre_sentatlons for arm movements
and arm motor control. In this work, taking inspiration from such ~ @nd retino-centric representations for gaze movementsean
behavior and from primate visuomotor mechanisms, a shared encoded concurrently in the same neural map [1]. In the basis
sensorimotor map of the environment, built on a radial basis function framework, explicit encoding of targets in retino
function framework, is configured and trained by the coordinated  canyic coordinates is enhanced via gain fields to hold in par
control of a humanoid robot eye and arm movements. Simulated . - L
results confirm that mixed neural populations, such as those allgl Qn implicit encodmg '_n other r.eferenc_e frames [2]cBu
found in some particular brain areas modeled in this work, are gain fields are found in retino-centric organized eye moveme
especially suitable for the problem at hand. By exploratory gazing areas LIP [3], [4] and FEF [5] and, most importantly, in
and reaching actions, either free or goal-based, the artificial age  posterior parietal area V6A, as explain in Section II.
learns to perform direct and inverse transformations between In this work, eyes and arms of a humanoid robot are

stereo vision, oculomotor and joint-space representations. Thet ted te effect that . t teol Vi
integrated sensorimotor map that allows to contextually repre- reated as separate eliectors that receive motor conteol vi

sent the peripersonal space through different vision and motor different specific representations, which combine to form a
parameters is never made explicit, but rather emerges thanks to unique, shared visuomotor map of the peripersonal spaee. Th

the interaction of the agent with the environment. exploratory behavior of the robot is based on a functional
model of the tasks performed by the primate posterior pari-
etal cortex, which main building block is a basis function
. . . . framework that associate different reference frames,ngivi

H UMANS and other primates build their perception of the,om mytual access to each other, during planning, executio

surrounding space by actively interacting with nearby,y monitoring of eye and arm movements. We implement
stimuli, mainly looking and reaching at them. Through agtiv,

, X i such framework by relying upon findings from human and
exploration, they construct a representation of the enarent ey studies, especially from data on gaze direction and
useful for further interactions. The main sensory infoliorat

X e _ oy arm reaching movements in monkey posterior parietal area
used to build such representation is retinotopic (visuah)a,,ga 6].

and proprioceptive (eye, neck and arm position). A critical 5 system should finally be able to achieve a visuomotor

issue in this process is to coordinate movements and aﬁso%owledge of its peripersonal space in a dynamical way,
sensory inputs, in order to obtain a coherent mental imageff,,gh the practical interaction with the environmenings

the environment. Indeed, eye and arm movements often GG, stereoptic visual input and proprioceptive data comce

together, as we fixate an object before, or while, we reachi'ﬁg eye and arm movements. Following this approach, the

Such c?ombination of Iopking and .reachillﬂg towards t.he SaM¥hot should naturally achieve very good open-loop reaghin
target is used to establish a consistent, integrated vist®@m 54 saccade capabilities towards nearby targets. Thisigoal
representation of the peripersonal space. represented in Figure 1, which depicts a simple conceptual
In primates, areas within the dorsal visual stream of @pema of how the space representation is generated and
primate brain, and more precisely regions of the posterigpyated. Peripersonal space is represented by a plastic map
parietal cortex (PP,C)' are m_charge of perfprmlng the Enffee that constitutes both a knowledge of the environment and a
frame transformations required to map visual information tansorimotor code for performing movements and evaluate
appropriate ocglomotor and limb movements'. These areas #&ir outcome. The map is accessed and modified by two types
the _best candidates for the role of accessing and Updatﬁ}ginformation: retinotopic (visual) and proprioceptiveye
a visuomotor representation of the reachable space. ItgSy 5rm movements). Contextually, eye and arm motor plans
often arg_ued, and mcrea;mgly acce_pted by the neurosienty e gevised in accordance to the map itself. This mechanism
community, that such ability is achieved through the use gfjoys us to keep both eye and arm targeting in register and

E. Chinellato, M. Antonelli, B.J. Grzyb and A.P. del Pobileawith to establish a common spatial representation of the target
the Robotic Intelligence Laboratory, Jaume | University,s@efon de la location. Our framework is therefore based on a common code
Plana, 12071, Spain. A.P. del Pobil is also with the Departn@nin-  for gpatial awareness obtained by a learning proceduredbase
teraction Science, Sungkyunkwan University, Seoul, Sdathea. e-mail: .
{eris,antonell,grzyb, pobil@uii.es. on target errors of eye or arm movements to visual targets,

Manuscript received February 15, 2010. as described in Section Ill. As a final goal, the agent should

I. INTRODUCTION
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Proprioceptive Retinotopic of endowing the subject with the ability of interacting.with
information information his/her environment, and its tasks are often synthesized as
“vision for action”. The latter is dedicated to object reodgpn
and conceptual processing, and thus performs “vision for
perception”. Although the interaction between the twoastre
is necessary for most everyday tasks, dorsal stream areas ar
more strictly related to the planning and monitoring of feac
ing and grasping actions [7]. In fact, dorsal visual analysi
is driven by the absolute dimension and location of target
objects, requiring continuous transformations from dtofata
Fig. 1. Conceptual schema of the space representation map afférent to effector-based frames OT reference. The frame 9f reeren
and efferent signals. used for arm movements is body-centered, e.g. fixed on the
shoulder. Considering a dexterous primate, or a humanoid
robot endowed with a pan-tilt-vergence head, head moveiment
be able to purposefully build such visuomotor map of thare also body-centered, whilst gaze movements are head-
environment in 3D, simultaneously learning to look at andentered, usually referred to the cyclopean eye, idealpuidt
reach towards different visual targets. between the eyes. Visual information is retinocentric, doede
The perception of the space and the related sensorimoaoe two different retinal reference frames for a stereoesyst
map is thus accessed and updated by visuomotor interactiafi,these different reference frames are brought in regitie
e.g. moving the gaze and the arm toward a goal positiogach other by coordinated movements to the same target.
More interestingly, the agent has to be able to keep learningThe ventral stream maintains instead a contextual coding
during its normal behavior, by interacting with the worlcbf objects in the environment, based on their identity and
and contextually update its representation of the worlelfits meaning. Spatially, such coding can be defined as object-
Such goal can be achieved by adjusting the weights ofntered, as it is mainly concerned with the relative lacati
the basis functions according to the errors observed in tbkobjects with respect to each other. This sort of coding is
oculomotor and reaching movements as guided by the sanm used at this stage of our research.
basis functions. The concurrence of eye and arm movementThe hypothesis of parallel visuomotor channels within the
should be sufficient to provide the appropriate error signadorsal stream dedicated respectively to the transport aed t
even when actual distances between target and final positieshaping components of the reach-to-grasp action is well
of the action are not explicitly provided. We could call thisecognized [8]. Anatomically, these two channels fall both
approach as a “self-supervised learning” framework, inclvhi inside the dorsal stream, and are sometimes named dorso-
the different modalities supervise each other, and eye emd anedial and dorso-lateral visuomotor channels [9]. For what
movements both improve, and obtain together a precise viseoncerns proximal joint movements, focus of interest o$ thi
motor representation of the surrounding space. Upon ¢actiesearch, and according to a well established nomenclature
feedback, confirming that the target object has been reach# most important reach-related cortical areas are V6A and
the actual gazing and reaching directions can be compaitP, both receiving their main input from V6 and projecting
with the expected ones and the 3D visuomotor representattonthe dorsal premotor cortex [9]-[12].
accordingly updated if necessary. The presence of a tactileConsidering the functional role of the dorso-medial stream
response, as feedback for the correct execution of a remchimformation regarding eye position and gaze direction is/ve
movement, provides a reliable “master” signal to ensure thikely employed by area V6A in order to estimate the position
accuracy of the global representation. The results predént of surrounding objects and guide reaching movements toward
Section IV refers to the computational implementation & ththem. Two types of neurons have been found in V6A that
model, and we are currently working on its development aillow us to sustain this hypothesis [6]. The receptive fields

& motor goals:

Eye movements <———,

Plastic space
representation
map

Arm movements <¢———p)

our humanoid robot setup (Section V). of neurons of the first type are organized in retinotopic €oor
dinates, but they can encode spatial locations thanks te gaz
Il. BACKGROUND modulation. The receptive fields of the second type of neuron

This research builds on neuroscience findings and insigkﬁ'é%_organ'z_ed accorldmg to trlle red?jl_'t_absil/%f d|st;|b_u1fdhe
computational intelligence concepts and techniques, agd e subject peripersonal space. In addition, contains oresir

neering goals and constraints posed by the robotic implemélﬂadt arguabl;k/] represent thg tlarget of reac.hlnglréaur]ror:gmtﬂy,
tation. In this section we introduce the fundamental inegir and others that use a spatial representation [13]. Thiagiyo

concepts and relevant literature for each of these fields. suggests a crlthal role of V6A in the gradual transformatio
from a retinotopic to an effector-centered frame of refegen

. Moreover, some V6A neurons appear to be directly involved in
A. Sensorimotor transformations in the posterior pari@al- ine execution of reaching movements [9], indicating thét th
tex area is in charge of performing the visuomotor transforomesti
The visual cortex of the primate brain is organized inequired for the purposive control of proximal arm joints,
two parallel channels, called “dorsal” and “ventral” strea integrating visual, somatosensory and somatomotor signal
The former elaborates visual data with the main purposeder to reach a given target in the 3D space.



CHINELLATO et al: IMPLICIT SENSORIMOTOR MAPPING OF THE PERIPERSONAL SPACE BY GAZINGND REACHING 3

B. The basis function approach to sensorimotor transformbaest of our knowledge only two papers describes the use of
tions RBF networks for visuomotor transformations. The system

Basis functions are building blocks that, when combing®f Marjanovic et al. [23] firstly leamns the mapping between
linearly, can approximate any non-linear function, such 4%age coordinates and the pan/tilt encoder Coordlna'_[ebe:)ft
those required to map between different neural represensat €€ motors (the saccade map), and then the mapping of the
of the peripersonal space (retinotopic, head-centerem; a€ye posmon into arm position (the ballistic map). A su’mla
centered). Basis function networks have been proposed@&Ming strategy is employed by Sun and Scassellati [24],
a computational solution especially suitable for modelinghich use the difference vector between the target and the
the kind of sensorimotor transformations performed by tH@nd position in the eye-centered coordinate system withou
posterior parietal cortex [1], [14], [15]. Networks of safile 2" a<_jd|t|onal transformational stages. _Desplte the aniyl
basis functions are in fact able to naturally reproduce tie-g ©f their approaches to ours, some major differences can be
field effects often observed in parietal neurons [16]. It wdinted out: first of all, we exploit stereo vision, realgin
suggested that positions of object in the peripersonalespee & coordinated control of vergence gnq version movements,
coded through the activity of parietal neurons that act asshaMoreover, the saccade map in [23] is fixed and mainly used
functions, and any coordinate frame can be read out from sdgnProvide visual feedback during the ballistic map leagnin
population coding according to the task requirements [14]. Qn_ thg other hand, our sensorimotor transformauolns are

Several different transfer functions can be used as baBigirectional, so that our system leams to gaze towardsitsl
functions, the only requirements are that they are noratinePut also to reach Whgre it is Ioc_)kmg at. This sk_|II is t.ramed
that their interaction is also non-linear (e.g. productstsm), through a self-supervised learning framework, in which the
and that they cover all the possible input range. The most uglifferent modalities supervise each other, and both improv
functions, for their convenience and biological plaustiil Contextually their mapping of the space. The distributién o
are Gaussian and sigmoid functions. For example, retifotof® RBF centers also differs from the cited works, as we
maps are often modeled by Gaussian basis functions, and Big¢€ the neural receptive fields according to findings from
position by sigmoid, or logistic, functions [14]. Learniig Neurophysiological studies on monkeys. _
basis function networks is composed of two stages, the first” féw attempts to tackle the problem of coordinate control
for choosing the shape and location of the basis functioRs 98zing and arm movements by using neural networks,
and the second to map them to the output representation. Tyé not RBFs, have also been reported. Schenk et al. [25]
first step is usually unsupervised, the second depend orser@Mploy a feedforward neural network for learning to saccade

observed during the sensorimotor interaction with the gvorl toward targets, and a recurrent neural network is emploged f
executing the transformation carrying from the visual injgu

an appropriate arm posture, suitable for reaching and m@gsp
a target object. The reaching model of Nori et al. [26] cdssis
Although the use of artificial neural networks in roboticén learning a motor-motor map to direct the hand close to the
is very diffuse and not at all novel [17], just few works confixated object, and then activate a closed loop controllat th
cern visuomotor transformations involving arm movementasing visual distance between the hand and the target iraprov
and especially rare is the coordinate control of gazing ameaching accuracy. Eye gazing control is not adaptive, ey t
reaching movements. Visuomotor arm control has been ysualb not consider the importance of contextually maintairéng
tackled with the use of Self-Organizing Maps (SOM). Somseries of representations in different body reference dsaras
works [18], [19] apply them to the coordination between @isu suggested by neuroscience findings, especially thosediagar
information and arm control, modeling two cameras (altiougosterior parietal area V6A.
not in a classical stereo head configuration) and three dsgre
of freedom manipulators. Neither of the above papers censid
eye movements, and their applicability to real robot sefaps
limited, respectively by the huge number of required laagni
steps [18], and by the discrete sampling of the space whichAs mentioned in Section | and considering the theoretical
makes any target reachable only up to a certain precisiah, atescription of Section Il, the main sources of inspiration f
only after a number of steps dependent on the sampling [19]0&r model are the basis function approach [14], [16] and
recent extension of these works [20] makes use of altemativeuroscience experiments on the role of posterior parietal
SOM maps linked to different cameras, in order to deal wittortical areas (especially V6A) during gazing and reaching
occlusion, and takes also into account the issue of obstaafgions [6], [9], [13].
avoidance. Especially interesting is the flexibility of ithe The use of a robot hardware constitutes a possible compli-
system to changes in the geometry of the effector, which wation in the realization of a model of cortical mechanisms,
are able to reproduce with our approach. and some issues that would easily be solved in simulated en-
Whilst the use of SOM networks is relatively common, thgironments have to be dealt with more accurately considerin
employment of biologically inspired Radial Basis Functiothe real world implementation. The approach we follow is
(RBF) networks remains relatively unexplored. AlthoughFRBepigenetic, being the robot endowed with an innate knovdedg
have been successfully applied to the computation of ieversf how to move in its environment, which is later developed
kinematics, alone [21] or together with SOM [22], to thend customized through exploration and interaction wistual

C. Connectionist sensorimotor transformations in rob®tic

Ill. SENSORIMOTOR MAPPING OF THE PERIPERSONAL
SPACE CONCEPTUAL FRAMEWORK
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Tactile
information

l

Somatosensory/
arm motor map

Cyclopean
vision

Disparity image representation with a disparity map (under the assump

tion that the correspondence problem is already solvedy, ov
the option of having separate left and right retinotopic sap
(see left side of the schema of Fig. 2). Similarly, consialgri
that we are modeling extrastriate and associative visuasar
it is plausible to assume that gazing direction is represknt
by version and vergence angles instead of the two explicit
eye positions. This scheme allows us to transform ocular
movements and stereoptic visual information to a body/head
Fig. 2. Building blocks of the global space representatidte central body- centered reference frame and also, when needed, eliciyéhe e
centered map constitutes the integrated sensorimotor eypeg®n of the movements that are necessary to foveate on a given visual
peripersonal space. target. On the right hand of the conceptual schema of Fig. 2
we find the somatosensory/arm-motor map, required to code
) o ] o ~arm movements. Such map is modified by proprioceptive and
and tactile stimuli. Following this idea, all transformats (4ctjle feedback, and allows to execute reaching actiomart
are first implemented on a computational model, which fing|s,al or remembered targets. The integrated map, builef t
configuration represents the genetic component of the devglg sides of the schema, is thus accessed and updated upon
opmental process, and is then used as a bootstrap Condipé’ﬁhirements, as described in the next subsection.
for the actual experimental learning process by the robot.  the exploration of the environment through saccades and
Although in principle one representation should be enouglaching movements constitutes the basic behavior thanis e
for all the required transformations, the number of neurorpﬁ;oyed to build the visuomotor representation of the peripe
necessary to contextually code ferdifferent signals is given sonal space. Building such representation is done incremen
by the size of the signals to the power of It is easy to tally, through subsequent, increasingly complex intéoast
see that a representation maintaining both eye visual ande learning sequence is inspired by infant developmerit [27
proprioceptive signals, and arm joint information would b@s a first step, the system learns the association between
Computationally unfeasible, even for the brain itself. Areo retinal information and gaze direction (|e proprioc@@téye
logical structure is one in which a central, body-centergsbsition). This can be done simply by successive foveation
representation is accessed and updated both by limb sens®-salient points of the binocular images. The subject look
rimotor signals on the one hand and visual and oculomotgfound and focus the eyes on certain stimuli, thus learning
signals on the other hand (see Fig. 2). Indeed, this seefig association between retinal information and vergemce a
to be how the problem is solved within the brain, in whiclyersion parameters. Then, gaze direction is associatedrto a
different areas or populations of neurons in the same argassition, e.g. moving the arm randomly and following it with
are dedicated to different transformations. Most impdhyan the gaze, so that each motor configuration of the arm joint
this approach is consistent with the findings related to araassociated to a corresponding configuration of the system
V6A, which contains neurons that code for the retinocentrf@r eye motor control. In this case, proprioceptive infotioim
position of targets, others that code for their limb-redateregarding arm position is included in the computation, dred t
pOSitiOﬂ, and even others that seem to maintain both COdiﬂgﬁ;tors corresponding to reaching movements can be extract
and look thus especially critical for performing sensoriano sjmilarly to what is done for ocular movements. This process
transformations. In this way, different representatiofishe make the subject learn a bidirectional link between differe
same target can be maintained contextually, and used to &&fsorimotor systems. The subject can look where its hand is
on the target if required. It is the relation between thesfit also reach a point in space he is looking at. Later onabisu
representations that is accessed and modified by a comganctiargets are shown to the system, which is required to perform
of gaze and reach movements to the same target. The glafgth saccadic and arm reaching movements toward them. This
structure of our model follows this principles, and is thugequires the use of both direct and inverse transformations
modular, separating the retinal to body-centered transion  and allow to fine-tune the sensorimotor representation ef th
and the body-centered to arm-joint transformations (leff a space. Tactile feedback can be used as a master signal, for
right sides of Fig. 2). confirming that the target has been reached, making all the
The quality and the nature of the sensory stimuli to berocess substantially self-supervised.
introduced in the schema is quite varied, as the process
of 3D localization requires the integration of information
coming from various sources and different modalities. Such
integration can be modeled with different levels of detail
and considering alternative data sources and formats. in ouSo far, the model has been implemented in a simulated
case, we include visual information about potential tasgetd environment, taking always into account the final applarati
proprioceptive data on eye position and arm position. Sveon our humanoid robotic setup. The computational framework
possible alternatives for representing the above infdonat is depicted in Fig. 3, which is a simplification of the conaegpt
can be employed. Among possible alternatives for repregentschema of Fig. 2, in which the neck is fixed, and thus body-
binocular information we favor the composition of a cyclape centered corresponds to head-centered. Also, there igtile ta

Visual/ oculomotor
map

Version Vergence Arm position

|V. SENSORIMOTOR TRANSFORMATIONS WITHRADIAL
BASIS FUNCTIONS
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RBF rEF
Retinotopic Visual/
i oculomotor
representation 0
transformation

Motorsignalrelease:

nization of the neural receptive fields is suitable for mougl
Fael L Ll foveal magnification, whilst for disparity it corresponds t
R i a finer coding for smaller disparities, actually observed in
the primate visual cortex [28]. It is hence not surprising
that the logarithmic organization of the centers allowed to

Head/body-
centered
representation

Vergence —version
control

Jointspace

control obtain results about ten times as good as by using a ho-
mogeneous distribution (0.10mm against 1.1mm). For ggttin

Fig. 3. Computational framework of the visuomotor integrativodel. Two the number of neurons, we defined an arbitrary threshold of

transformations allow to code a stimulus contextually in alswculomotor 0 1mm error, that was achieved by a 7x7 neural lattice in the

and arm-motor frames of reference. cyclopean/disparity input space. The 400 training poimts a

provided by the simulated execution of saccadic movements

feedback for the moment, and the control of arm movemerfd the estimation of the target visual displacement. Tawnite

is based purely on proprioception. The visual input regaydi N Process is performed by applying the delta rule gradient
a potential target is expressed with its location in a cyetop descent technique, and the initial setting of the weights is
visual field accompanied by information on binocular dispaflone employing the linear pseudoinverse solution, typical

ity; we obtain in output the correspondent head/body cenf@PF networks [29], on the first 200 points. The use of an
representation, built of a potential vergence/versionencent incremental learning rule allows to keep the system flexible
required to foveate on the target. This transformation hi& Possible changes in visual accuracy and body kinematics.
been implemented with a RBF network, described below. TH& Principle, applying the delta rule should allow to adapt
second transformation, also implemented with radial badfs Unavoidable hardware asymmetries, image distortions, a
functions, is used instead to maintain a contextual coding ¥S© 0 deceptive sensory information, as described bdlew.
stimuli in both a body-centered and an effector based fraril 2dditional implementation option, we tested either Gians

of reference. It is used to recode oculomotor coordinates id Sigmoid neural activation functions, for both cyclapea
arm joint space and vice-versa. Each coding corresponds t¥i$tal input and disparity, and try the corresponding nets
potential movement, so that, thank to this second transfernyVith different spreads. The best performance was achiewed f
tion, the agent is able to reach where it is looking at (dire§f@ussian functions for both inputs.

transformation) and to foveate on the position of the hand T0 validate the model, we are comparing its behavior with
(inverse transformation). If one of the potential motomsitg SOme psychophysical effects described in the literatugarce

is not released, eye and arm movements can be decoupi@@,the tasks it executes. For example, we are checking the
i.e., the system can for example reach a peripheral vistiapdel be.havior_ in the case of the deceptiye visual f(_aedback,
target without directing the gaze toward it, only using thauch as in typical experiments of saccadic adaptation [30].
body-centered representation as an intermediate stepadee This is done by eliciting a saccade (based on vergencedversi
visual input to arm motor response. Similarly, arm moversen@yY® movement control) toward a given visual target, and
can also be planned but not executed, e.g. waiting forPgoviding a fictitious error on the final reached position.
cue signal in an experimental protocol of delayed reachinger the computational model, this is achieved by adding an

Details regarding the computational implementation oftthe  Offset to the output. On the robot, the same effect will be
transformations are given next. obtained moving the visual target as for human subjects.

Analysis of how (as in the saccadic adaptation protocolhsuc
artificial displacement of the target affects the artifiagent
oculomotor and arm motor abilities can serve as a validaifon
Learning the transformation from binocular visual data tthe underlying model, and may help in advance hypotheses on
eye position consists in identifying visual targets andeiting  saccadic adaptation mechanisms in humans and monkeys. So
them with both eyes, in order to associate appropriate aersifar, we were able to verify that our model do exhibit saccadic
and vergence movements to retinal locations. Either left andaptation, altering its ability to perform correct sa@smd
right retinal images or a cyclopean visual field accompaniegtcording to the deceptive feedback. The analysis of error
by a disparity map can be used as visual input, and wiéstributions around the target point and of error vectars i
employed the latter. Since visual processing is not thedocalso providing interesting information that we are curkent
at this stage of development, visual stimuli are just pk#- studying with more detail, together with collaboratorsnfro
features, similar to the LEDs used in monkey experimentsognitive sciences.
The transformation was implemented with an RBF network,
for the theoretical reasons explained above. )
We decided to employ fixed centers, which receptive fiel® Oculomotor to arm-motor transformation
can not move according to the input data, favoring biologi- In the second learning phase, arm movements are intro-
cal plausibility over potentially better performance. Rbrs duced, as exemplified in Figure 4. This phase is further
reason, we distributed the radial basis functions accgrttn subdivided in two stages, respectively free and goal-bhadeel
a retinotopic-like criterion (input to V6A is, at least pgrt free exploration consists of random arm movements and subse
retinotopic), following a logarithmic distribution of theenters. quent saccades toward the final hand position, which allows t
For what concerns cyclopean visual input, a logarithmi@erglearn the transformation from joint space to oculomotoicepa

A. Visual to oculomotor transformation
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Fig. 4. Gazing and reaching schema. At each training steprtifieial agent,

either model or robot, is required to move its hand and gazertbte same Fig. 5. Mapping of the space according to uniform distribogi in a

point, and update its sensorimotor representation usinghierved error.  vergence/version oculomotor space (red), in a J1/J2 joiatesgcyan) and
in a standard Cartesian space (green).

In the goal-oriented exploration a target object in space ha
to be foveated and reached. During this process, the invehswing the centers distributed as in Figure 5, red and cyan
transformation having arm joints in output is learnt. graphs, for vergence/version and joint space respectivéli

The choice of how to distribute the basis function neurorad nearby areas perform all the transformations required
is less straightforward for this second network. Automatior a correct gazing and reaching, and for this reason, an
placing driven by the training points is a standard soluf##], important requirement is that the same pool of artificial
but again we favor biological plausibility over performanc neurons, centers of the radial basis functions, have to be
Our main inspiration is on neuroscience findings regardinged in the direct and inverse transformations, so we ieclud
the posterior parietal cortex, and especially area V6A. Inkmth transformations in the comparison. To avoid biasing
previous work, we showed that a population of V6A neurorteward one or the other distribution, training (again 400htx)
is properly modeled by a basis function approach [31]. Aend test sets were taken randomly from a Cartesian space.
anticipated, this area includes neurons having only visua&t depicted in Figure 5, the ranges were taken so that the
response, neurons apparently involved mainly in motooasti superposition between the center distributions and thieitiga
and mixed neurons, activated in all phases of sensorimotord test sets were equivalent between the oculomotor and
processes. With our model we wanted to check what comfe joint space. A further complication in the comparison
putational advantages could be given by such responsiseniestween distributions is that different neuron placemeimis
pattern. For simplicity at this stage, only two arm jointsreve different transformations are optimized with differentmaer
used, and no tilt movements of the eyes, so that the acoessdil neurons and amplitudes. We tried to normalize the various
environment is a 2D space placed horizontally in front afolutions as much as possible in order to make them compara-
the subject, as in Figure 4. This is anyway consistent witlle. The number of neurons of the pure oculomotor and joint
most of the monkey experiments in which activity in V6Aspace distributions were 49 (7x7), to repeat the population
was registered. of the first network, whilst for the mixed distribution we

At this stage of the model development, we want thummployed 50 neurons (5x5x2) to match the total number of
to achieve good performances in the learning of the transeurons as close as possible, obtaining the placement shown
formations between oculomotor and arm motor space, white Figure 6. For each configuration we searched for the best
respecting, and trying to emulate, the responsiveneserpattvalues of the spreads, and the results of the differentdeste
observed in area V6A. We simulated the different types ebnfigurations are shown in Table I. As it can be observed, the
neurons of V6A with populations of radial basis functiorvergence/version distribution of neurons is reasonablgdgo
neurons uniformly distributed in the vergence/versioncepain both transformations, from oculomotor to joint space and
(representing oculomotor neurons) and in arm joint spag®erse, whilst the joint space distribution is good only tlee
(representing arm-motor neurons). Homogeneous disimitit joint to oculomotor transformation. A mixed distributiomith
are used in this case instead of logarithmic ones, becaese ltbth types of neurons, allows to obtain the best results ith bo
reachable space has to be covered all with the same precisteansformations, much better than either distributiomalcAs
Again, we tested with both Gaussian and sigmoid functions further experiment, we tried to distribute the neuron®etc
finding slightly better results for the former, as for the tfirsing to a forward selection algorithm, that automaticallpqs
network. the centers to best fit the training data. As shown in Tabel, th

In order to check their suitability to model the transformaresults are better than the single criterion distributiom ot
tions performed by V6A neurons, we trained RBF networksetter than the mixed one. The stop condition for the forward
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Fig. 6. Radial basis functions distributed according to aedigriterion (25 Fig. 7. Typical learning curve to adapt to the new parametéer ¢he
oculomotor + 25 arm motor, red stars), visualized over a typRatesian kinematics of the robot model has been changed.
training set (blue dots).

TABLE | ' . .
PERFORMANCE OFRBF NETWORKS WITH NEURONS DISTRIBUTED whose c;onﬁguratmn was set according to what SqueSteq by
ACCORDING TO A VERGENCEVERSION OCULOMOTOR SPACKV), ARM neuroscience data, we were able to learn very accuratedgtdir
JOINT SPACE(J) AND MIXED SPACE (M), FOR BOTH DIRECT AND INVERSE  and inverse transformations between oculomotor and joint
TRANSFORMATIONS OCULOMOTORS ARM-JOINT. space, in a way suitable for their application to the robotic

Neuron \=-J transformation 3V transformation setup.

distribution Error (mm)  St. dev.  Error (mm)  St. dev.

J 2.92 5.69 2.27 3.48 V. ROBOTIC SETUP AND EXPERIMENTAL FRAMEWORK

\Y 4.76 7.63 0.74 1.64 . . . . .

M 1.07 1.20 0.29 0.48 On the robotics side, the final goal of this work is to
forward select 1.63 1.80 0.63 1.06 provide the robot with advanced skills in its interactiorttwi

the environment, namely in the purposeful exploration &f th
peripersonal space and the contextual coding and control of

select algorithm was to have 50 neurons, to allow for a fa@tye and arm movements. On the other hand, the implemen-
comparison with the other methods. tation on an actual sensorimotor setup is a potential source

Apart for the shear improvement in performance, the ugé additional insights for the computational model, hardly
of the mixed distribution should be especially suitable faachievable with simulated data. Extensive experimentatio
modifying working conditions. To test this hypothesis, andith the robot is not yet available, and constitutes the bulk
to estimate the sort of results we could expect applying tloé our current work, which methodology is outlined below.
computational framework to the robotic setup, we changed th Our humanoid robot (Figure 8) is endowed with a pan-
kinematic parameters of the robot model, and start traittieg tilt-vergence stereo head with coordinated vergenceatvers
network with the old weights from the new configuration. Theontrol of the eyes and a multi-joint arm with a three finger
parameters included in the model are five: lengths of arm aBdrrett Hand (not used in this work). The workspace is
forearm, interocular distance, and relative position afudtier first positioned at eye level, so that only 2D eye and arm
and eyes (two parameters, supposing they are aligned in theovements are required. After the 2D transformation have
coordinate). The error, after modifying these parameteoaia been successfully applied to the robot according to the inode
10% to 20%, rises up to 40mm, and drops back almost described in the previous section, we plan to extend it to the
the original precision only after about 50 trials, as shown BD space, introducing tilt movements of the head and at least
Fig. 7. This behavior shows the adaptability of the system tme more joint for the arm. Preliminary studies with three-
changes in working conditions, and supports its suitgbibt input RBF transformations were successful in this regard.
implementation on the robot. As explained above, the actual map of the peripersonal

Recent experiments [P.Fattori, unpublished data] shotv tispace is learnt through active exploration. This is not done
the receptive fields of many V6A neurons seem to be inde&@dm scratch, as learning is bootstrapped with the weights
distributed according a vergence/version criterion. Lelesr learned during the training of the modeled network. The
is the effect of arm joints, also because of our simplificatioearning is now incremental, depending on the outcome of
of the actual joint space. In any case, our simulation suppoeach action. Possible misalignments are made of two differe
the hypothesis that a mixed population of neurons such as teeror components, one due to the visual-oculomotor transfo
observed in V6A is especially suitable for a cortical aregclwvh mation and the other to the arm-oculomotor. The two error
contextually codes for different reference frames. Fromegp components can be estimated measuring the visual distance
matic point of view, through the use of basis function nesrobetween the effector and the final gazing point. The use of
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hypothesis that a mixed population of neurons is the most
suitable for performing different transformations. Adialitally,

the system is able to adapt to altered conditions, such aalvis
distortions or modified kinematic configurations, and eiper
ments were performed in which the agent had its kinematics
changed and was able to learn the correct actions associated
to the new parameters.

The final, integrated representation of the peripersoratep
emerges thanks to the simulated interaction of the agent
with the environment. Such implicit representation allows
to contextually represent the peripersonal space throifgh d
ferent vision and motor parameters. Very importantly, the
oculomotor/arm motor transformation is bidirectionaldahe
underlying representations are both accessed and modified
by each exploratory action. The above schema is now being
implemented on a real humanoid torso, in which coordinated
reach/gaze actions are being used to integrate and match
the sensorimotor maps. This learning process is the normal
behavior of the agent, constituting the most fundamental
component of its basic capability of interacting with therldo
and contextually updating its representation of it.
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